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Common disease, binary secondary trait

Here, we determine the conditions under which r and rd are approximately linear functions of Z. First,

note that r and rd are functions of Z and G through the conditional means µD(1) and µD(0), which are

themselves functions of η = Φ−1(µD(0)) = β0 +Z′βZ +G′βG. It follows that r and rd are functions of η and

we can write r(Z,G) = r(η) and rd(Z,G) = rd(η). We will use the different forms interchangeably. Now

consider the second order Taylor series expansions of r(η) and rd(η) centered at η0 = gD(κ):

r(η) = r(η0) + r′(η0)(η − η0) +
r′′(η∗)

2
(η − η0)2

rd(η) = rd(η0) + r′d(η0)(η − η0) +
r′′d (η∗d)

2
(η − η0)2

where η∗ and η∗d are some real numbers between η and η0. One can show that for gD(·) = logit and

κ ∈ (0.1, 0.5),

max
η

∣∣∣∣r′′(η)

2

∣∣∣∣ ≈


1
4

(
1− κ

P̃ (D=1)

)
|βY | if κ ≤ P̃ (D = 1)

1
2 (κ− P̃ (D = 1))|βY | if κ > P̃ (D = 1)

and ∣∣∣∣r′′d (η)

2

∣∣∣∣ < 1

20
|βY | ∀η.

Similar bounds can be found for gD(·) = Φ−1 and, in general, any smooth gD(·). These bounds suggest that

if βG = 0 and |βY | and |η− η0| are not exceedingly large (i.e., Y and Z are not strongly associated with D),

then the quadratic terms in the Taylor expansions will be small, and the remainders r(η) and rd(η) will be

approximately linear in η = β0 + Z′βZ .

An interesting aside: r(η) becomes increasingly linear in η as κ tends to P̃ (D = 1). In fact, if κ = P̃ (D =

1), then π(0) = π(1) and it is easy to show from Equation (3) in the article that r(·) is exactly equal to 0.

This result reflects the notion that a näıve analysis is valid when the study population is a random sample

of the general population. Of course, this condition is not true in the setting of case-control studies.

When r0(·) and r1(·) are linear functions of Z, the control-only and case-only analyses can be applied

to estimate and make inference on αG. An adjusted analysis is also valid if, in addition, r1(·) − r0(·) is a

constant. It is easy to show that this required condition is true for gD(·) = logit and approximately true for

gD(·) = Φ−1 when the disease is common. Specifically, if gD(·) = logit, then

r1(Z,G)− r0(Z,G) = βY .
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Meanwhile, the probit and logit link functions are very close in the mid-range. For η such that Φ(η) ∈

(0.2, 0.8), the standard normal cumulative distribution can be approximated accurately by a transformed

logistic distribution Φ(η) ≈ expit(η/λ). Popular choices for λ include
√

3/π and 5/8 [Amemiya, 1981]. This

approximation implies that for common disease and gD(·) = Φ−1,

r1(Z,G)− r0(Z,G) ≈ βY /λ.

For gD(p) = log(− log(1− p)), it can be shown, by taking a second order Taylor series expansion of

T (η + βY ) = log

{
g−1
D (η + βY )

1− g−1
D (η + βY )

}

centered at η, that

r1(Z,G)− r0(Z,G) = T (η + βY )− T (η) ≈ T ′(η∗)βY + 0.5T ′′(η∗)β2
Y ≈ 1.3βY + 0.22β2

Y .

Common disease, continuous secondary trait

Here, we derive Equations (7) and (8) from the article and provide the closed form expressions for µ̃Y

and σ̃2. We then determine the conditions under which r(·) and rd(·) are approximately linear in Z and

X. First, suppose that θ is a parameter in R and Y ∼ N(µY + θσ2, σ2). Our interest is in calculat-

ing E(Y |X,G,Z, D, S = 1, θ = 0) and V ar(Y |X,G,Z, D, S = 1, θ = 0), but since P̃ (Y |X,G,Z, D) =

P (Y |X,G,Z, D), it suffices to calculate the mean and variance of Y |X,G,Z, D, θ = 0. With that in mind,

assume gD = Φ−1 and define D∗ to be the random variable such that D∗ = gD(µD(Y )) + ε, ε ∼ N(0, 1).

