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Simulation details

We performed numerical simulations with commercial multiphysics software (COMSOL
Multiphysics 4.4; COMSOL Inc.). The local concentrations of gold precursor and gold

were calculated by diffusion equation with reaction as follows

%W-(Divwiclc:” )

where ci, Dj, and, ki are concentration, diffusivity, and rate constant of it species,
respectively. Subscription index (i = 1, 2) correspond to the gold precursor and gold,
respectively. The diameter of liposome and thickness of lipid bilayer were set to be 30
nm and 4.7 nm (35). Overall gold precursor concentration is 200 M and the
concentration of neutral gold precursor in the solution is 40 M according to the
equilibrium of hydrolysis progress (37) The diffusivity of neutral gold precursor (Dz)
across the lipid bilayer was considered to be a function of depth inside the lipid bilayer
based on the molecular dynamics simulation results (38, 39) Since the diffusivity of
neutral gold precursor across the lipid bilayer (1,2-distearoyl-sn-glycero-3-
phosphocholine, DSPC) has not been reported, we calculate the diffusivity of neutral gold
precursor by using the Stoke-Einstein relation for the diffusivity (51). Figure S7 shows
the diffusivity of neutral gold precursor in lipid bilayer by using the diffusivity of
acetamide in lipid bilayer (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC). The
molar mass of neutral gold precursor and acetamide are 321 and 59 g/mol, respectively.
The influence of the difference in carbon chain length between DPPC (number of carbon:
16) and DSPC (number of carbon: 18) on the diffusivity of neutral gold precursor is
considered as negligible. The diffusivity of gold (D) in the lipid bilayer is assumed to be
zero because its charge prevents the gold from entering the hydrocarbon phase of the

lipid bilayer. The rate constant, ki and k2 are -10 and 10, respectively (40).
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fig. S1. Schematic illustration of conventional approaches for liposome/metal
hybrids and their critical limitations.



fig. S2. Additional TEM images of LGNP (using membrane filter with a pore
diameter of 100 nm).
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fig. S3. Photographs and absorbance spectra of control experiments. (A and B)
Photographs (A) and UV-vis absorbance spectra (B) of mixed solutions of gold precursor
and liposomes (without reducing agent). (C and D) Photographs (C) and absorbance

spectra (D) of mixed solutions of gold precursor and reducing agent (trisodium citrate, 3
1M).
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fig. S4. Reduction of gold ions above the transition temperature of lipid (DSPC). (A)
Schematic illustration for comparison of the reduction of gold ions at room temperature
(RT) and above transition temperature of the lipid (DSPC). (B and C) Representative
photographs (B) and UV-vis absorbance spectra (C) of solutions of the nanoparticles

synthesized at RT, 65 °C, and 80 °C. (D, E, and F) Representative TEM images of the



nanoparticles at RT (D), 65 °C (E), and 80 °C (F). (G) Frequency of nanoparticles with
outer lipid layer at RT and 65 °C. (H) Size distributions at RT, 65 °C, and 80 °C.
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fig. S5. Molecular structure of DSPC and EDS spectrum and relative atomic
percentages of as-prepared liposome/Au and liposome/Ag hybrid nanoparticles. (A)
Molecular structure of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). (B and C)
Energy-dispersive X-ray spectroscopy spectrum, and relative atomic percentages of as-
prepared liposome/Au (B) and liposome/Ag (C) hybrid nanoparticles.
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fig. S6. Time-dependent representative absorbance spectra of programmable

liposome solution after the exposure with gold precursor.
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fig. S7. Diffusivities of acetamide and neutral gold ion complex. Diffusivities of
acetamide and neutral gold ion complex that exist between lipid bilayers as a function of
depth inside the lipid bilayer.



Trisodium citrate

Oh

-

12h

Ascorbic acid

Oh

12h

Normalized absorbance (a.u.)

500

—— Addition of

trisodium citrate 12 h
— Addition of

trisodium citrate O h

\
\

550

A(nm)

600

(9]

Normalized absorbance (a.u.)

500

—— Addition of
ascorbicacid 12 h

—— Addition of
ascorbic acid 0 h

\
\

550

A(nm)

fig. S8. Photographs and absorbance spectra of solutions of the gold precursor—
encoded liposome after addition of reducing agent. (A, B, and C) Photographs (A) and
absorbance spectra (B and C) of solutions of the gold precursor-encoded liposome after
addition of reducing agent (i.e., trisodium citrate and ascorbic acid). The absorbance

spectra were shifted along y-axis for clarity.
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fig. S9. Additional TEM images of various liposome/metal hybrid nanoparticles.
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fig. S10. Representative time-resolved absorbance spectra of liposome/monometallic
hybrid nanoparticle. (A, B, and C) Representative time-resolved absorbance spectra of

liposome/Ag hybrid nanoparticle (A), liposome/Pd hybrid nanoparticle (B), liposome/Pt

hybrid nanoparticle (C), respectively.
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fig. S11. Size distributions of liposome/monometallic and liposome/bimetallic
hybrids. (A, B, and C) Size distributions of liposome/monometallic hybrids (A: Ag, B:
Pd, C: Pt). (D, E, and F) Size distributions of liposome/bimetallic hybrids (D: Au-Ag, E:
Au-Pd, F: Au-Pt). For statistical analyses, 70 particles are randomly selected.
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fig. S12. EDS spectra of liposome/bimetallic hybrids. (A, B, and C) EDS spectra of
liposome/bimetallic hybrids (A: Au-Ag, B: Au-Pd, C: Au-Pt).



