

Supplementary Figure 1. Energy dispersive spectrometer (EDS) measurement

(a) (EDS) measurement data indicates the stoichiometry of Sn and Se to be 1:1. (b) FE-SEM image, indicating the layered structure of SnSe.

Supplementary Figure 2. X-Ray diffraction patterns

XRD patterns of un-doped and Bi-doped SnSe single crystals, which were cleaved along **a**-axis.

Supplementary Figure 3. Thermal diffusivity

(a) Bi-doped SnSe single crystals. (b) along **a**, **b**, and **c** axes of the sample with a carrier concentration of 2.1×10¹⁹ cm⁻³ at 773 K.

Supplementary Figure 4. Thermogravimetric analysis (TGA) of SnSe single crystal

TGA measurement result shows a drop in weight percent of SnSe at around 873 K.

Supplementary Figure 5. Hall resistance vs. magnetic field

(a) un-doped and (b-d) Bi-doped SnSe single crystals with carrier concentration of 8.7x10¹⁸ cm⁻³, 1.7x10¹⁹ cm⁻³, 2.1x10¹⁹ cm⁻³, respectively. We determined the carrier concentrations from the linear fitting of slope. Un-doped sample shows positive slope, indicating dominant hole conduction with the carrier density +5.2×10¹⁸ cm⁻³ at 773 K.

Supplementary Figure 6. Seebeck coefficient determination

Thermoelectric voltage ΔV as a function of temperature gradient ΔT of un-doped and Bi doped SnSe single crystal.

Supplementary Figure 7. Three continuous thermal cycles measurements

Temperature dependent (a) Seebeck coefficients, (b) electrical conductivities, (c) thermoelectric power factors, and (d) *ZT* of Bi-doped SnSe sample with carrier concentration of 2.1×10¹⁹ cm⁻³ at 773 K along b crystal axis. We performed the transport measurements with three continuous thermal cycles in the temperature range of 323 - 773 K. Old indicates the data in the manuscript for comparison.

Supplementary Figure 8. Confirm the accuracy of Seebeck measurement system

(a) Thermoelectric voltage ΔV as a function of temperature gradient ΔT ; the linear slopes indicate the Seebeck coefficients of polycrystalline Bi. (b) Seebeck coefficient as a function of number of measurement; red line is linearly fitted line using Origin program. Fitting parameters in inset box indicate the average of Seebeck coefficients for 18 times measurements and standard error, 1.3%.

Supplementary Note 1. How to determine measurements error levels.

We determined the error levels of three transport properties (electrical conductivity, Seebeck coefficient, and thermal conductivity) as below.

• For electrical conductivity, $\sigma = \frac{1}{2}$ $\frac{1}{\rho} = \frac{l}{Rc}$ $\frac{1}{Rab}$ where ρ is resistivity, R is resistance, *l* is length of sample, and *a* and *b* are width and height of sample. Average of electrical conductivity

$$
\langle \sigma \rangle = \frac{\langle l \rangle}{\langle a \rangle \langle b \rangle \langle R \rangle} \tag{1}
$$

$$
\text{Error of } \sigma \text{ is } \frac{\Delta \sigma}{\langle \sigma \rangle} = \left\{ \frac{\Delta l}{\langle l \rangle} + \frac{\Delta a}{\langle a \rangle} + \frac{\Delta b}{\langle b \rangle} + \frac{\Delta R}{\langle R \rangle} \right\} \tag{2}
$$

Sample sizes; $l = 2$ mm; $a = 2$ mm; $b = 0.3$ mm, and $R = V/l$ (Keitley model 2400) series with error less than 0.1%);

$$
\Delta l = \Delta a = \Delta b = 0.01 \, mm \, then
$$

$$
\frac{\Delta \sigma}{\langle \sigma \rangle} = \left\{ \frac{0.01}{2} + \frac{0.01}{2} + \frac{0.01}{0.3} \right\} = 0.043
$$
 (3)

Error for electrical conductivity measurement is 4.3%.

 For Seebeck coefficient measurements. To determine error for Seebeck coefficient, we used a Bi sample whose Seebeck coefficient is well known; i.e. we measured the Seebeck coefficients of polycrystalline Bi for 18 times as shown in Supplelentary Figure 8. We determined Seebeck coefficients from the slope of thermoelectric voltage ΔV vs. temperature gradient ΔT curve. The measured Seebeck coefficient of polycrystalline Bi is -57.7 \pm 0.76 μ V.K⁻¹. Standard error from the linear fitting is 1.3%. Note that the Seebeck coefficient of Bi single crystal is -51.4 μ V.K⁻¹ along perpendicular to the three fold axis and -102.7 μ V.K⁻¹ along parallel to the three fold axis.³ The Seebeck coefficient of the reported polycrystalline Bi is -60 μ V.K⁻¹ at 300 K (ref. 4). The slight difference between the measured and reported values are sample quality such as garin size, purity, etc.

- For thermal conductivity measurement, we used Laser Flash Apparatus LFA 457 MicroFlash measurement system with the error of \pm 3%.
- Power factor (PF) is calculared by Seebeck coefficient and electrical conductivity as below:

$$
PF = S^2 \sigma \tag{4}
$$

So *PF* error is estimated:

$$
\frac{\Delta PF}{\langle PF \rangle} = \left(\frac{\Delta S}{\langle S \rangle} + \frac{\Delta S}{\langle S \rangle} + \frac{\Delta \sigma}{\langle \sigma \rangle}\right) = (0.013 + 0.013 + 0.043) = 0.069\tag{5}
$$

• **ZT** error is estimated:

$$
\frac{\Delta ZT}{\langle ZT\rangle} = \left(\frac{\Delta S}{S} + \frac{\Delta S}{S} + \frac{\Delta \sigma}{\sigma} + \frac{\Delta \kappa}{\kappa}\right) \tag{6}
$$

 $= (0.013 + 0.013 + 0.043 + 0.03) = 0.099$

Power factor and *ZT* error in our measurements are 6.9% and 9.9%, respectively. Thus, we added error bars in the figures