Then P (D∗ > 0|Z,G, Y ) = P (D = 1|Z,G, Y ). Furthermore,

P (D = 1|Z,G,X, θ) =

∫
P (D = 1|Z,G,X, θ, y)P (y|X,G,Z, θ)dy

=

∫
P (D∗ > 0|Z,G,X, θ, y)P (y|X,G,Z, θ)dy D|Z,G, y⊥⊥X, θ

= P (D∗ > 0|Z,G,X, θ)

= P (ε∗ > −gD(µD(0))) ε∗ ∼ N
(
(µY + θσ2)βY , σ

2β2
Y + 1

)
= Φ(f(θ))
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where

f(θ) =
gD(µD(µY + θσ2))√

σ2β2
Y + 1

.

We can now calculate the first two moments of Y |X,G,Z, D, θ = 0 via its moment generating function:

E(etY |X,G,Z, D = d, θ = 0) = exp

(
tµY +

t2σ2

2

){
Φ(f(t))

Φ(f(0))

}d{
1− Φ(f(t))

1− Φ(f(0))

}1−d

E(Y |X,G,Z, D = d, θ = 0) = µY + (−1)1−d · c · φ(f(0))

{Φ(f(0))}d{1− Φ(f(0))}1−d

E(Y 2|X,G,Z, D = d, θ = 0) = σ2 + (−1)1−d · c2 · φ′(f(0))

{Φ(f(0))}d{1− Φ(f(0))}1−d

+ µ2
Y + 2µY (−1)1−d · c · φ(f(0))

{Φ(f(0))}d{1− Φ(f(0))}1−d

The variance follows immediately:

V ar(Y |X,G,Z, D = d, θ = 0) = σ2 + c2
(

(−1)1−d · φ′(f(0))

{Φ(f(0))}d{1− Φ(f(0))}1−d
− φ(f(0))2

{Φ(f(0))}2d{1− Φ(f(0))}2(1−d)

)

Letting η denote f(0) gives us Equations (7) and (8).

Next, to calculate µ̃Y and σ̃2, note that

P̃ (D|Z,G,X, θ) =
P (S = 1|D) · P (D|Z,G,X, θ)∑1

d=0 P (S = 1|D = d) · P (D = d|Z,G,X, θ)
.

Therefore,

E(Y |X,G,Z, S = 1, θ = 0) =

∑1
d=0E(Y |X,G,Z, D = d, θ = 0) · P (S = 1|D = d) · P (D = d|Z,G,X, θ = 0)∑1

d=0 P (S = 1|D = d) · P (D = d|Z,G,X, θ = 0)

= µY + c · φ(η) · g(Z,G,X)

= µY + r(Z,G,X)

V ar(Y |X,G,Z, S = 1, θ = 0) = E(V ar(Y |X,G,Z, D, θ = 0)) + V ar(E(Y |X,G,Z, D, θ = 0))

= σ2 + c2 ·
{
φ′(η) · g(Z,G,X)− φ(η)2 · g(Z,G,X)2

}
= σ2 + s(Z,G,X)
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where

g(Z,G,X) =
P (S = 1|D = 1)− P (S = 1|D = 0)∑1

d=0 P (S = 1|D = d) · P (D = d|Z,G,X, θ = 0)
.