fig. S13. Representative TEM images and corresponding EDS elemental line profiles
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of liposome/bimetallic hybrids. (A, B, and C) Representative TEM images and

corresponding EDS elemental line profiles of liposome/bimetallic hybrids (A: Au-Ag, B

Au-Pd, C: Au-Pt).



fig. S14. Representative TEM images of liposome/bimetallic hybrids synthesized
from different precursor molar ratios. (A, B, and C) Representative TEM images of
liposome/bimetallic hybrids synthesized from the precursor molar ratios of 2:1, 1:1, and
1:2, respectively (A: Au-Ag, B: Au-Pd, C: Au-Pt).
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fig. S15. Atomic percentages and absorbance spectra of liposome/Au-Ag hybrids
and liposome/Au-Pd hybrids synthesized from different precursor molar ratios. (A
and B) Atomic percentages (A) and absorbance spectra (B) of liposome/Au-Ag hybrids
synthesized from the precursor molar ratios of 2:1 (Au:Ag), 1:1, and 1:2, respectively. (C
and D) Atomic percentages (C) and absorbance spectra (D) of liposome/Au-Pd hybrids
synthesized from the precursor molar ratios of 2:1 (Au:Pd), 1:1, and 1:2, respectively.
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fig. S16. Representative relative absorbance at the SPR peaks of LGNP, GNP, and
GNR under a wide variety of biologically relevant solutions and representative
relative absorbance of LGNP with time duration of up to 1 month. (A)
Representative relative absorbance at the SPR peaks of LGNP (541 nm), GNP (571 nm)
and GNR (786 nm) under a wide variety of biologically relevant solutions. (B)
Representative relative absorbance of LGNP with time duration up to 1 month. [DIW
(deionized water), NaCl (sodium chloride), PBS (phosphate buffered saline pH 7.4),
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), cell culture medium
(Dulbecco’s Modified Eagle’s Medium (DMEM) high glucose), HS (human serum)].
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fig. S17. Viability of U-87 MG cells treated with LGNP and GNP solutions. (A)
Representative photographs of MTT assay for the cells treated with LGNP and GNP
solutions. (B) Relative cell viability based on the MTT assay.
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fig. S18. Optical microscope images and Raman spectra obtained from various cells
after being treated with LGNP and GNP. (A, B, and C) Representative optical
microscope images and surface-enhanced Raman spectra obtained from U-87MG cells
(A), MDA-MB-231 cells (B), and HEK 293T/17 cells (C) after being treated with LGNP
(red, green and blue lines) and GNP (black line) (inset in the spectra: optical microscope

images of cells where the spectra were measured).
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fig. S19. Fluorescent image and Raman spectra obtained from Alexa Fluor 546-
stained U-87 MG cells, and optical microscope images and Raman maps obtained
from Alexa Fluor 546-stained U-87MG cells after being treated with LGNP and
GNP. (A) Fluorescent image and Raman spectra obtained from Alexa Fluor® 546 stained
U-87MG cells (black line) and pure Alexa Fluor® 546 (red line). Characteristic Raman
transition of Alexa Fluor® 546 that does not overlap with the Raman transitions of U-

87MG cell is assigned by red asterisks (734 cm™). (B and C) Optical microscope images



and Raman maps obtained from Alexa Fluor® 546 dye stained U-87MG cells after being
treated with LGNP (B) and GNP (C).



table S1. Calculated relative atomic percentages of gold and oxygen atoms in LGNP.

Au atom
Volume of Au nanoparticle 5 00999
with 95 nm in diameter (nm?) ca. 523 x 10 °.°-’ ‘““‘ °°,.°
0 oy | /S
Volume of unit cell for Au ca. 6.70 x 102 RN o °°°, B
with face centered cubic lattice (nm?) T S ’{‘ 2
Number of Au atom in a unit cell 4 — 5‘ E
[ (3
Total number of Au atom ; o &2
in Au nanoparticle with 95 nm in diameter ca. 2.64 x 10 o‘, ; “'Ooqo°°&°
o )
O atom ®664556°°5nm
Total number of lipid (DSPC) ca. 7.47 x 10°
per liposome with 100 nm in diameter T Liposome/Au hybrid
Total number of O atom in lipid (DSPC) ca. 5.97 x 10 Element | Atomic %
in liposome with 100 nm in diameter T A %61
u .
Total number of reducing agent (ascorbic acid) 4
per liposome with 100 nm in diameter ca. 8.08 x 10 o 3.9
Total number of O atom in reducing agent 5
(ascorbic acid) per liposome with 100 nm in diameter ca. 4.85 x 10

table S2 The number of metal atoms per unit volume in liposome/Au, liposome/Ag,
and liposome/Pd hybrids, measured by inductively coupled plasma atomic emission

spectroscopy.
. Metal concentration Molecular weight Number of metal atom
Particle . :
in sample (ppm) of metal (g/mole) per unit volume
Liposome/Au 19
hybrid 5.16 (Au) 196.97 (Au) 1.58 x 10
Liposome/Ag 2.43 (Ag) 107.87 (Ag) 1.36 x 1019
hybrid 2 (Ag o \Ag '
Liposome/Pd 3.84 (Pd) 106.42 (Pd) 2.17 x 101

hybrid






