SUPPLEMENTARY MATERIAL

2	Biochemical and genetic basis of indole-3-acetic acid (auxin phytohormone)
3	degradation by the plant growth promoting rhizobacterium Paraburkholderia
4	phytofirmans PsJN.
5	
6	Raúl Donoso, Pablo Leiva-Novoa, Ana Zúñiga, Tania Timmermann, Gonzalo
7	Recabarren-Gajardo, and Bernardo González.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1

Figure S1. Transcriptional analysis of *iac* genes apparently grouped in operon 2 functional units. The numbers correspond to the DNA fragments amplified by PCR 3 using primer pairs shown in Table 1. 1 (1.37 kb): Mut iacR2Rv-Mut iacCRv; 2 (1.46 4 5 kb): Mut iacCFw-Mut iacDRv; 3 (1.90 kb): Mut iacDFw-Mut iacT1Rv; 4 (1.91 kb): Mut iacT1Fw-Mut iacSFw; 5 (1.68 kb): Mut iacSRv-Mut iacARv; 6 (1.35 kb): Mut iacAFw-6 Mut iacBRv; 7 (0.78 kb): Mut iacBFw-Mut iacIRv; 8 (1.01 kb): Mut iacIFw-Mut 7 iacHRv; 9 (1.41 kb): Mut iacHFw-Mut iacERv; 10 (0.97 kb): Mut iacEFw-Mut 8 iacR1Rv. IAA+, cDNA of strain PsJN grown in IAA; Control +, strain PsJN genomic 9 10 DNA; IAA-, no reverse transcriptase control of IAA+; Control -, no DNA control.

- 2 Figure S2. Paraburkholderia phytofirmans PsJN catA gene mutant cells turned
- 3 brown a medium supplemented with indole-3-acetic acid (IAA). A) Wild type strain
- and B) *catA* mutant grown in fructose plates plus 1 mM IAA.
- 5

Figure S3. High-performance liquid chromatography ultraviolet chromatograms of supernatants from cultures of *Cupriavidus pinatubonensis* JMP134 derivatives harboring *iacABIHECDGF* genes (strain JMP134*iac*1). This strain was exposed to 1 mM indole-3-acetic acid (IAA) for 10 h. Catechol appears only transiently at 1 h due to this strain is able to metabolize it. Retention times for IAA, catechol and compound 1, were 6.75, 3.05 and 2.04 min, respectively. MC, a signal found in controls without bacteria.

1

Figure S4. High-performance liquid chromatography ultraviolet chromatograms of supernatants from cultures of *Cupriavidus pinatubonensis* JMP134 and *Paraburkholderia phytofirmans* PsJN grown in fructose or IAA to stationary phase, washed and later exposed to supernatant containing dioxindole-3-acetic acid (DOAA). Retention time for compound 1 was 2.04 min. MC, a signal found in controls without bacteria.

Figure S5. High-performance liquid chromatography ultraviolet chromatograms of supernatants from cultures of *Cupriavidus pinatubonensis* JMP134 derivatives harboring *iacABIHECDGF* genes plus *iacT1* and/or *iacY* genes, after 0 h and 24 h of exposure to 1 mM indole-3-acetic acid (IAA). Retention times for IAA and dioxindole-3-acetic acid (DOAA) were 3.18 and 1.03 min, respectively. MC, a signal found in controls without bacteria.

2 Figure S6. High-performance liquid chromatography ultraviolet chromatograms of supernatants from cultures of Cupriavidus pinatubonensis JMP134 harboring pbS1-3 iac1 Δ A, pbS1-iac1 Δ B, pbS1-iac1 Δ CD, pbS1-iac1 Δ E, pbS1-iac1 Δ F, pbS1-iac1 Δ G 4 and pbS1-iac1_ΔI after 0 h and 10 h of exposure to 1 mM indole-3-acetic acid (IAA). 5 Retention times for IAA, dioxindole-3-acetic acid (DOAA), compound X and 6 7 compound Y were 6.75, 2.04, 2.78 and 4.85-5.30 min, respectively. Despite the very 8 short period between the initial time of IAA exposure and the zero time sampling 9 (usually less than 1-2 min), in some strains/conditions, the DOAA signal at time 0 was detected. MC, a signal found in controls without bacteria. 10

Figure S7. High-performance liquid chromatography ultraviolet chromatograms of
supernatants from cultures of *Cupriavidus pinatubonensis* JMP134 derivatives
harboring A) *iacAG*, B) *iacEB* and C) *iacCDFT1Y* genes, after 0 h and 1 h of
exposure to 1 mM indole-3-acetic acid (IAA), or supernatants containing compounds
designated X-Y, or dioxindole-3-acetic acid (DOAA). Retention times for IAA, DOAA,
compound X and compound Y were 6.75, 2.04, 2.78 and 4.85-5.30 min, respectively.
MC, a signal found in controls without bacteria.