Finally, we determine the conditions under which r(·) and rd(·) are approximately linear in Z and X, and

s and sd are approximately constants. We begin by again noting that the all remainders are a function of η,

which is itself a linear function of Z, G, and X. Thus, we can write r(Z,G,X) = r(η), rd(Z,G,X) = rd(η),

s(Z,G,X) = s(η), and sd(Z,G,X) = sd(η). If αG = βG = 0, then the remainders are functions of Z

and X alone. Meanwhile, consider the second and first order order Taylor series expansions of rd(η) and

sd(η) centered at η0 = gD(κ)/
√
σ2β2

Y + 1. One can show that in these expansions the quadratic and linear

coefficients are bounded: ∣∣∣∣r′′d (η)

2

∣∣∣∣ < 3

20
|c|

and

|s′d(η)| < 3

10
c2

for all η and d = 0, 1. Similar bounds can be derived for r(η) and s(η). Therefore, if αG = βG = 0 and

|βY | and |η − η0| are not exceedingly large (i.e., Y and Z are not strongly associated with D and X is not

strongly associated with Y ), then the quadratic and linear terms in the Taylor expansion of r(η), rd(η), s(η),

and sd(η) will be small, r(η) and rd(η) will be approximately linear in η—hence in X and Z—and s(η) and

sd(η) we be approximately constant.

An adjusted analysis is unbiased if, in addition, α∗∗Z0 = α∗∗Z1 and α∗∗X0 = α∗∗X1 or, equivalently, r1(·)−r0(·)

is a constant. It is easy to show that this required condition is approximately true for common disease by

using the logit approximation for the probit:

r1(X,G,Z)− r0(X,G,Z) ≈ c/λ

While s0(η) is generally not equal to s1(η), in our simulations, the difference between the sample variance

of the case-only and control-only analyses with pooled covariates seemed to be small enough for inference to

be approximately correct.
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Rare disease

Here, we derive the theoretical bias for the case-only analysis with pooled covariates when the disease is rare

and gD = Φ−1. If Y is binary, then

lim
η→−∞

r′1(η) = lim
η→−∞

φ(η + βY )

Φ(η + βY )
− φ(η)

Φ(η)

= lim
η→−∞

φ(η)

Φ(η)
+
φ′(η∗)Φ(η∗)− φ(η∗)2

Φ(η∗)2
βY −

φ(η)

Φ(η)
η∗ between η and η + βY

= βY · lim
η→−∞

φ′(η)Φ(η)− φ(η)2

Φ(η)2

= βY · lim
η→−∞

ηφ(η) + (η2 − 1)Φ(η)

2Φ(η)
L’Hopital’s rule

= βY · lim
η→−∞

ηΦ(η)

φ(η)
L’Hopital’s rule

= −βY

and

lim
η→−∞

r′′1 (η) = lim
η→−∞

d

d(η + βY )

φ(η + βY )

Φ(η + βY )
− d

d(η)

φ(η)

Φ(η)

= (−1)− (−1)

= 0.

It follows that

lim
η→−∞

r1(η) = r1(Φ−1(κ))− βY (η − Φ−1(κ)),

or equivalently,

lim
κ→0

r1(Z,G) =
{
r1(Φ−1(κ)) + βY (Φ−1(κ)− β0)

}
− Z′βY βZ −G′βY βG.

If instead Y is continuous, then because limη→−∞
φ(η)
ηΦ(η) = −1,

r1(Z,G,X) = c
φ(η)

Φ(η)
≈ −cη.

Meanwhile,

lim
κ→0

s1(Z,G,X) = lim
η→−∞

c2 ·
{
φ′(η)Φ(η)− φ(η)2

Φ(η)2

}
= −c2.
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Web Appendix B
Simulation study with binary secondary trait Y

Type I error rates

Bias

Power
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In the paper, we presented simulation results for continuous Y . Here, we do the same but for binary Y .

