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ABSTRACT We propose an electrophoretic technique
combining the use of a series of dielectric traps controlled by an
ac electric field and conventional continuous field free-flow
electrophoresis. From the theoretical model that we describe,
one can expect, for DNA electrophoresis, an improvement of
one to two orders of magnitude in the selectivities or experi-
mental durations.

The separation of biological macromolecules is a crucial
problem in areas such as the pharmaceutical industry and
biomolecular engineering. As an important example, human
genome mapping requires the separation of large DNA mol-
ecules according to their sizes-from a few kilobase pairs
(kbp) to a few tens of megabase pairs (Mbp). This is not
possible by simple free-flow electrophoresis in aqueous so-
lutions; indeed, electrophoretic mobility is independent of
the molecular weight for long chains (1).
As an alternative, gel electrophoresis techniques were

developed. Although it was soon recognized that continuous
field devices have severe limitations (molecules of sizes
larger than =50 kbp display the same mobility), pulsed-field
methods allow for the separation, over a 1-day period, of
DNA molecules ofa few megabase pairs (2, 3). More recently
(4), attaching a globular protein to one end of the chain has
resulted in a spectacular increase in the accuracy of the
separation for chains of intermediate size; the mobility de-
creases exponentially with the molecular weight in certain
conditions.
However, free-flow electrophoresis can also be used with

the addition of selective traps. Confinement effects, for
example, could lead to separation (5). Here we propose the
use of well-controlled geometries with transverse oscillating
electric fields. The large paraelectric susceptibilities of poly-
electrolytes lead to trapping phenomena in the strong field
areas. The trapping time depends exponentially on the po-
larizability of the chains, which depends sharply on their
length: we therefore expect good selectivity.
More precisely, we develop a model that describes the

macromolecular drift and diffusion in a periodic structure,
calculate the conditions for separation, and propose orders of
magnitude considerations that demonstrate the efficiency
and the feasibility of the technique.
The polyelectrolyte is considered as an undeformable

charged object, which means that we neglect any conforma-
tional consideration. Its evolution in a force field F(x) is that
of a Brownian point particle and is governed by a Fokker-
Planck equation:

- (x, t) = -div J(x, t)

Do
J(x, t) = - P(x, t) F(x, t) - Do grad P(x, t),

kT
[1]

where P(x, t) is the probability density of the particle at point
x and time t.
D' is the coefficient characteristic of Brownian diffusion,

which also applies for sedimentation and for all situations
where the force field is of nonelectrical origin (6, 7). F is the
force acting on the backbone plus counterion system, linked
to the average velocity through Einstein's relation: V =
D°F/kT. When the force is due to an electric field E, this
defines a proportionality coefficient q between F and E. The
electrophoretic mobility A (such that V = ,uE) verifies

qD°
= kT

[2]

It is important to point out that Brownian diffusion of a
polyelectrolyte is similar to that of a hydrodynamically
opaque sphere, because of the hydrodynamic interaction
between the monomers (6-8). Therefore D°0 6IrqRH, with
'1 the solvent viscosity and RH - R (1 - E), where R is the
gyration radius ofthe macromolecule and E is an usually small
dimensionless factor accounting for interactions between the
backbone and the counterions (7-10).

Electrophoretic motion is somewhat different: the coun-
terions are systematically driven in a direction opposite to
that of the backbone, and, because of their friction with the
solvent, the whole polyelectrolyte becomes hydrodynami-
cally transparent to the flow (6). The friction coefficient ofthe
backbone is then (free-draining regime) proportional to its
number of elements and therefore to its molecular weight
(similar to neutral polymers in the Rouse description). The
electric force acting on the backbone is also'proportional to
the molecular weight if it is homogeneously charged (which
is the case for DNA), so the resulting mobility and the
product qD° is size independent (for molecules large enough
so that such scaling considerations are relevant) (1).

