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1. IDENTIFYING ASSUMPTIONS FOR CAUSAL MECHANISMS

Here we review the sequental ignorability assumption and delineate the conditions that would be needed

in the particular setting of CEDs. We then provide a generalization of homogeneity assumptions (4) and (5),

where each specification yields identification of N EE ã(m0,m1,c) and the corresponding i T ME 1−ã(m0,m1,c),

with a specific value ã = 0,1 and for one of the two principal strata with m0 6= m1. For each assumption we

outline a comparison with sequential ignorability.

1.1 SEQUENTIAL IGNORABILITY

Sequential ignorability consists of two assumptions. We report here their expression in the setting of cluster-

level interventions.

Assumption SI.I. Unconfoundedness of the encouragement assignment

Conditional on a set of covariates Ci j , the encouragement status of each cluster, Aj , is independent of all the

potential outcomes and the potential values of the treatment received:

{
Yi j (a,m), Mi j (ã)

}⊥⊥ Aj | Ci j = c,m ∀c,m and a, ã = {0,1} ∀i , j

Assumption SI.II. Conditional unconfoundedness of the treatment receipt

Conditional unconfoundedness of the treatment receipt requires that, after conditioning for a set covariates

Ci j and the encouragement assignment, potential outcomes are independent of the potential values of the
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intermediate variable:

Yi j (a,m) ⊥⊥ Mi j (ã) | Aj = ã,Ci j = c ∀c,m and a, ã = {0,1} ∀i , j

Substantially assumption (SI.I) rules out the presence of unmeasured confounders of the relationships of Aj

with Mi j and Yi j, while assumption (SI.II) prohibits unmeasured confounders of the relationships between Aj

and Yi j as well as measured or unmeasured confounders of the same relationships affected by the encourage-

ment Aj . Assumptions (SI.I) and (SI.II) yield the following identification:

E
[
Yi j

(
a, Mi j (ã)

) | Ci j = c
]= 1∑

m=0
E
[
Yi j | Aj = a, Mi j = m,Ci j = c

]×P
(
Mi j = m | Aj = ã,Ci j = c

)
(1.1)

For the proof see Pearl (2001, 2011) and Imai et al. (2010b).

1.2 HOMOGENEITY ASSUMPTIONS

Assumption 4b. Partial Stochastic Homogeneity of the Counterfactuals across Principal Strata

Partial stochastic homogeneity of the counterfactuals across principal strata is said to be assumed if for specific

values of a, ã,m ∈ {0,1} if the following conditional independence holds:

Yi j (a,m) ⊥⊥ Mi j (1− ã) | Mi j (ã) = m,Ci j = c ∀c ∈C and ∀i , j

If assumption (4b) holds for a certain value of m and a certain value of ã, with a = ã, then the potential outcome

Yi j(ã, Mi j (ã)) is independent of Mi j (1− ã), conditioning on levels of covariates Ci j and on strata where Mi j (ã) =

m. In this particular case the assumption can be supported from the data if the distribution of outcomes under

encouragement status Aj = ã, within levels of covariates, is the same for the two strata that share the same

potential value of the treatment receipt Mi j (ã) = m. When a 6= ã, (4b) is an assumption on the distribution

of potential outcomes of the form Yi j(a, Mi j (ã)), hence it is neither testable nor can find support in the data.

However if assumption 4b holds for a certain value of m and a certain value of ã, with a = ã, we can also

assume that it is valid for a 6= ã.

The main result that follows from assumption (4b) is that if it is deemed valid for for specific values of ã, a

and m, then the two principal strata that share the same potential value Mi j (ã) = m present equal conditional
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mean of the potential outcome Yi j

(
a, Mi j (ã)

)
:

E
[
Yi j

(
a, Mi j (ã)

) | Mi j (ã) = m, Mi j (1− ã) = m1−ã ,Ci j = c
]= E

[
Yi j

(
1, Mi j (ã)

) | Mi j (ã) = Mi j (1− ã) = m,Ci j = c
]

(1.2)

Theorem 1b. If assumption (4b) holds for ã = 0, a = 1 and a specific value of m ∈ {0,1}, the net encouragement

effect NEE0(m,m1,c) for the principal stratum Smm1 , with Mi j (0) = m and Mi j (1) = m1 6= m, within levels of

covariates, is given by:

NEE0(m,m1,c) = E
[
Yi j

(
1
) | Si j = Smm Ci j = c

]−E
[
Yi j

(
0
) | Si j = Smm1 Ci j = c

]
Consequently, the individual treatment mediated effect iTME1(m,m1,c) for the stratum Smm1 , with Mi j (0) = m

and Mi j (1) = m1 6= m, within levels of covariates, is given by the following difference:

iTME1(m,m1,c) = PCE(m,m1,c)−NEE0(m,m1,c)

If assumption (4b) holds for ã = 1, a = 0 and a specific value of m = 0,1, the net encouragement effect

NEE1(m0,m,c) for the stratum Sm0m , with Mi j (0) = m0 6= m and Mi j (1) = m, within levels of covariates, is given

by:

NEE1(m0,m,c) = E
[
Yi j

(
1
) | Si j = Sm0m Ci j = c

]−E
[
Yi j

(
0
) | Si j = Smm Ci j = c

]
Consequently, the individual treatment mediated effect iTME0(m0,m,c) for the stratum Smm1 , with Mi j (0) =
m0 6= m and Mi j (1) = m, within levels of covariates, is given by the following difference:

iTME0(m0,m,c) = PCE(m0,m,c)−NEE1(m0,m,c)

Proof. We show here the proof for the first part of the theorem relative to N EE 0. The proof simply uses the

implication of assumption (4b) shown in (1.2), concerning homogeneity in terms of conditional mean:

NEE0(m,m1,c) = E
[
Yi j

(
1, Mi j (0)

) | Si j = Smm1 ,Ci j = c
]−E

[
Yi j

(
0, Mi j (0)

) | Si j = Smm1 ,Ci j = c
]

= E
[
Yi j

(
1, Mi j (0)

) | Si j = Smm ,Ci j = c
]−E

[
Yi j

(
0, Mi j (0)

) | Si j = Smm1 ,Ci j = c
]

= E
[
Yi j (1) | Si j = Smm ,Ci j = c

]−E
[
Yi j (0) | Si j = Smm1 ,Ci j = c

]
where precisely the first equality, after the reported definition of N EE 0, makes use of the homogeneity of coun-

terfactual conditional mean across the two strata and the second equality follows from the property of strata

whose treatment uptake is unaffected by the encouragement, that is Yi j

(
1, Mi j (0)

) = Yi j

(
1, Mi j (1)

)
. Similar ma-

nipulations demonstrate the second part of theorem.