The simulation setting for binary Y is similar to that for continuous Y , the only difference being instead of

sampling Yi from a normal distribution, Yi is sampled as a Bernoulli random variable with probability of

success expit(α0 +X2iαX2 +X3iαX3 +GiαG) with αX2 = αX3 = 0.2, αG ∈ {0, log(1.7)/2, log(1.7)}, and α0

chosen so that the secondary trait Yi has a prevalence of 0.10 in the population. In order to estimate type I

error rate (power) accurately, a total of 106 (104) replicate data sets were simulated for each scenario.
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Figure 1: Empirical type I error rates for testing genetic associations with a binary secondary trait, at
genome-wide α = 10−4 level and across scenarios with different combinations of βY , βG, γ1 and βZ1. Nine
methods are compared here. Each method takes either a näıve, control-only, case-only, adjusted, or IPW
approach, and adjusts for covariates related to Y or covariates related to (Y,D). The disease is assumed
to be common (10% prevalence) and to follow a logistic model (gD = logit). In row A, covariate Z1 is
assumed to be associated with G but not with D (γ1 = ln 1.7, βZ1 = 0). In row B, Z1 is associated with D
but not with G (γ1 = 0, βZ1 = ln 1.7). In row C, Z1 is a confounder of the association between G and D
(γ1 = βZ1 = ln 1.7).
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Figure 2: Empirical bias for the estimated genetic effect α̂G on a binary secondary trait, across null scenarios
(αG = 0) with different combinations of βY , βG, γ1 and βZ1. Nine methods are compared here. Each method
takes either a näıve, control-only, case-only, adjusted, or IPW approach, and adjusts for covariates related
to Y or covariates related to (Y,D). The disease is assumed to be common (10% prevalence) and to follow
a logistic model (gD = logit). In row A, covariate Z1 is assumed to be associated with G, but not with D
(γ1 = ln 1.7, βZ1 = 0). In row B, Z1 is associated with D, but not with G (γ1 = 0, βZ1 = ln 1.7). In row C,
Z1 is a confounder of the association between G and D (γ1 = βZ1 = ln 1.7).
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Figure 3: Empirical type I error rates and bias for testing and estimating genetic associations with a binary
secondary trait, at genome-wide α = 10−4 level and across null scenarios (αG = 0) with different combinations
of βY and link function gD for the disease model. Nine methods are compared here. Each method takes
either a näıve, control-only, case-only, adjusted, or IPW approach, and adjusts for covariates related to Y
or covariates related to (Y,D). The disease is assumed to be rare (1% prevalence) and to follow either a
logistic or probit model (gD = logit or Φ−1). G is assumed to be associated with D (βG = ln 1.7). Z1 is
assumed to be a confounder of the association between G and D (γ1 = βZ1 = ln 1.7). The scenarios with a
logistic disease model (left column) are the same as the scenarios in the bottom right plots of Figures 1 and
2, except here the disease is rare, not common.

Table 1: Empirical bias for the estimated genetic of α̂G based on the case-only analysis with pooled covariates,
across null scenarios (αG = 0), and over varying levels of disease prevalence κ. The disease is assumed to
follow a probit model. G is assumed to be associated with D (βG = ln 1.7). Z1 is assumed to be a confounder
of the association between G and D (γ1 = βZ1 = ln 1.7).

βY = 0 βY =
ln(2)
2

βY = ln(2)

Average
κ = 0.10 -0.011 -0.030 -0.064
κ = 0.01 -0.005 -0.053 -0.101
κ = 0.001 -0.003 -0.055 -0.102

Theoretical 0.000 -0.056 -0.112
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Figure 4: Power for testing genetic associations with a binary secondary trait, at genome-wide α = 10−4

level and across scenarios with different combinations of αG, βY , γ1, and βZ1. Nine methods are compared
here. Each method takes either a näıve, control-only, case-only, adjusted, or IPW approach, and adjusts
for covariates related to Y or covariates related to (Y,D). The disease is assumed to be common (10%
prevalence) and to follow a logistic model (gD = logit). In row A, covariate Z1 is assumed to be associated
with G but not with D (γ1 = ln 1.7, βZ1 = 0). In row B, Z1 is associated with D but not with G (γ1 = 0,
βZ1 = ln 1.7). In row C, Z1 is a confounder of the association between G and D (γ1 = βZ1 = ln 1.7).
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Figure 5: Power for testing genetic associations with a binary secondary trait, at genome-wide α = 10−4 level
and across scenarios with different combinations of αG and link function gD(·) for the disease model. Nine
methods are compared here. Each method takes either a näıve, control-only, case-only, adjusted, or IPW
approach, and adjusts for covariates related to Y or covariates related to (Y,D). The disease is assumed to
be rare (1% prevalence) and to follow either a logistic or probit model (gD(·) = logit or Φ−1). G is assumed
to be associated with D (βG = ln 1.7). Z1 is assumed to be a confounder of the association between G and
D (γ1 = βZ1 = ln 1.7).
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Web Appendix C
Simulation study with continuous secondary trait Y