2 Figure S8. lacR2 regulator positively controls transcription levels of *iacS* and *iacR1* gene encoded regulators. Transcript levels of iacA, iacS and iacR1 from cells of 3 4 strain PsJN wild type (WT) and *iacR2* mutant derivative (*\(\Delta\)iacR2*) grown in fructose (mid-log phase) exposed 1 h to mixtures of indole-3-acetic acid (IAA) and dioxindole-5 6 3-acetic acid (DOAA). It should be noted that transcript levels of the ribosomal protein S7 (rpS7) gene, used as expression controls, remained unchanged under 7 these conditions. Transcript levels were normalized to the average value of the 8 9 transcript levels in the non-induced (NI) condition. 16S rRNA was used as a reference gene (internal control). All experiments were performed in three biological 10 replicates. Error bars represent standard deviations. Asterisks indicates significant 11 differences between treatments (Student's t-test, p < 0.05). 12

2 Figure S9. Effects of metabolites of indole-3-acetic acid biodegradation on Arabidopsis thaliana plants. Phenotype of A. thaliana plants cultivated with indole-3-3 acetic acid (IAA), dioxindole-3-acetic acid (DOAA), or compounds X-Y. Col-0 A. 4 5 thaliana seeds, previously sterilized, were sown on square Petri dishes with half strength Murashige and Skoog medium (1) 0.8% agar (50% MS) (control); 50% MS 6 7 supplemented with IAA (100 μ M); 50% MS supplemented with DOAA (100 μ M) or 8 50% MS supplemented with compounds X-Y (100 µM). Plates were placed vertically in a growth chamber at 22°C with a photoperiod of 16 h of light and 8 h of dark for 9 10 19 days. The assay was done in triplicate (n = 27 plants per treatment). White bars 11 in photographs correspond to 2 cm. Compounds X-Y or DOAA were prepared using 12 10-fold diluted supernatants of strain JMP134-*iacAG* or JMP134*iac*1 resting cells 13 previously exposed to 1 mM IAA, as the only carbon source for 2 h, respectively.

- 1 Table S1. Amino acid identity percentages between *iac* genes encoded products in
- 2 Pseudomonas putida 1290 and Paraburkholderia phytofirmans PsJN.

P nutida 1290 gene: accession	P phytofirmans Ps.IN locus tag	Amino acid identity
number: Automatic annotation ^A	r : phytommano r solt loods tag	Amino dola lacitity
iacA: ABY62757:	Bohyt 2161, Bohyt 6111	56%. 49%
Acyl-CoA dehydrogenase-like		,
<i>iacB</i> ; ABY62758;	Bphyt_2162	57%
Conserved hypothetical protein		
<i>iacC</i> ; ABY62759;	Bphyt_2156	62%
Aromatic ring hydroxylating		
dioxygenase		
<i>iacD</i> ; ABY62760;	Bphyt_2157	44%
Aromatic ring hydroxylating		
dioxygenase		
<i>iacE</i> ; ABY62761;	Bphyt_2165	52%
Short-chain		
dehydrogenase/reductase	Date 4 0450 Date 4040	440/ 000/
IACF; AB162762;	Bpnyt_2150, Bpnyt_4243	41%, 38%
	Pablet 5028 Pablet 2167 Pablet 6112	E20/ E00/ 170/
IdCG, ABT02703,	BpHyt_5026, BpHyt_2167, BpHyt_6112	55%, 50%, 47%
$iacH \Delta BV62765$	Bobyt 2164	52%
Glu-tRNA amidotransferase	Dphyt_2104	5270
iacl: ABY62766	Bohyt 2163	44%
Conserved hypothetical protein		1170
iacR: ABY62764:	absent	NA
Transcriptional regulator MarR		
family		

³ ^AAutomatic annotation: *iac* genes of *P. putida* 1290 (2) have highest BLASTP

4 similarities to sequenced strain *P. putida* GB-1, which possess *iac* genes

5 automatically annotated. NA: not apply.