Corollary 1. If assumption (4b) holds for ã = 0, a = 1 and ∀m ∈ {0,1}, the population mean of the counterfactual
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Yi j(1, Mi j (0)), within levels of covariates, can be estimated using the following result:

E
[
Yi j

(
1, Mi j (0)

) | Ci j = c
]= 1∑

m=0
E
[
Yi j(1) | Si j = Smm ,Ci j = c

] 1−m∑
m1=m

πmm1 (c)

so that the population NEE0(c) is given by:

NEE0(c) =
1∑

m=0
E
[
Yi j(1) | Si j = Smm ,Ci j = c

] 1−m∑
m1=m

πmm1 (c)−
1∑

m0=0

1∑
m1=0

E
[
Yi j(0) | Si j = Sm0m1 ,Ci j = c

]
πm0m1 (c)

If monotonicity of compliers holds, the probability of defiers is zero, π10 = 0.

Proof. The second term of NEE0(c) is simply a weighted average of Yi j(0) = Yi j

(
0, Mi j (0)

)
over the four principal

strata. In the first term, E
[
Yi j

(
1, Mi j (0)

) | Ci j = c
]
, the same weighted average is performed but the change in the

notation in the sums is used to distinguish the two different types of principal strata, so that:

E
[
Yi j

(
1, Mi j (0)

) | Ci j = c
]= 1∑

m=0

1−m∑
m1=m

E
[(

1, Mi j (0)
) | Si j = Smm1 Ci j = c

]
πmm1 (c)

=
1∑

m=0
E
[
Yi j (1,m) | Si j = Smm ,Ci j = c

] 1−m∑
m1=m

πmm1 =
1∑

m=0
E
[
Yi j (1) | Si j = Smm ,Ci j = c

] 1−m∑
m1=m

πmm1 (c)

where second equality follows from assumption (4b) and the consequent homogeneity in (1.2) for the two strata

sharing the same potential value Mi j (0) = m. The last equality uses the fact that Yi j(1,m) = Yi j(1) for strata where

Mi j (1) = m.

A similar result can be drawn for the counterfactual NEE1(c).

Remark

Assumption (4b) differs from the assumption of conditional unconfoundedness of the treatment receipt in

(SI.II) in a substantial way. (4b) assumes that, conditioning on levels of covariates, a potential outcome of the

form Yi j

(
a, Mi j (ã)

)
only depends on one of the two potential values of the treatment receipt, precisely the one

that we are assuming to keep fixed with the hypothetical intervention on Mi j , namely Mi j (ã), and is instead

independent of the other potential treatment receipt. On the contrary, the second assumption of sequential

ignorability (SI.II) requires the independence of the potential outcome from both potential values of the treat-

ment receipt, so that it makes possible to extrapolate information across strata relying on the observed, instead

of the potential, values of the treatment received. This substantial difference can be better understood if we

express the identification formula (1.1), following from the sequential ignorability, in terms of principal strata:
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E
[
Yi j

(
1, Mi j (0)

) | Ci j = c
]= 1∑

m=0

(
1−m∑

m0=m

(
E
[
Yi j (1) | Si j = Sm0m ,Ci j = c

] πm0m(c)

πmm(c)+π1−mm(c)

) 1−m∑
m1=m

πmm1 (c)

)
(1.3)

Proof. The proof starts by developing the population mean as a weighted average of the potential outcome

over the four principal strata:

E
[
Yi j

(
1, Mi j (0)

) | Ci j = c
]=

=
1∑

m=0

1−m∑
m1=m

E
[
Yi j(1,m) | Mi j (0) = m, Mi j (1) = m1Ci j = c

]
πmm1 (c)

by virtue of unconfoundedness of the encouragement assignement (SI.I)

=
1∑

m=0

1−m∑
m1=m

E
[
Yi j(1,m) | Aj = 0, Mi j (0) = m, Mi j (1) = m1Ci j = c

]
πmm1 (c)

by virtue of unconfoundedness of the treatment receipt (SI.II)

=
1∑

m=0
E
[
Yi j(1,m) | Aj = 0,Ci j = c

] 1−m∑
m1=m

πmm1 (c)

again by virtue of unconfoundedness of the encouragement assignement (SI.I)

=
1∑

m=0
E
[
Yi j(1,m) | Aj = 1,Ci j = c

] 1−m∑
m1=m

πmm1 (c)

again by virtue of unconfoundedness of the treatment receipt (SI.II)

=
1∑

m=0
E
[
Yi j(1,m) | Aj = 1, Mi j (1) = m,Ci j = c

] 1−m∑
m1=m

πmm1 (c)

we conclude the proof by taking now an average over all possible values of Mi j (0)

=
1∑

m=0

1−m∑
m0=m

E
[
Yi j(1) | Si j = Sm0m ,Ci j = c

]
P

(
Mi j (0) = m0 | Mi j (1) = m,Ci j = c

) 1−m∑
m1=m

πmm1 (c)

=
1∑

m=0

(
1−m∑

m0=m

(
E
[
Yi j(1) | Si j = Sm0m ,Ci j = c

] πm0m(c)

πmm(c)+π1−mm(c)

) 1−m∑
m1=m

πmm1 (c)

)

If we now compare the identification result in corollary (1), yield by the homogeneity assumption (4b), with

the identification result in equation (1.3), yield by the sequential ignorability assumptions (SI.I) and (SI.II), we

can see that, in the latter, for all the strata where Mi j (0) = m, information on the mean of the counterfactual

Yi j

(
1, Mi j (0)

)
for is taken from the mean value of the potential outcome Yi j(1) for those units where the potential

value of the treatment received under Aj = 1, instead of Aj = 0, Mi j (1), equals m. On the contrary, in (1),
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for the principal strata where Mi j (0) = m and Mi j (1) = m1 6= m information on the a priori counterfactual is

borrowed just from those strata where Mi j (0) = Mi j (1) = m, who are the only ones for whom the mean value

can be estimated from the data thanks to of the equality Yi j(1, Mi j (0)) ≡ Yi j(1, Mi j (1)) ≡ Yi j(1). For instance,

when there are no defiers, this means to say that sequential ignorability allows to estimate Yi j(1, Mi j (0)) for

always-takers, where Mi j (0) = 1, not only from the values of Yi j(1) = Yi j(1,1) for that sub-population but also

borrowing information from the values of Yi j(1) = Yi j(1,1) for compliers, whereas assumption (4b) does not use

this extrapolation across these two strata.