Type I error rates

Bias

Power
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Figure 6: Empirical type I error rates for testing genetic associations with a continuous secondary trait, at
genome-wide α = 10−6 level and across scenarios with different combinations of βY , βG, γ1 and βZ1. Nine
methods are compared here. Each method takes either a näıve, control-only, case-only, adjusted, or IPW
approach, and adjusts for covariates related to Y or covariates related to (Y,D). The disease is assumed
to be common (10% prevalence) and to follow a logistic model (gD = logit). In row A, covariate Z1 is
assumed to be associated with G but not with D (γ1 = ln 1.7, βZ1 = 0). In row B, Z1 is associated with D
but not with G (γ1 = 0, βZ1 = ln 1.7). In row C, Z1 is a confounder of the association between G and D
(γ1 = βZ1 = ln 1.7).
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Figure 7: Empirical bias for the estimated genetic effect α̂G on a continuous secondary trait, across null
scenarios (αG = 0) with different combinations of βY , βG, γ1 and βZ1. Nine methods are compared here.
Each method takes either a näıve, control-only, case-only, adjusted, or IPW approach, and adjusts for
covariates related to Y or covariates related to (Y,D). The disease is assumed to be common (10% prevalence)
and to follow a logistic model (gD = logit). In row A, covariate Z1 is assumed to be associated with G, but
not with D (γ1 = ln 1.7, βZ1 = 0). In row B, Z1 is associated with D, but not with G (γ1 = 0, βZ1 = ln 1.7).
In row C, Z1 is a confounder of the association between G and D (γ1 = βZ1 = ln 1.7).
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gD(.) = logit gD(.) = probit
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Figure 8: Empirical type I error rates and bias for testing and estimating genetic associations with a con-
tinuous secondary trait, at genome-wide α = 10−6 level and across null scenarios (αG = 0) with different
combinations of βY and link function gD for the disease model. Nine methods are compared here. Each
method takes either a näıve, control-only, case-only, adjusted, or IPW approach, and adjusts for covariates
related to Y or covariates related to (Y,D). The disease is assumed to be rare (1% prevalence) and to follow
either a logistic or probit model (gD = logit or Φ−1). G is assumed to be associated with D (βG = ln 1.7).
Z1 is assumed to be a confounder of the association between G and D (γ1 = βZ1 = ln 1.7). The scenarios
with a logistic disease model (left column) are the same as the scenarios in the bottom right plots of Figures
?? and ??, except here the disease is rare, not common.

Table 2: Empirical bias for the estimated genetic effect α̂G based on the case-only analysis with pooled
covariates, across null scenarios (αG = 0), and over varying levels of disease prevalence κ. The disease is
assumed to follow a probit model. G is assumed to be associated with D (βG = ln 1.7). Z1 is assumed to be
a confounder of the association between G and D (γ1 = βZ1 = ln 1.7).