- 1 Table S2. Amino acid identity percentages between additional iac genes of
- 2 Paraburkholderia phytofirmans PsJN and proteins with demonstrated genetical
 - **Identity Lenght** Locus; Lenght gene name (aa) Homology with (%) (aa) Strain Reference 2-hydroxymuconate Pseudomonas Bphyt_2158; 127 45 63 3 iacY tautomerase stutzeri Escherichia Bphyt_2159; 438 Shikimate transporter 40 438 4 coli iacT1 Bphyt_6110; Escherichia 452 438 4 Shikimate transporter 41 iacT2 coli Bradyrhizobium 5 Bphyt_2160; 506 Sensor protein FixL 505 31 japonicum iacS Pseudomonas 6 Bphyt_2166; Response regulator 220 45 227 iacR1 protein TodT putida Bphyt_2155; Transcriptional Ralstonia sp. 316 39 7 301 iacR2 activator NagR strain U2 Acinetobacter 8 Catechol Bphyt_2152; 302 98 275 1,2-dioxygenase 2 lwoffii catA Bphyt_1590; Catechol Acinetobacter 8 311 89 311 1,2-dioxygenase 1 catA2 lwoffii Bphyt_2153; Muconate Acinetobacter 8 385 91 385 catB cycloisomerase 1-2 lwoffii Pseudomonas 9 Bphyt 1588; Muconate 375 375 62 catB2 cycloisomerase 1 putida Bphyt_2151; Muconolactone Acinetobacter 8 96 95 96 catC delta-isomerase 2 Iwoffii Bphyt_1587; Muconolactone Cupriavidus 100 92 10 81 catC2 delta-isomerase pinatubonensis Acinetobacter 11 Bphyt_1591; Benzoate dioxygenase 452 60 461 benA large subunit calcoaceticus
- 3 and/or biochemical functions.

- 1 Table S3. Growth of Cupriavidus pinatubonensis JMP134, Paraburkholderia
- 2 phytofirmans PsJN and its derivative mutants in indole-3-acetic acid (IAA) or
- 3 benzoate (Bz).

Strain	IAA	Bz
Paraburkholderia phytofirmans PsJN	+	++
Cupriavidus pinatubonensis JMP134	-	++
PsJN::pCR2.1 <i>iacA</i>	-	++
PsJN::pCR2.1 <i>iacA iacABIHECDGF-pBS1</i>	+	++
PsJN::pCR2.1 <i>iacA iacBIHECDGF-pBS1</i>	-	++
PsJN::pCR2.1 <i>iacB</i>	-	++
PsJN::pCR2.1 <i>iacB iacABIHECDGF-pBS1</i>	+	++
PsJN::pCR2.1 <i>iacB iacAIHECDGF-pBS1</i>	-	++
PsJN::pCR2.1 <i>iacC</i>	-	++
PsJN::pCR2.1 <i>iacC iacABIHECDGF-pBS1</i>	+	++
PsJN::pCR2.1 <i>iacC iacABIHEGF-pBS1</i>	-	++
PsJN::pCR2.1 <i>iacD</i>	-	++
PsJN::pCR2.1 <i>iacE</i>	-	++
PsJN::pCR2.1 <i>iacF</i>	-	++
PsJN::pCR2.1 <i>iacG</i>	+/-	++
PsJN::pCR2.1 <i>iacH</i>	-	++
PsJN::pCR2.1 <i>iacH iacH-pBS1</i>	-	++
PsJN::pCR2.1 <i>iacH iacE-pBS1</i>	+	++
PsJN::pCR2.1 <i>iacl</i>	-	++
PsJN::pCR2.1 <i>iacl iacABIHECDGF-pBS1</i>	+	++
PsJN::pCR2.1 <i>iacI iacABHECDGF-pBS1</i>	-	++
PsJN::pCR2.1 <i>iacY</i>	+	++
PsJN::pCR2.1 <i>iacR1</i>	-	++
PsJN::pCR2.1 <i>iacR</i> 2	-	++
PsJN::pCR2.1 <i>iacS</i>	+/-	++
PsJN::pCR2.1 <i>iacT1</i>	+	++
PsJN::pCR2.1 <i>catA</i>	-*	++
PsJN::pCR2.1 <i>iacA</i> 2	+	++
PsJN::pCR2.1 <i>iacG2</i>	+	++
PsJN::pCR2.1 <i>iacT2</i>	+	++

4 ++, Growth after 24 h; +, Growth after 48h; +/-, Growth after 60h; -, No growth after

5 7 days. WT: wild type. IAA 2.5 mM; Bz 2.5 mM. *Growth medium turned brown.