A similar comparison could be shown for E
[
Yi j

(
0, Mi j (1)

) | Ci j = c
]
.

Assumption 5b. Partial Homogeneity of the Mean Difference between Counterfactuals across Principal Strata

Partial homogeneity of the mean difference between counterfactuals is said to be assumed if, for specific values

of ã ∈ {0,1} and m ∈ {0,1}, the following identity holds:

E
[
Yi j (1,m)−Yi j (0,m) | Mi j (ã) = m, Mi j (1− ã),Ci j = c

]
=

E
[
Yi j (1,m)−Yi j (0,m) | Mi j (ã) = m,Ci j = c

] ∀c ∈C

In words, it states that the mean difference between potential outcomes under the two encouragement condi-

tions and intervening to set the treatment receipt of each unit to the value it would take if Aj were set to ã, i.e.

Mi j (ã) = m, is independent of the potential value of the treatment receipt under the opposite encouragement

status, Mi j (1− ã).

Theorem 2b. If assumption (5b) is satisfied for a certain value of ã ∈ {0,1} and a specific value of m ∈ {0,1}, the

net encouragement effect NEE ã(m0,m1,c), within levels of covariates, for the principal stratum Sm0m1 where

Mi j (ã) = mã = m, is given by:

NEE ã(m0,m1,c) ≡ DCE(m0,c)(1− ã)+DCE(m1,c)(ã) = DCE(mã ,c) (1.4)

That is, if ã = 0 the corresponding net encouragement effect for compliers (m0 = 0) or defiers (m0 = 1), depend-

ing on the value of m, is equal to the dissociative causal effect of never-takers or always-takers, respectively.

Analogously, if ã = 1 the corresponding net encouragement effect for compliers (m1 = 1) or defiers (m1 = 0),

depending on the value of m, is equal to the dissociative causal effect of always-takers or never-takers, respec-

tively.

6



Proof. The proof is accomplished by using the definition of NEE ã(m0,m1,c) in (4.5):

NEE ã(m0,m1,c) = E
[
Yi j

(
1, Mi j (ã)

)−Yi j

(
0, Mi j (ã)

) | Si j = Sm0m1 ,Ci j = c
]

= E
[
Yi j

(
1, Mi j (ã)

)−Yi j

(
0, Mi j (ã)

) | Mi j (0) = m0, Mi j (1) = m1,Ci j = c
]

Let us rewrite the potential values of the treatment receipt using ã and 1− ã so that this proof can apply to any

value of ã

= E
[
Yi j

(
1, Mi j (ã)

)−Yi j

(
0, Mi j (ã)

) | Mi j (ã) = mã , Mi j (1− ã) = m1−ã ,Ci j = c
]

Now the proof simply proceeds by applying assumption (5b) twice

= E
[
Yi j

(
1, Mi j (ã)

)−Yi j

(
0, Mi j (ã)

) | Mi j (ã) = mã ,Ci j = c
]

= E
[
Yi j

(
1, Mi j (ã)

)−Yi j

(
0, Mi j (ã)

) | Mi j (ã) = Mi j (1− ã) = mã ,Ci j = c
]

= E
[
Yi j

(
1, Mi j (ã)

)−Yi j

(
0, Mi j (ã)

) | Si j = Smã mã ,Ci j = c
]= DCE(mã ,c)

Remark

Assumption (5b) differs from the assumption of conditonal ignorability of the treatment receipt in (SI.II) on

three main provisions. First, the latter states a stochastic independence whereas the former is an assumption

about independence in terms of the expected value. Second, conditonal ignorability of the treatment receipt

concerns separately each counterfactual, whereas (5b) concerns a difference between pairs of counterfactuals.

Third, a way to interpret (SI.II) is saying that the counterfactual Yi j(a,m) does not depend either on Mi j (ã) or

on Mi j (1− ã), conditioning on levels of covariates and the observed encouragement, so that information on

Yi j(a,m), for for all units, can be extrapolated from Yi ′ j ′ (a) for all those units with Mi ′ j ′ (a) = m, regardless of

the values of Mi j (a), Mi j (1− a) and Mi ′ j ′ (1− a). Conversely, partial homogeneity assumption (5b) is solely

based on the independence of the mean difference between potential outcomes Yi j(1,m) and Yi j(0,m) from

Mi j (1− ã), conditioning on covariates but more important on Mi j (ã) = m, with specific values of a, ã and m.

This means that extrapolation across strata is only carried out for the a priori counterfactual Yi j(a,m) for those

whose compliance behavior is given by Mi j (ã) = m and Mi j (1−ã) 6= m from DC E(m,c) for the principal stratum

with the same value m of treatment receipt under both encouragement conditions, i.e. Mi j (ã) = Mi j (1− ã) =

m. For these three reason we can conclude that assumption (5b) of partial homogeneity is a much weaker
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assumption that the second of the sequential ignorability assumptions. Mixing information across strata with

the same behavior under a specific encouragement assignment seems more reasonable that mixing across all

the principal strata, especially when these strata are most likely very different because of the presence of latent

characteristics.

Furthermore, note that the first two differences between assumptions (5b) and (SI.II) also apply to a com-

parison between assumptions (5b) and (4b). Intuitively in general it is more plausible to assume homogeneity

in terms of a mean difference rather that a stochastic homogeneity of each specific counterfactual.