βY = 0 βY =
ln(2)
2

βY = ln(2)

Empirical
κ = 0.10 0.000 -0.026 -0.052
κ = 0.01 0.000 -0.048 -0.086

Theoretical 0.000 -0.054 -0.098
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Figure 9: Power for testing genetic associations with a continuous secondary trait, at genome-wide α = 10−4

level and across scenarios with different combinations of percent of variance in Y explained by G (r2
Y G), βY ,

γ1, and βZ1. Nine methods are compared here. Each method takes either a näıve, control-only, case-only,
adjusted, or IPW approach, and adjusts for covariates related to Y or covariates related to (Y,D). The
disease is assumed to be common (10% prevalence) and to follow a logistic model (gD = logit). In row A,
covariate Z1 is assumed to be associated with G but not with D (γ1 = ln 1.7, βZ1 = 0). In row B, Z1 is
associated with D but not with G (γ1 = 0, βZ1 = ln 1.7). In row C, Z1 is a confounder of the association
between G and D (γ1 = βZ1 = ln 1.7).
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Figure 10: Power for testing genetic associations with a continuous secondary trait, at genome-wide α = 10−4

level and across scenarios with different combinations of percent of variance in Y explained by G (r2
Y G) and

link function gD(·) for the disease model. Nine methods are compared here. Each method takes either a
näıve, control-only, case-only, adjusted, or IPW approach, and adjusts for covariates related to Y or covariates
related to (Y,D). The disease is assumed to be rare (1% prevalence) and to follow either a logistic or probit
model (gD(·) = logit or Φ−1). G is assumed to be associated with D (βG = ln 1.7). Z1 is assumed to be a
confounder of the association between G and D (γ1 = βZ1 = ln 1.7).
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Following the article’s notation, let D denote the disease status (1=case, 0=control) and S indicate with

the values 1 versus 0 whether or not an individual is included in the case-control study. Let E denote

ever-smoker status (1=ever-smoker, 0=never-smoker). Then by Bayes’ theorem, the inverse-probability-of-

sampling weight for case and control ever-smokers is given by

P (S = 1|D = d,E = 1) =
P (D = d|S = 1, E = 1)P (S = 1|E = 1)

P (D = d|E = 1)
∝ P (D = d|S = 1)

P (D = d|E = 1)
.

We can calculate P (D = 1|E = 1), the prevalence of lung cancer amongst ever-smokers in Massachusetts,

using national and Massachusetts-specific statistics. Specifically, it is estimated that 10-15% of all lung

cancers in the U.S. arise in never smokers [Samet et al., 2011]; 0.0745% of the Massachusetts general pop-

ulation have lung cancer [Ter-Minassian et al., 2012]; and 44% of adults in Massachusetts are ever-smokers

(Massachusetts Department of Public Health, 2013). It follows by another application of Bayes’ rule that

P (D = 1|E = 1) =
P (E = 1|D = 1)P (D = 1)

P (E = 1|D = 1)P (D = 1) + P (E = 1|D = 0)P (D = 0)

=
P (E = 1|D = 1)P (D = 1)

P (E = 1|D = 1)P (D = 1) + P (D = 0|E = 1)P (E = 1)

=
(0.875)(0.000745)

(0.875)(0.000745) + P (D = 0|E = 1)(0.44)

and P (D = 1|E = 1) = 0.00148.

To test for interactions between SNPs and smoking behavior, we fitted for each of the 513,271 SNPs the

following model for lung cancer risk

logit(µD(Y )) = β0 + Z′βZ +GβG + Y βY +GY βGY .

We found that the näıve, case-only, and adjusted estimates for the genetic effect of smoking behavior tended

to deviate from the control-only estimate as β̂GY deviated from 0 (Figure 11). Therefore, it would be

inappropriate to use ad hoc methods other than the control-only analysis when there is evidence for G-E

interaction.

We also found that SNPs identified by the näıve or adjusted analysis tend not to modify the effect of

smoking behavior on lung cancer risk. In contrast, many of the SNPs identified by the control-only or IPW

analysis had moderate to strong evidence of an interaction with smoking behavior (Tables 3 and 4). This
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difference between SNPs identified by the näıve or adjusted analysis and SNPs identified by the control-only

or IPW analysis is likely due to the methods having more power to detect different sets of SNPs. It explains

why we observed in Figure 5 of the article relatively little overlap, and why some previously known genes were

only identified by the adjusted analysis (HSD17B2 and SLC9A2 ) while other known genes were identified

by the control-only and IPW analyses but not by the adjusted analysis (CDH18 ).