Finally we characterize the polarizability ofthe molecule in
an electric field of frequency w by a coefficient a(w) (we here
neglect absorption and consider that a is real). In the pres-
ence ofa field E*(w) = E* V2 cos(wt), the polarization energy
of the polyelectrolyte reads

1 2AW = - a(E*)2.
2 [3]

To this energy corresponds a force f = -grad(AW), which
drives the particle toward the regions of strongest field
amplitude.
We now use this model to describe the one-dimensional

motion of a molecule dragged by an electric field E and
trapped in some places by an inhomogeneous orthogonal
field, which oscillates at a frequency high enough not to
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substantially alter the direction of drift. We study here the
case of a network where regions (of size a), in which an
orthogonal field E* has been established, alternate with
regions (of size g - a) where no such field exists. The motion
ofthe particle is then ruled by Eq. 1, where the force F derives
from the potential U depicted in Fig. 1. We consider only the
regime in which particles, before crossing the trapping bar-
riers, accumulate on distances very short compared to the
size of the traps (a) and the periodicity of the network (a).
With the notation d = kT/qE, this regime reads d << a < a
(regime 1). In such situations, the drift is strong enough that
the particles visit the traps successively, and backwards
motion can be omitted.
We thus have to consider the following formal problem: a

Brownian particle under constant drift is trapped at periodic
intervals (of size f) in identical traps. We call T(t) the
probability distribution for the escape time t out of one of
these traps and 4(t') the probability distribution for the drift
time t' from one trap to the next. Then that ofthe time to cross
a region of length L = N f is PL(t):

PLO) f ( dti dt;,(t) (t,9) 8(t - (ti + t;)). (4]

This problem is most easily solved by considering the La-
place transforms of the probability distributions, defined as

f(E) = e-Ef(t) dt. [5]

Then, if PL" is the value of PL in the absence of traps (or E*
= 0), one can transform Eq. 4 into

PL(E) = (+(E) 4(E))N = (*(E))N PL(E). [6]

The moments of a distribution law f(t) are given by

anj
(t) = (-1) -EO [7]

L
(,) = - (tp) + (W)o [8]

and

SL = (t) - (t)2 = - ((t') - (t )2) + SL, [9]

where 0 refers to the value in the absence of traps (free-flow
electrophoresis value) and tp refers to the escape time of a
single trap. Calling V and D (respectively, V0 and D0) the
mean velocity and the diffusion coefficient in the presence (or
in the absence) of traps and recalling that SL V3 = 2 D L for
times long enough for the central limit theorem to apply (11),
we get

v= 1= v {V(tP) 1

tf v°J f
[10]

and

(t{) - (tp)2 V 3

D=V3 P

+ Do [11]

In both formulas, the first term of the right-hand side corre-
sponds to trapping and predominates if natural diffusion is
fast. Indeed, in the second term of Eq. 11, if trapping is very
efficient, V is much smaller than V0, and natural diffusion is
no longer substantially responsible for the dispersion of
similar particles: these are in quasi-permanence in a trap and
do not have time to disperse while drifting to the following
site.
We must now characterize the traps (Fig. 1 Inset) and (tP)

and (t2). If the energy barrier AW is somewhat larger than kT,
the flux J of particles emerging from the trap can be obtained
from a simplified version of Kramers model (see, for exam-
ple, ref. 12) and reads J = nir, where n is the number of
particles in the trap (noninteracting and equivalent) and r is
given by

From Eq. 6 we then obtain the traversal time for a sample of
size L and its variance SL:

UT

x

FIG. 1. Potential experienced by a molecule while drifting
through the network. (Inset) Enlarged view of a trap and barrier.

DT= Lm eU/kT dx e-U/kT dx.
barer trap

[12]

In our case,

U/kT dx =-- UA/kT
Jtrap qE

Ibamre U/kT dX =- keU/kT eAW/kT

barer qE

where UA is the potential at the deepest point of the trap A,
as depicted in the inset of Fig. 1.
Thus,

/kTV2
I=(D°)-l IE exp(AW/kT). [13]

As explained, this result holds when AW > a few kT (regime
2). The number of particles varies according to

dn n
d= J= __
dt Xr

which leads to an exponential law for the escape time and

, slope-qE
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(tp) = T, (t' = 2T2.