Theorems (1b) and (2b) give rise to an identification result for the net encouragement effect in the whole

population:

Corollary 2. If either assumption (4b) holds for a value of ã = 0 and both a = 0 and a = 1 and ∀m ∈ 0,1, or

assumption (5b) holds for a value of ã = 0 and ∀m ∈ 0,1, the population net encouragement effect NEE0(c),

within levels of covariates, is given by:

NEE0(c) = ∑
(m0,m1)

NEE0(m0,m1,c)πm0m1 (c) =
1∑

m=0

(
DCE(m,c)

1−m∑
m1=m

πmm1 (c)

)
(1.5)

If either assumption 4b holds for a value of ã = 1 and both a = 0 and a = 1 and ∀m ∈ 0,1, or assumption

5b holds for a value of ã = 1 and ∀m ∈ 0,1, the population net encouragement effect NEE1(c), within levels of

covariates, is given by:

NEE1(c) = ∑
(m0,m1)

NEE1(m0,m1,c)πm0m1 (c) =
1∑

m=0

(
DCE(m,c)

1−m∑
m0=m

πm0m(c)

)
(1.6)

Proof. The proof of the corollary simply follows from equation (1.2) applied for the specified values of a, ã and

m and from theorem 2b, by performing a weighted average over all four principal strata.

Both assumptions (4b) and (5b) provide the possibility of a generalization of the information on one po-

tential outcome or the net encouragement effect from a stratum Smm to the stratum Sm0m1 with Mi j (ã) = m

and Mi j (1− ã) 6= m, as stated by theorems (1b) and (2b). As a fair consequence of this generalization, the esti-

mation of the individual treatment mediated effect for strata with Mi j (0) 6= Mi j (1) in this stratum is straightfor-

ward and given by the difference between the estimated principal causal effect and net encouragement effect:

iTME1−ã(m0,m1,c) = PCE(m0,m1,c)−NEE ã(m0,m1,c).
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Corollary 3. If either assumption (4b) holds for a specific value of ã, ∀m ∈ 0,1 and both a = 0 and a = 1 or

assumption (5b) holds for a specific value of ã and ∀m ∈ 0,1, the individual treatment mediated effect in the

whole population is given by the weighted sum over the compliers and the defiers, as reported in (4.10).

iTME1−ã(c) = ∑
m0 6=m1

(
PCE(m0,m1,c)−DCE(mã ,c)

)
πm0m1 (c) (1.7)

Note that when the defiers are not present the iTME1−ã(m0,m1,c) will just be scaled by the conditional proba-

bility of compliers.

2. CONTROLLED NET ENCOURAGEMENT EFFECTS WITHIN PRINCIPAL STRATA

We define the Controlled Net Encouragement Effect (CNEE) within principal stratum Sm0m1 and level of

covariates Ci j = c, as follows:

CNEEm(m0,m1c) := E
[
Yi j (1,m) | Si j = Sm0m1 ,Ci j = c

]−E
[
Yi j (0,m) | Si j = Sm0m1 ,Ci j = c

]
(2.1)

From the definition of net encouragement effects within principal strata it follows that net encouragement

effects NEEa(m0,m1) for the stratum where M(0) = m0 is equal to the controlled net encouragement effects for

that strata with treatment receipt fixed at m0:

NEE0(m0,m1,c) ≡ CNEEm0 (m0,m1,c)

and, analogously, the net encouragement effect NEE1(m0,m1) for the strata where M(1) = m1 is equal to the

controlled net encouragement effects with treatment receipt fixed at m1:

NEE1(m0,m1,c) ≡ CNEEm1 (m0,m1,c)

Proof. The proof is straightforward and follows from the definition of NEE by noticing that within strata poten-

tial intermediate variables are constant and their value can be replaced in potential outcomes:

NEEa(m0,m1,c) = E
[
Yi j

(
1, Mi j (a)

) | Si j = Sm0m1 ,Ci j = c
]−E

[
Yi j

(
0, Mi j (a)

) | Si j = Sm0m1 ,Ci j = c
]

= E
[
Yi j (1,ma) | Si j = Sm0m1 ,Ci j = c

]−E
[
Yi j (0,ma) | Si j = Sm0m1 ,Ci j = c

]
= CNEEma (m0,m1,c)
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By virtue of this equivalence, theorem (2b) can also be expressed in terms of CNEE.

Corollary 4. If either assumption (4b) hold for a specific value of ã ∈ {0,1}, both a = 0 and a = 1 and a specific

value of m ∈ {0,1}, or assumption (5b) holds for specific values of ã ∈ {0,1} and m ∈ {0,1}, then the controlled net

encouragement effect, within level of covariates, for the stratum Sm0m1 whereMi j (ã) = mã = m and Mi j (1− ã) =
m1−ã 6= m, setting the treatment receipt to mã , is equal to the corresponding controlled net encouragement effect

for the stratum Smã mã where both Mi j (ã) = Mi j (1− ã) = mã = m.

CNEEmã (m0,m1,c) ≡ CNEEmã (mã ,mã ,c)

As a final result we can claim that, if assumptions (4b) or (5b) are satisfied for both encouragement conditions,

ã = 0 and ã = 1, the controlled net encouragement effect CNEEm(m0,m1c) is the same for all the strata with at

least one of the potential values Mi j (0) or Mi j (1) equal to m.

3. AVERAGE TREATMENT EFFECT

In a canonical non-compliance setting the main goal is to estimate the average treatment effect (ATE), i.e.

the average effect of the non-randomized treatment on the outcome. The average treatment effect in the entire

population, within levels of covariates, can be defined as the following difference:

ATEa(c) := E
[
Yi j (a,1)−Yi j (a,0) | Ci j = c

]
= ∑
(m0=m1)

E
[
Yi j (a,1)−Yi j (a,0) | Si j = Sm0m1 ,Ci j = c

]
πm0m1

+ ∑
(m0 6=m1)

E
[
Yi j (a,1)−Yi j (a,0) | Si j = Sm0m1 ,Ci j = c

]
πm0m1

(3.1)

where the last expression simply expands the definition taking an average of the specific average treatment

effects within the different principal strata. Referring to the definition in (3.1) we have to make two main con-

siderations. First, we can see that the average treatment effects in general depends on the specific value of a

we consider for the encouragement condition, while we compare the two scenarios where the treatment is or

is not taken. The possible difference between ATE0(c) and AT E 1(c) is due to the interaction between the en-

couragement and the individual treatment uptake on the outcome. In clustered encouragements it can also

be due to the interaction of the individual treatment uptake with other behavioral changes in other subjects

in the same cluster. Second, unfortunately the empirical data do not provide any information on the treat-
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ment effect for principal strata where the treatment uptake is unaffected by the encouragement assignment if

Mi j (0) = Mi j (1) = 0 because there is no individual information on the counterfactual Yi j(a,1) and vice versa for

the symmetric stratum. The only strata where we could learn something about the treatment effect are those

where Mi j (0) 6= Mi j (1).