Figure 11: Top 50k SNPs from IPW regression. Observed difference between case-only and control-only
estimates has a significant tendency to increase as the difference in effect of smoking behavior on lung cancer
risk between adjacent genotypes (2 vs 1, 1 vs 0) increases (slope of best fit line = 4.06, p < 10−15).

Table 3: Distribution of p values for testing marker-lung cancer effect (H1 : βG = 0|βGY = 0) and interaction
between marker and smoking behavior on lung cancer risk (H2 : βGY=0), for SNPs identified as nominally
significantly associated with smoking behavior (p < 10−3) by the näıve or adjusted analysis. Each cell gives
the number and percentage of SNPs whose p value for testing H1 and H2 fall within the respective range.

H1 : βG = 0|βGY = 0
[0.0, 0.1) [0.1, 0.5) [0.5, 1.0] Total

H2 : βGY = 0

[0.0, 0.1) 27 39 13 79
3.3% 4.8% 1.6% 9.7%

[0.1, 0.5) 104 134 94 332
12.7% 16.4% 11.5% 40.6%

[0.5, 1.0] 86 211 110 407
10.5% 25.8% 13.4% 49.8%

Total 217 384 217 818
26.5% 46.9% 26.5% 100%
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Table 4: Distribution of p values for testing marker-lung cancer effect (H1 : βG = 0|βGY = 0) and interaction
between marker and smoking behavior on lung cancer risk (H2 : βGY=0), for SNPs identified as nominally
significantly associated with smoking behavior (p < 10−3) by the control-only or IPW analysis. Each cell
gives the number and percentage of SNPs whose p value for testing H1 and H2 fall within the respective
range.

H1 : βG = 0|βGY = 0
[0.0, 0.1) [0.1, 0.5) [0.5, 1.0] Total

H2 : βGY = 0

[0.0, 0.1) 84 183 162 429
12.9% 28.0% 24.8% 65.7%

[0.1, 0.5) 60 74 56 190
9.2% 11.3% 8.6% 29.1%

[0.5, 1.0] 15 15 4 34
2.3% 2.3% 0.6% 5.2%

Total 159 272 222 653
24.3% 41.7% 34.0% 100%

Figure 12: Manhattan plot for the näıve analysis of
√

pack-years. − log10 p values from a 1-DF Wald test
for all SNPs passing quality control and assuming an additive genetic model. Analysis was performed using
all 1,426 ever-smokers.
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Figure 13: Manhattan plot for the control-only analysis of
√

pack-years. − log10 p values from a 1-DF Wald
test for all SNPs passing quality control and assuming an additive genetic model. Analysis was performed
using only the control ever-smokers (n0 = 730).

Figure 14: Manhattan plot for the case-only analysis of
√

pack-years. − log10 p values from a 1-DF Wald
test for all SNPs passing quality control and assuming an additive genetic model. Analysis was performed
using only the case ever-smokers (n1 = 696).
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Figure 15: Manhattan plot for the adjusted analysis of
√

pack-years. − log10 p values from a 1-DF Wald test
for all SNPs passing quality control and assuming an additive genetic model. Analysis was performed using
all 1,426 ever-smokers.

Figure 16: Manhattan plot for the IPW analysis of
√

pack-years. − log10 p values from a 1-DF Wald test
for all SNPs passing quality control and assuming an additive genetic model. We estimate the prevalence of
lung cancer among ever-smokers to be π = 0.00148 in order to calculate the inverse probability weights for
all 1,426 study individuals.
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Table 5: Top 10 SNPs from the genome-wide näıve analysis of
√

pack-years. Estimates of the additive genetic
effect on smoking behavior (α̂G) and their p values from a 1-DF Wald test for the ad hoc methods and IPW

regression. Marker-lung cancer effect estimates (ÔRDG = exp(β̂G)), estimates for interaction between SNPs

and smoking behavior on lung cancer risk (β̂GY ), and their p values from a 1-DF Wald test are also provided.
Genes that have been identified in previous GWASs of smoking cessation are marked by asterisks.