1 Table S4. ¹H and ¹³C NMR data of compound 1.

Matabalita	Structuro	Nuclous	Colitting	Chemical	Coupling
Metabolite	Structure	Nucleus	Splitting		
	hydroxy-2- indolin-3- cetic acid 5_{H} 5_{I} 4_{H} 3_{H} H_{H} 1_{I} 5_{H} 5_{I} 4_{I} 3_{I} $CO_{2}H$ 6_{H} 7_{I} 8_{I} 9_{I} H 8 H 7	H1	bs	3.42	-
		H2	S	2.91	-
		H3	bs	3.42	-
		H4	d	7.31	<i>J</i> =7.3
		H5	t	6.93	<i>J</i> =7.5
		H6	t	7.19	<i>J</i> =7.6
2-(3-hydroxy-2-		H7	d	6.79	<i>J</i> =7.7
oxoindolin-3-		H8	S	10.22	-
yl)acetic acid		C1′	-	178.5	-
		C2′	-	42.2	-
		C3′	-	73.0	-
		C4′	-	131.7	-
		C5′	-	124.3	-
		C6′	-	121.7	-
		C7′	-	129.6	-
		C8′	-	109.9	-
		C9′	-	143.2	-
		C10′	-	170.7	-

Singlet, doublet, triplet and broad signal are abbreviated as s, d, t and bs,
respectively. Chemical shift and coupling constants were calculated from
representative spectra obtained from compound 1 dissolved in DMSO-*d*6.¹H and ¹³C
NMR data were recorded at 400 and 100 MHz, respectively.

1 Supplemental material references

2	1.	Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio
3		assays with tobacco tissue cultures. Physiol. Plant. 15:473–497.
4	2.	Leveau JH, Gerards S. 2008. Discovery of a bacterial gene cluster for
5		catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol. Ecol.
6		65:238-250.
7	3.	Bosch R, García-Valdés E, Moore ER. 2000. Complete nucleotide sequence
8		and evolutionary significance of a chromosomally encoded naphthalene-
9		degradation lower pathway from Pseudomonas stutzeri AN10. Gene 245:65-
10		74.
11	4.	Whipp MJ, Camakaris H, Pittard AJ. 1998. Cloning and analysis of the shiA
12		gene, which encodes the shikimate transport system of Escherichia coli K-12.
13		Gene 209:185-192.
14	5.	Anthamatten D, Hennecke H. 1991. The regulatory status of the fixL- and fixJ-
15		like genes in Bradyrhizobium japonicum may be different from that in
16		Rhizobium meliloti. Mol. Gen. Genet. 225:38-48.
17	6.	Lau PC, Wang Y, Patel A, Labbé D, Bergeron H, Brousseau R, Konishi Y,
18		Rawlings M. 1997. A bacterial basic region leucine zipper histidine kinase
19		regulating toluene degradation. Proc. Natl. Acad. Sci. USA 94:1453-1458.
20	7.	Zhou NY, Fuenmayor SL, Williams PA. 2001. nag genes of Ralstonia
21		(formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate
22		catabolism. J. Bacteriol. 183:700-708.

1	8. Kim SI, Leem SH, Choi JS, Chung YH, Kim S, Park YM, Park YK, Lee YN,
2	Ha KS. 1997. Cloning and characterization of two catA genes in Acinetobacter
3	Iwoffii K24. J. Bacteriol. 179:5226-5231.
4	9. Aldrich TL, Frantz B, Gill JF, Kilbane JJ, Chakrabarty AM. 1987. Cloning and
5	complete nucleotide sequence determination of the catB gene encoding
6	cis,cis-muconate lactonizing enzyme. Gene 52:185-195.
7	10. Prucha M, Peterseim A, Timmis KN, Pieper DH. 1996. Muconolactone
8	isomerase of the 3-oxoadipate pathway catalyzes dechlorination of 5-chloro-
9	substituted muconolactones. Eur. J. Biochem. 237:350-356.
10	11. Neidle EL, Hartnett C, Ornston LN, Bairoch A, Rekik M, Harayama S. 1991.
11	Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for
12	benzoate 1,2-dioxygenase reveal evolutionary relationships among
13	multicomponent oxygenases. J. Bacteriol. 173:5385-5395.