Let us define the complier average causal effect (CACE), i.e. the average treatment effect for compliers,

within levels of covariates, as follows:

CACEa(c) := E
[
Yi j (a,1)−Yi j (a,0) | Si j = S01,Ci j = c

]
(3.2)

Because of non-compliance the treatment is not randomized. Instrumental variable methods use the effect

of the assignment on the the treatment receipt to recover the average treatment effect from the intention-

to-treat analysis. Typically, these methods appeal to exclusion restriction assumptions, which substantially

rule out the presence of net effects. Formally, the exclusion restriction assumption for a stratum Sm0m1 states

that Yi j(a,m) = Yi j(a,m′) ∀i , j : Si j = Sm0m1 , which implies the same equality in terms of the mean outcome

and thus zero net effects for this principal stratum. Assumptions of exclusion restriction for always-takers

and never-takers jointly with monotonicity of compliance result in the point identification of the principal

causal effect for compliers, whereas exclusion restriction for compliers enables to interpret it as the average

treatment effect for this sub-population, also known as compliers average causal effect (CACE). For this same

reason, when exclusion restriction for compliers applies, CACE can be written in terms of principal causal

effect: E
[
Yi j(1)−Yi j(0) | Si j = S01,Ci j = c

]
.

Nevertheless, when exclusion restriction assumptions are violated, if assumption (4) or (5) hold, the re-

sulting identification of the individual treatment mediated effect iTME1(0,1,c) will also yield identification of

C AC E 1(c), given the following equality:

CACE1(c) ≡ iTME1(0,1,c) (3.3)

When we are evaluating a new treatment that cannot be randomized and we use the encouragement de-

sign as an instrument, the effect of primary interest is CACE0(c). In that case assumptions similar to (4) and
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(5) are needed (see the supplemental material for a generalization of the assumptions). Alternatively, when

the treatment effect has already been assessed in previous experiments, that is CACE0(c) is already known, and

an encouragement, designed to increase or decrease its uptake, is the intervention of interest, the estimated

CACE1(c) will give insight into how the encouragement itself changes the effect of the treatment on the out-

come. This is the case when the treatment is the purchase of new bed nets.

4. BAYESIAN INFERENCE

Let Aobs
j

be the observed encouragement assigned to cluster j . Assuming that all the potentially observ-

able information for each cluster is in the random vector
(

A j ,C j ,Mobs
j ,Mmi s

j ,Yobs
j ,Ymi s

j

)
, where each vector

with subscript j contains the corresponding variable for all the units in cluster j , whereas we denote with

superscript obs and mis, respectively, the observed and missing but observable potential outcomes, that is:

Yobs
j ≡ Y j (A j ), Ymi s

j ≡ Y j (1− A j ), Mobs
j ≡ M j (A j ) and Mmi s

j ≡ M j (1− A j ). As extensively discussed, counter-

factuals of the form Yi j

(
a, Mi j (ã)

)
are never observable unless Mi j (ã) ≡ Mi j (a). Under assumptions (4) or (5)

presented above, all the causal estimands depend solely on the observable potential outcomes Yi j
obs and Yi j

mi s

of individuals belonging to each principal stratum. Therefore we can assume that all the missing information

required for each cluster is contained in the vectors
(
Mmi s

j ,Ymi s
j

)
.

In particular, Bayesian Inference for causal estimands, functions of
(
Mobs ,Mmi s ,Yobs ,Ymi s ,C

)
, follows from

their joint posterior predictive distribution, that is their conditional distribution given the observed data, which

can be written as the product of independently identically distributed random variables conditional on a generic

parameter θ (de Finetti, 1974). Let θ denote the vector of parameters of the models described above:

θ = (
β,α,b,a,Σb ,Σa

)

where we have collected each set of parameters such that β= (
βS00

,βS11
,βS01)

,

b = (
b1,b2, . . . ,b J

)
, and Σa = (

Σan ,Σac

)
.

The posterior distribution of θ can be written from the joint distribution, mentioned above, marginalized
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over the missing values:

p(θ | Yobs ,Mobs , C , A) ∝ p(θ)
∫ ∫ J∏

j=1
p

(
Yobs

j ,Mobs
j ,Ymi s

j ,Mmi s
j , C j | θ

)
dYmi s

j dMmi s
j (4.1)

which is a result of randomization of assignment A (assumption 3) and the independence between clusters

(assumption 1)and where p(θ) is the prior distribution of the parameters θ. The difficulty in the integration

over Mmi s
j leads us to consider the joint posterior of

(
θ,Mmi s

)
, or alternatively the joint posterior of

(
θ,S

)
:

p(θ,S | Yobs , C , A) ∝ p(θ)
J∏

j=1
p

(
Yobs

j ,S j , C j | θ
)

(4.2)

which follows from the assumed independence between the potential outcomes

The second term in (4.2) is the complete-data likelihood function, which results in the likelihood function of

a finite mixture model with known membership, unlike the observed likelihood where the strata membership is

unknown. The complete-data likelihood function, namely L (θ;Yobs ,S,C) := p(Yobs ,S,C | θ), can be factorized

in p(Yobs | S,C θ)p(S | C, θ)p(C | θ). Letting δi j (Sm0m1 ) = δ(Sm0m1 ,Si j ) be 1 if Si j = Sm0m1 and 0 otherwise, we

can write:

L (θ;Yobs ,S,C) =
J∏

j=1

N j∏
i=1

∑
m0m1

δi j (Sm0m1 )p
(
Yi j | Aj ,Si j = Sm0m1 ,Ci j , θ

)×P
(
Si j = Sm0m1 | Ci j ,θ

)
p(Ci j | θ) (4.3)

where assumption of consistency (1) has been used to express the distribution of the observed potential out-

come in terms of the distribution of the observed values. The two models involved in the likelihood for Yi j

and Si j have already been defined in (6.1) and (6.4) respectively. The complete-data likelihood allows the full

conditional distributions p(θ | Yobs ,S,C , A) and p(S | Yobs , C , A,θ) to be analytically tractable. Therefore, the

joint posterior distribution of
(
θ,S

)
motivates a two-stage Gibbs-sampling strategy that first samples the miss-

ing strata memberships Si j , thereby allowing assessment of the distributions of Yi j conditional on the complete

data consisting of subpopulations without mixture components. This approach is well know as Data Aug-

mentation scheme (Tanner & Wong, 1987). See the supplemental material for the detailed Gibbs-Sampling

procedure.
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4.1 PRIOR SPECIFICATION