Thus, calling t0 the mean drift time from a trap to the next one
(t° = f/V0), we get from Eqs. 2, 10, and 11

V = 1[14]

and

D =D {1 + 1(r)2}{ + 4}3 [15]

According to Eqs. 13 and 14, V is a function of the physical
parameters u, D0, and a. Consequently molecules charac-
terized by different parameters will be separated. This holds
even if they have the same electrophoretic mobility (and thus
the same t0). This case, which as previously stated corre-
sponds to large size DNA separation, is considered in the
following. We describe the other physical parameters by
scaling laws, as powers of a curvilinear size N of the
polyelectrolyte chain (e.g., the number ofbase pairs): a = NV
and D0 N-V. We also call P the dimensionless factor
AW/kT, which varies in the same way as a (=N'). Then the
variation of the trapping time r = Vo-1 d exp(P) with N reads

dT dN
-=[I-v+ P N '[16]

which leads to velocity variation

V2rT(V -yP) dN
dV N [17]

This means that, on the average, after a drift distance x,
molecules of sizes differing by SN will be a distance Sx apart

Ax[ tO]-1 SN
-= 1+- IV[-YP]- [18]

One achieves effective separation if Sx is larger than the
spread Ax due to dispersion: (AX)2 = 2 Dt = 2 Dx/V. Ax
increases as the square root of the drift distance, whereas Sx
increases linearly. The separation therefore occurs after a
distance x* (and a time t*) corresponding to Sx* Ax*,
or

[to]2 /S\-2
x*-2 D/V L1+-J Iv-yPV2 ( [19]

To simplify the algebra, we consider the regime where
dispersion is mainly the result of trapping: (T/tO)2 /d >> 1
(regime 3). Note that this regime allows trapping and free-
flow electrophoresis to contribute in comparable ways to the
mean velocity (T and to of the same order) since »>> d
(regime 1). Then

x* = lp-PI -2 (N)

x*
t* = (T + to),

[20]

[21]

and
-to(-1

,6* w)1 1+-

These formulas allow us to quantify the efficiency of the
separation. To get a rough estimate, we use simple consid-
erations to derive the orders of magnitude of the different
parameters for the case of large DNA fragments. We call L
the chain length, N its number ofbase pairs, p the persistence
length (we shall here take a value corresponding to usual ionic
strengths), and R the radius of the corresponding coil (esti-
mated using Gaussian statistics). The diffusion coefficient D'
is then approximated by that of a sphere of radius R and the
polarizability by that of a spherical ionic cloud of the same
dimensions (8) in a medium of relative permittivity E of order
100. For the electrophoretic mobility we shall use the value
experimentally obtained in ref. 1. Along these lines, we
obtain the following:
chain length L = 0.34 N (nm)
radius R2 = 1/3 p L 55 N (nm2)
diffusion coefficient D' = kT/qR = 2 x 10-9 N112 (m2 s1)
polarizability a = 4ir E R3 - 10-34 N312 (C V-lm-2)
mobility A = 2 X 10-8 m2 V-l s-1
and 'y = 3/2, v = 1/2, and P = AW/kT = 10-10 N3/2(E*)2,
where E* is expressed in V per cm. Note that in the present
picture, Eq. 2 together with the independence of the elec-
trophoretic mobility ,u on N requires that the proportionality
coefficient q scales as NV.

Current microelectronic technologies allow for the realiza-
tion of geometries of very thin spatial resolution (a few
thousand angstroms). To illustrate our proposal, we choose
an easily achievable periodicity: 4 = 0.1 mm.
We use this set of values to estimate the strength of fields

and the time and the space necessary to separate chains of
various sizes and with variable accuracy. A few results are
gathered in Table 1 and Fig. 2. They indicate that with
reasonable operating times and voltages (both dc and ac),
quite efficient separation capabilities can be reached. Drift
fields and drift distances comparable to those of pulsed-field
gel electrophoresis, and therefore easily realizable, lead to
times that are shorter by two orders of magnitude than those
of pulsed-field gel electrophoresis for the same spatial reso-
lution or to much better accuracy in comparable times. For
example, 1-Mbp fragments ofDNA differing by 10 kbp lie in
two separated bands =2 mm apart after 1 hr. whereas the
same result would typically require 100 hr with usual pulsed-
field gel electrophoresis devices (see, for example, figure 3 in
ref. 3). A more accurate resolution can be obtained at larger
time expense.
Our model is oversimplified in several ways. One limitation

results from the idealization of the electric field pattern:
discontinuity is nonphysical. In fact E* varies continuously
from 0 to its maximal value over a characteristic length l,
which on dimensional grounds is of the order of the device

