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I. FREE ENERGY

The dynamics of an equilibrium liquid crystal, which were discussed in the body of the text, can be derived
from gradient descent on the well-known Landau-de Gennes free energy [1, 2]:
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where the homogeneous terms give a second order phase transition and the terms with coefficients Li are
elastic terms, associated with the energy cost of director distortions. The elastic energy cost is widely

described in terms of splay (K11(∇ · n̂)2) and bend (K33

(
n̂ × (∇ × n̂)

)2
) distortion of the director. The

parameters in (1) are related to the splay and bend coefficients as: K11 = ρ2S2(2L1 + L2 − SL4) and
K33 = ρ2S2(2L1 + L2 + SL4).

The gradient-descent dynamics from the body of the paper came from taking a derivative of Eq. 1:
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where Dr = 1/γ, Dρ = −χ/γ, K = κ/γ and the two mean elastic terms have been consolidated by using
the tracelessness and symmetry of Q to group them in the term with coefficient D̄E = 1

2 (L1 + L2)/γ.
The equilibrium nematic should be stable to director fluctuations (K11,K33 > 0), so the differential elastic
coefficient, Dδ = L4/γ, should be in a range |Dδ| < 3

S D̄E . The fourth order gradient term, coefficient
K, is included in order to ensure smoothness and numerical stability. This role becomes apparent when
considering the role of this term in the linear stability.

II. LINEAR STABILITY

The equations of an overdamped active nematic,

∂tρ = D∇2ρ+DQ∂i∂jQij (3)

and Eq ??, admit a homogeneous uni-axial nematic state with average density ρ0 > 1, and the order

parameter Q = ρ0S0(x̂x̂− 1
2I) with S0 =

√
2(ρ0−1)
ρ0+1 . Without loss of generality, we have picked coordinates

so that the direction of nematic ordering is along the x-axis of our coordinate system. We parameterize
the fluctuations about this state in the form ρ(r, t) = ρ0 + δρ(r, t), Qxx(r, t) = 1

2ρ0S0 + δQxx(r, t) and

Qxy(r, t) = δQxy(r, t). Further, we introduce a Fourier transform X̃ =
∫
dreik·rX(r, t). The resulting

linearized equations in Fourier space are
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where φ is the angle between the director (along the x axis in our coordinates) and the spatial gradient
vector k. The effective mean elastic term, DE = D̄E − λE comes from the Laplacian term in Eqs. 2 and ??

and, we have defined parameters C0 =
√

2(ρ0−1)
ρ0+1

(
ρ20+ρ0−1
ρ0+1

)
, and α0 = ρ0 − 1 for notational compactness.

The stability of these equations is best explicated by considering spatial fluctuations along (φ = 0) or
perpendicular to (φ = π

2 ) the direction of ordering. In these two sectors, the fluctuations in the direction of

ordering δQ̃xy decouple form those in the magnitude of ordering δQ̃xx and the density δρ̃, thereby enabling
a clear identification of mechanisms at play.

The decoupled fluctuations in the direction of ordering, δQ̃xy, are of the following form:
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)
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)
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where upper sign in the coefficient of the quadratic term (k2) is for bend fluctuations (along the director:
φ = 0) and the lower is for splay fluctuations (perpendicular to the director: φ = π/2). When the coefficient of
the quadratic term becomes negative there will be an instability in the direction of order at large wavelengths
(small wave-vector, k). The fourth-order gradient term, with coefficient K guarantees that, when there is an
instability in this mode, the ordered solution will restabilize at finite wavelength. This is required in order to
retain a smooth solution at the smallest length scales, which is a physical condition which should be satisfied
by fields such as the ones we describe here. It is also necessary, in order to achieve numerical stability, that
fluctuations on wavelengths comparable to the step size used in the discretization of space are suppressed.

One condition which always leads to an instability in the direction of order is when the effective mean elastic
term, DE < 0. This is analogous to the generic instability which has been discussed in theories of active
nematic suspensions [3–6], as they both arise due to shearing, though in this case it is self-induced shearing,

rather than shear flow of a fluid. In this case, the existence of this instability requires that λE = f
ξ λ1 > D̄E ,

which can occur when the system consists of extensile (f > 0) rod-like particles which align with a shear
(λ1 > 0). It may also occur for contractile (f < 0) disc-like particles which align perpendicular to a shear
(λ1 < 0). The fastest growing mode for this instability will always be bend when (λR − 2Dδ) > 0, and will
be splay otherwise. We find, therefore, that the bend instability will dominate in extensile (λR > 0) rod-like
particles, and the splay instability will dominate in contractile (λR < 0) disc-like particles, unless there is a
significantly greater energetic cost to either bend or splay deformations (|Dδ| > 1

2λR). This differs from what
was seen in active suspensions in that here, in the overdamped case, there is no concept of flow-alignment
VS flow-tumbling. This also differs in that the active suspension theories make the one-constant (Dδ = 0)
approximation, so they do not discuss the dependence of the mode of the instability on the energetic penalties
for splay VS bend distortions.

The other instability in the direction of order arises due to the rotation of the director by the active torque
when DE > 0. The active torque must exceed a threshold λR > (4DE/S0 + 2Dδ) to overcome the elastic
terms. This threshold is larger when the energetic penalty to bend distortions of the director is higher than
that of splay distortions, and Dδ > 0. In order to define a ‘distance’ from the bend instability, is useful to

define a bend instability parameter ψ ≡ λR−2Dδ
DE ·Λ(ρ0) , where Λ(ρ0) = 4/S0 = 4

√
ρ0+1

2(ρ0−1) . The ordered state is

unstable to bend fluctuations when ψ > 1. Note that if the nematic was contractile, λR is negative and hence
there exists a splay instability, which occurs when ψ < −1. We have, however, focused on extensile systems
for this study of the overdamped dynamics, and left the study of the contractile, overdamped dynamics to
future work.
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FIG. 1. These plots indicate whether an undulating nematic, or a turbulent, defective nematic state formed out of
nematic initial conditions, from a point near the bend instability (ψ = 1.05, ρ0 = 2.0) with (a) λS = −1.0 and (b)
λS = 1.0. The formation of defects near the critical density is facilitated by having a strength of active convection
which is small compared to the strength of the active torque (λC/λR < 1), and by a large energetic penalty to bend
deformations, compared to the penalty to splay deformations (Dδ > 0). The value of λS , however, seems to make
little difference.
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FIG. 2. Log-scale plots of the following approximation of the energy spectral density E(k) = k
2π

∫
d2Reik·R〈~v(0)·~v(R)〉.

Data shows two sets of parameters. Top: (ρ0, λR, Dδ)=(2, 8, 1) and Bottom: (3, 10, 0.5); scaled by multiplicative

constants for comparison. The energy density seems to scale with a power laws of k5/3 (k2) for small wave-vector,

and k−5/3 (k−2) and for large wave-vector for the upper (lower) curve. These u-shaped energy spectra are similar
to what is seen in mixing flow in three dimensions, and is reminiscent of that seen in bacterial turbulence and a
reversing-rod model [7].

[4] L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan, Nonlinearity 25, 2245 (2012).
[5] L. Giomi, M. J. Bowick, P. Mishra, R. Sknepnek, and M. C. Marchetti, Phil. Trans. R. Soc. A 372, 20130365

(2014).
[6] S. P. Thampi, R. Golestanian, and J. M. Yeomans, Phil. Trans. R. Soc. A 372, 20130366 (2014).
[7] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Lowen, and J. M. Yeomans, Proc.

Nat. Acad. Sci. U.S.A. 109, 14308 (2012), 1208.4239v1.