Here we describe our prior distribution p(θ). We assume an independence structure expressed in the fol-

lowing factorization of the prior:

p(θ) = p(β)
∏

j
p(b j |Σb)p(Σb)p(αn)p(αc )

∏
j

p(an j |Σan )p(Σan )p(ac j |Σac )p(Σac ) (4.4)

where Σan and Σac are the submatrices of Σa corresponding to the covariance matrices of vectors an and ac ,

thought independent. It follows that the random effects an j , ac j and b j are independent across groups as well

as coefficients of each probit model and of the model for Yi j. We have chosen to use proper but diffuse priors

similar, in order to be relatively noninformative and to ensure substantially fast convergence. Accordingly, we

posit a normal prior distribution for the coefficients of the outcome model. The fixed effects can be jointly

modeled as

β∼ N
(
µβ0,Λβ0

)
(4.5)

whereas the random effects are modeled independently for each cluster

b j |Σb ∼ N (0,Σb) (4.6)

with the covariance matrices following an inverse-Wishart distribution:

Σb ∼ IW
(
ηb

0 ,ηb
0Sb

0

)
(4.7)

Typical hyper-parameters can be: µβ0 = 0, Λβ0 = ξb I, where ξb is a scaling parameter, ηb
0 = |b j | and Sb

0 are

preliminary estimates of Σb .

The parameters of the models for the principal strata follow the same patterns, although property of con-

jugacy can here be satisfied. Thus,for the two vectors of fixed effects of both models we choose a prior normal

distribution

αn ∼ N
(
µn
α0,Λn

α0

)
αc ∼ N

(
µc
α0,Λc

α0

)
(4.8)
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as well as for the random effects

an j |Σan ∼ N
(
0,Σan

)
ac j |Σac ∼ N

(
0,Σac

)
(4.9)

with an inverse-Wishart prior for covariances matrices

Σan ∼ IW
(
ηn

0 ,ηn
0 Sn

0

)
Σac ∼ IW

(
ηc

0,ηc
0Sc

0

)
(4.10)

with the following possible choices for the hyper-parameters: µn
α0 = µc

α0 = 0, Λn
α0 =Λc

α0 = ξ I, ηn
0 = |an j |, ηc

0 =

|ac j | and Sn
0 and Sc

0 are preliminary estimates of Σan and Σac respectively.

4.2 IMPUTATION APPROACH FOR FINITE POPULATION EFFECTS

We introduce now a Bayesian procedure for the estimation of the effects in the finite study population. For

the sake of simplicity, we will describe the procedure only for the estimation of the effects of interest for the

motivating application, although a similar procedure could be used in future applications for the other effects.

We define individual effects as the difference of the corresponding counterfactuals for each unit in the study.

Thus, the intent-to-treat effect, the net encouragement effect and the individual treatment mediated effect for

unit i in cluster j take the following expressions: I T Ti j := Yi j(1)−Yi j(0), N EE 0
i j := Yi j(1, Mi j (0))−Yi j(0, Mi j (0)) and

i T ME 1
i j := Yi j(1, Mi j (1))−Yi j(1, Mi j (0)). For each unit, one of the two potential outcomes involved in the intent-

to-treat effect is observed, Yi j
obs = Yi j(Aobs

j
), whereas for NEE and iTME all potential outcomes can be missing

and one can be a priori counterfactual. Relying on one of the two homogeneity assumptions, we show how

estimation of the finite population effects can be accomplished. Let O be the collection of observed outcomes,

observed intermediated variables, encouragement conditions and covariates in the entire population: O ={
Yobs ,Mobs ,Aobs ,C

}
.

Bayesian simulation-based approach enables to simulate from the posterior distributions of the causal es-

timands. In a model-based imputation approach to causal inference, at each MCMC iteration, missing infor-

mation for each unit is imputed using its predictive posterior distribution and causal estimands, as function of

the observed and missing infomation, are computed resulting in a draw from their posterior distribution. Let

fm0m1 (a,c) denote the predictive posterior distribution of the potential outcome Yi j(a):
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fm0m1 (a,c) = p
(
Yi j(a) | Si j = Sm0m1 ,Ci j = c, O

)
(4.11)

At each iteration k=1, . . . ,K of the MCMC, samples from the posterior distribution of PC E for each principal

stratum Sm0m1 are drawn as follows:

1. For units belonging to Sm0m1 at iteration k, missing potential outcomes, Yi j
mi s = Yi j(1−Aobs

j
), are imputed

from their predictive posterior distribution:

Yi j
k,mi s ∼ fm0m1

(
1− Aobs

j
,Ci j

) ∀i , j : Sk
i j = Sm0m1

2. PCE within each principal stratum Sm0m1 is computed as:

�PC E
k

(m0,m1,c) = 1

|S m0m1
c |

∑
i , j∈S

m0m1
c

(
2Aobs

j
−1

)(
Yi j

obs −Yi j
k,mi s)

where S
m0m1

c = {i , j : Sk
i j = Sm0m1 ,Ci j = c}. If the number of covariates is large and/or they are contin-

uous we might want to categorize some of them and/or consider groups S
m0m1

c defined based on few

covariates for which a subgroup analysis might be of interest.

Let us now turn to the analysis of mechanisms. As depicted in (4.7), for principal strata of the type Smm ,

i.e. never-takers and always-takers, there is no effect through a change in the treatment received and prin-

cipal causal effects are called dissociative causal effects, �DC E(m,c) = �PC E(m0,m1,c), as they are entirely net

encouragement effects. On the contrary for the stratum S01 of compliers, which is, under monotonicity, the

only stratum where the treatment is affected by the encouragement, the overall effect of the encouragement

comprises both individual treatment effect from the net encouragement effect. With sequential ignorability

(SI.II) not holding, disentangling these two effects for this stratum can be accomplished under one of the two

assumptions (4) or (5). In general we can separate the derivation of N EE 0(0,1,c) into two three steps. The first

two steps involve, respectively, the counterfactual Yi j(0) = Yi j(0, Mi j (0)) and Yi j(1, Mi j (0)), whereas the third step

concerns the mean difference.