Table 1. Values of various parameters as a function of DNA
size (N) and field amplitudes (E and E*)
N, E, E*, T, t°, 8N, x*, t*. 8x*,
Mbp V/cm V/cm s s kbp mm h mm

0.1 10 50 43 5 1 7.8 1.03 0.79
20 50 11 2.5 1 7.8 0.28 0.71

1 10 9 17 5 10 7.4 0.44 0.66
10 10 110 5 10 4.8 1.50 0.66
10 11 900 5 10 3.2 8.06 0.56
20 10 28 2.5 10 4.8 0.40 0.63
50 10 4.4 1 10 4.8 0.07 0.56
10 10 1 480 152 6.6

10 20 2 123 2.5 100 2.9 1.02 0.53
20 1.8 11 2.5 100 4.5 0.17 0.55

In all cases, inequalities corresponding to regimes 1-3 are satisfied.
Note the "short" amount of time required to separate out 1-Mbp

[22] DNA molecules.

--- - - - ---
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FIG. 2. Mobility ofDNA molecules versus size N in the megabase-pair range for a drift dc field of 10 V/cm and a trapping ac field varying
from 7 to 12 V/cm. Similar plots are obtained in the 0.1- to 10-Mbp ranges by changing the field amplitudes (see Table 1).

thickness e (for a >> e), which could easily be of the order
of 10 ,um. Field gradients in the thickness direction should
also exist. Comparison to d shows that the polyelectrolyte no
longer sees the trap as a vertical wall, but rather as a long
slope (as long as AW is not so large that the trapping times
would be expressed in years). In this regime, the prefactor
and the argument of the exponential describing the trapping
time depend on both E and E* (or cl), and the form of the
results is more complex. Calculations modeling the growth
and decay of (E*)2 by a linear function or by a hyperbolic
tangent show that the selectivity is somewhat smaller than in
our simplified illustration, but remains interesting, and that
the flexibility of the technique is preserved.
Moreover, field inhomogeneities along the thickness direc-

tion should attract the DNA fragments toward electrodes
edges. Hence they should significantly reduce the character-
istic size i to something like a passivation layer (which can be
of the order of 5000 A), giving, therefore, credit to our simple
estimate.
Another possible limitation could come from the onset of

convection currents due to heating. However, since typical
geometries are fairly similar to capillary electrophoresis,
hydrodynamic convection should not be a problem.
A more evident limit is the neglect of the conformational

changes of the macromolecule. These have been observed
experimentally (13) on time scales very comparable to those of
the trapping process considered in the present article; the
dynamics of this process therefore deserve a different descrip-
tion. However, although the detailed size dependence of the
parameters controlling the effective mobility will be modified
if this conformational change is taken into account, the selec-
tivity should still be exponential, and the interest ofthe method
preserved. In the same way, a more exhaustive description
should include other regimes of spatial periodicity and trans-
verse fields, where trapping and barrier crossing could follow
different paths (one could for example imagine the extension
of the molecule over a few traps; the dynamics are then
possibly described by something similar to ref. 14, etc.).

The study of such regimes may be envisaged in the future,
but the present description is a necessary starting point that
exhibits the essential features of free-flow electrophoresis
under an inhomogeneous transverse field, and points out its
main characteristics: (i) an exponential dependence of trap-
ping times and therefore a good selectivity and (ii) the
possibility to control both the prefactor and the argument of
the exponential by independent control of the drift field and
of the transverse one (intensity and frequency), which con-
fers an exceptional flexibility (Fig. 2).
We furthermore want to point out that the technique is not

restricted to polyelectrolytes such as DNA. Other objects
such as large proteins, chromosomes (15), cells, charged
micelles, and latex spheres could also be separated that way.
It is also worthwhile to note that the use of electric traps may
be combined with other dc drifts, such as hydrodynamic
flows, which opens the technique to uncharged particles.
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