3. For each unit being a complier at iteration k, the potential outcome Yi j
k (0) is derived as follows: if as-

sumption (4) holds, Yi j
k (0) is simply taken from Yi j

obs or Yi j
mi s , depending on Aobs

j
; if assumption (5)
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holds, in order to follow the identification result in theorem 2, Yi j
k (0) is imputed from the predictive pos-

terior distribution of Yi j(0) for never-takers, given his values of covariates Ci j :

Yi j
k (0) :


3a. if assumption 4: Yi j

k (0) = Yi j
obs · (1− Aobs

j
)+Yi j

k,mi s · Aobs
j

3b. if assumption 5: Yi j
k (0) ∼ f00(0,Ci j )

∀i , j : Sk
i j = S01

4. For each unit being a complier at iteration k , Yi j
k
(
1, Mi j (0)

)
is imputed from the predictive posterior

distribution of Yi j(1) for principal stratum S00, i.e. never-takers, given his values of covariates Ci j :

Yi j
k(

1, Mi j (0)
)∼ f00(1,Ci j ) ∀i , j : Sk

i j = S01

5. N EE k,0 for compliers is computed by taking the average, within levels of covariates, of the difference

between the two imputed potential outcomes:

�N EE
k,0

(0,1,c)= 1

|S 01
c |

∑
i , j :Sk

i j =S 01
c

(
Yi j

k(
1, Mi j (0)

)−Yi j
k(

0
))

Again subgroup analysis based on covariates might require some restrictions.

Estimation of individual treatment effects requires a last step, that is subtracting the estimated net encour-

agement effects from the principal causal effects for compliers:

6. i �T ME
k,1

(0,1,c) = �PC E
k

(0,1,c)− �N EE
k,0

(0,1,c)

These steps, for either assumption, are carried out repeatedly to account for the uncertainty in the impu-

tation, resulting in the posterior distribution of the causal estimands. Finally, a summary statistics of these

distributions, such as the mean or the median, can provide us with point estimates.

4.3 COMPUTATION OF THE POSTERIOR DISTRIBUTION: GIBBS-SAMPLING AND DATA

AUGMENTATION

As stated earlier, the Bayesian inference in a Principal Stratification framework is based on the joint pos-

terior distribution of
(
θ,S

)
, since the vector of principal strata S is not observed. Moreover, according to the
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proposed multinomial probit model for the strata membership, the two latent variables Sn
i j and Sc

i j have to be

included as unknown variables. An approximation of this joint posterior distribution can be performed with a

Gibbs-sampling approach. At every iteration of the Markov chain each set of parameters, the strata indicators

Si j and the latent variables Sn
i j and Sc

i j are drawn in turns from their full conditional distributions. At the end of

the chain, given the sequence of samples drawn at each iteration, we can obtain the histogram of the marginal

posterior distributions of each parameter.

In the following we will describe each step of the Gibbs sampler. Let θ(0), S(0), Sn(0) and Sc(0) be the vectors

of starting values of the parameters, the strata indicators and the strata latent variables. At each iteration of the

Monte Carlo Markov chain the sampling procedure is as follows.

The first part of the algorithm concerns the imputation of potential outcomes and hence of causal esti-

mands from their posterior predictive distributions. Imputation of principal causal effects, net encouragement

effects and individual treatment effects follows the procedure outlined in section 4.2 under assumption (4b)

(5b).

1. The missing outcome Yi j
mi s = Yi j1− Aj for each unit is drawn from the likelihood function fm0m1 (1− Aj |

Ci j ,θk ), as defined by the model (6.1). In addition, for each complier, i.e. with strata indicator Si j = S01, we

draw two random samples, Yi j
k (ã) and Yi j

k (1−ã, Mi j (ã)), as described in section 4.2. Finally, PC E(m0,m1,c)

and N EE ã(m0,m1,c) for all three individual principal strata and i T ME 1−ã(0,1,c) for compliers are derived.

2. The vector of parameters β of the outcome model is drawn from its full conditional distribution

p
(
β | Y,S,ZY f ,ZY r ,b

)
. This is accomplished by a random walk Metropolis-Hastings algorithm with a nor-

mal proposal distribution, whose covariance matrix is a scaled version of an initial estimate.

3. Cluster-specific b j are drawn independently for each cluster from their posterior distribution p
(
b j |β,Y j ,ZY r

j ,ZY f
j

)
.

Another step of random walk Metropolis-Hastings is used for the purpose, with a normal proposal distri-

bution, a likelihood derived from the binomial regression model in (6.1) and (6.2) and a normal prior distri-

bution given in (4.6), where the prior covariance matrix Σb is drawn at the previous iteration from its own

posterior distribution.

4. The drawing of the covariance matrix Σb of the random effects is from the Inverse-Wishart posterior distri-
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bution, derived as the posterior distribution of a covariance matrix of multivariate normal random variable,

b j in this case, with Inverse-Wishart prior as defined in (4.7).

This second part of the algorithm concerns the principal strata model.

5. The vectors of parameters αn and αc of the strata membership model are drawn independently from their

normal posterior distribution p
(
αn | Sn ,ZS f ,ZSr ,an

)
and p

(
αc | Sc ,ZS f ,ZSr ,ac

)
computed from their likeli-

hood resulting from the linear models of the latent variables Sn
i j and Sc

i j in (6.5), and their prior distributions

in (4.8). This time Bayesian regression are run with offsets aT
n j Z Sr

i j and aT
c j Z Sr

i j respectively.

6. According to distributional assumptions presented above, cluster-specific random effects an j and ac j are

drawn independently for each cluster from their normal posterior distributions p
(
an j | Sn

j ,ZSr
j ,ZS f

j ,αn
)

and

p
(
ac j | Sc

j ,ZSr
j ,ZS f

j ,αc
)

derived from the linear regression model in (6.5), this time with offsets αT
n ZS f

i j and

αT
c ZS f

i j , and normal prior distribution given in (4.9), where the prior covariance matrices Σan and Σac come

from the previous iteration.

7. As with outcome random effects, the drawing of the covariance matrices of the strata model random effects,

Σan and Σac , is from the Inverse-Wishart posterior distributions p(Σan | an) and p(Σac | ac ), derived as the

posterior distribution of a covariance matrix of multivariate normal random variable, in this case an j and

ac j , with Inverse-Wishart prior as defined in (4.10).

8. Given the fixed effects, the random effects and the observed data, the vector of latent strata membership

S has to be generated from its full conditional distribution p (S | Y,M,A,C,θ), which this time depends as

well on the vector of individual mediator M being the principal stratum defined based on the potential

mediators. This is the typical data augmentation step of the principal strata framework. As far as the average

effects for each individual principal stratum are concerned, within each cluster the strata memberships of

the unit are independent and hence strata indicators can be drawn independently from the conditional
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distribution factorized as:

p(Si j =Sm0m1 | Yi j, Mi j , Aj ,Ci j ,θ)

=
p

(
Yi j | Si j = Sm0m1 , Aj ,Ci j ,βSm0m1 ,bSm0m1

j

)
p(Si j = Sm0m1 | Mi j , Aj ,Ci j ,α,a)∑

Sm′
0m′

1
p(Yi j | Si j = Sm′

0m′
1 , Aj ,Ci j ,βSm′

0m′
1 ,bSm′

0m′
1

j )p(Si j = Sm′
0m′

1 | Mi j , Aj ,Ci j ,α,a)

=
p

(
Yi j | Si j = Sm0m1 , Aj ,Ci j ,βSm0m1 ,bSm0m1

j

)
p(Si j = Sm0m1 | Ci j ,α,a)I

(
Mi j (Aj ) = Mi j

)
∑

Sm′
0m′

1
p(Yi j | Si j = Sm′

0m′
1 , Aj ,Ci j ,βSm′

0m′
1 ,bSm′

0m′
1

j )p(Si j = Sm′
0m′

1 | Ci j ,α,a)I
(
Mi j (Aj ) = Mi j

)
(4.12)

When monotonicity assumption holds, individuals with Aj = 0 and Mi j = 1 or Aj = 1 and Mi j = 0 are neces-

sarily always-takers and never-takers respectively. Instead in the other situations two strata are possible fit,

never takers or compliers when Aj = 0 and Mi j = 0 and always-takers or compliers when Aj = 1 and Mi j = 1

. The drawing of one or the other possibility is made according to a bernoulli distribution with probability

resulting from the conditional probabilities reported above.

9.

10. Each iteration ends with another data augmentation step resulting from the specific choice of the two linked

probit models for Si j . Precisely the latent variable Sc
i j and Sc

i j are drawn from their posterior distribution

conditional on the strata indicators Si j as they are updated at the previous step. These are normal linear

models but truncated to the left or to the right depending on Si j . In particular lower and upper limits of the

truncated normal distribution are:

Sn
i j ∼


N−(αn Z S f

i j +aT
n j Z Sr

i j ,1)I (Sn
i j ≤ 0) if Si j = S00

i j

N+(αn Z S f
i j +aT

n j Z Sr
i j ,1)I (Sn

i j > 0) if Si j = S01
i j or Si j = S11

i j

Sc
i j ∼



N (αc Z S f
i j +aT

c j Z Sr
i j ,1) if Si j = S00

i j

N−(αc Z S f
i j +aT

c j Z Sr
i j ,1)I (Sc

i j ≤ 0) if Si j = S01
i j

N+(αc Z S f
i j +aT

c j Z Sr
i j ,1)I (Sc

i j > 0) if Si j = S11
i j

(4.13)
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5. PROOFS OF OTHER EQUATIONS

PROOF OF EQUATION 4.7

The proof is carried out bearing in mind that in the strata of the type Smm the two potential values of the

intermediate variable, Mi j (1) and Mi j (1), coincide.

DCE(m,c) = E
[
Yi j (1) | Si j = Smm ,Ci j = c

]−E
[
Yi j (0) | Si j = Smm ,Ci j = c

]
= E

[
Yi j

(
1, Mi j (1)

)
| Si j = Smm ,Ci j = c

]−E
[

Yi j

(
0, Mi j (0)

)
| Si j = Smm ,Ci j = c

]
= E

[
Yi j

(
1, Mi j (0)

)
| Si j = Smm ,Ci j = c

]
−E

[
Yi j

(
0, Mi j (0)

)
| Si j = Smm ,Ci j = c

]
= N EE 0(m,m,c)

With similar manipulations we yield the second result:

DCE(m,c) = E
[
Yi j (1) | Si j = Smm ,Ci j = c

]−E
[
Yi j (0) | Si j = Smm ,Ci j = c

]
= E

[
Yi j

(
1, Mi j (1)

) | Si j = Smm ,Ci j = c
]−E

[
Yi j

(
0, Mi j (0)

) | Si j = Smm ,Ci j = c
]

= E
[
Yi j

(
1, Mi j (1)

) | Si j = Smm ,Ci j = c
]−E

[
Yi j

(
0, Mi j (1)

) | Si j = Smm ,Ci j = c
]

= N EE 1(m,m,c)

PROOF OF EQUATION 4.8

PCE(0,1,c) = E
[
Yi j (1) | Si j = S01,Ci j = c

]−E
[
Yi j (0) | Si j = S01,Ci j = c

]
= E

[
Yi j

(
1, Mi j (1)

) | Si j = S01,Ci j = c
]−E

[
Yi j

(
0, Mi j (0)

) | Si j = S01,Ci j = c
]

= E
[
Yi j

(
1, Mi j (1)

) | Si j = S01,Ci j = c
]−E

[
Yi j

(
a, Mi j (1−a)

) | Si j = S01,Ci j = c
]

+E
[
Yi j

(
a, Mi j (1−a)

) | Si j = S01,Ci j = c
]−E

[
Yi j

(
0, Mi j (0)

) | Si j = S01,Ci j = c
]

= NEE1−a(0,1,c)+ iTMEa(0,1,c)

PROOF OF EQUATION 3.3 (Supplemental Material)

CACEa(c) = E
[
Yi j (a,1)−Yi j (a,0) | Si j = S01,Ci j = c

]
= E

[
Yi j

(
a, Mi j (1)

)−Yi j
(
a, Mi j (0)

) | Si j = S01,Ci j = c
]= i T ME a(0,1,c)
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