Lung cancer Smoking behavior

SNP Chr. Gene ÔRDG β̂GY Näıve Control-only Case-only Adjusted IPW

rs3771823 2 TACR1∗ 1.15 0.04 -0.40 -0.51 -0.30 -0.40 -0.51
(1.13e-01) (3.36e-01) (9.35e-06) (2.32e-05) (1.13e-02) (2.48e-06) (1.02e-05)

rs7588326 2 TACR1∗ 1.16 0.04 -0.40 -0.51 -0.30 -0.40 -0.51
(8.41e-02) (3.54e-01) (9.82e-06) (2.02e-05) (9.97e-03) (2.02e-06) (8.82e-06)

rs11889631 2 SLC9A2∗ 0.98 -0.02 0.51 0.48 0.43 0.45 0.48
(8.42e-01) (7.26e-01) (1.61e-05) (3.18e-03) (4.15e-03) (3.88e-05) (3.29e-03)

rs7766185 6 RPS6KA2∗ 0.94 0.05 -0.56 -0.51 -0.40 -0.46 -0.51
(5.86e-01) (3.87e-01) (1.13e-05) (1.67e-03) (2.52e-02) (1.05e-04) (7.38e-04)

rs7771460 6 RPS6KA2∗ 0.96 0.05 -0.55 -0.49 -0.43 -0.46 -0.49
(7.23e-01) (3.79e-01) (1.85e-05) (3.02e-03) (1.42e-02) (1.16e-04) (1.55e-03)

rs10878841 12 N/A 1.07 0.02 -0.39 -0.38 -0.35 -0.36 -0.39
(4.45e-01) (6.45e-01) (7.95e-06) (9.68e-04) (2.19e-03) (1.01e-05) (1.01e-03)

rs12172796 13 NBEA∗ 0.96 -0.04 0.67 0.66 0.52 0.59 0.66
(7.30e-01) (4.85e-01) (3.93e-07) (2.76e-04) (1.61e-03) (1.15e-06) (2.18e-04)

rs9788362 13 NBEA∗ 0.97 -0.05 0.66 0.68 0.48 0.58 0.68
(8.22e-01) (3.99e-01) (6.95e-07) (2.49e-04) (3.35e-03) (2.41e-06) (2.21e-04)

rs9574213 13 NBEA∗ 1.00 -0.06 0.62 0.65 0.42 0.54 0.65
(9.98e-01) (2.87e-01) (2.93e-06) (4.23e-04) (1.08e-02) (1.24e-05) (3.40e-04)

rs4823168 22 N/A 1.00 -0.00 -0.42 -0.36 -0.35 -0.37 -0.36
(9.74e-01) (9.41e-01) (8.30e-06) (3.98e-03) (5.94e-03) (3.53e-05) (3.01e-03)

Table 6: Top 10 SNPs from the genome-wide control-only analysis of
√

pack-years. Estimates of the additive
genetic effect on smoking behavior (α̂G) and their p values from a 1-DF Wald test for the ad hoc methods and

IPW regression. Marker-lung cancer effect estimates (ÔRDG = exp(β̂G)), estimates for interaction between

SNPs and smoking behavior on lung cancer risk (β̂GY ), and their p values from a 1-DF Wald test are also
provided. Genes that have been identified in previous GWASs of smoking cessation are marked by asterisks.

Lung cancer Smoking behavior

SNP Chr. Gene ÔRDG β̂GY Näıve Control-only Case-only Adjusted IPW

rs7588326 2 TACR1∗ 1.16 0.04 -0.40 -0.51 -0.30 -0.40 -0.51
(8.41e-02) (3.54e-01) (9.82e-06) (2.02e-05) (9.97e-03) (2.02e-06) (8.82e-06)

rs4461636 5 CDH18∗ 1.25 0.24 -0.44 -0.98 0.01 -0.46 -0.98
(1.44e-01) (2.11e-03) (5.57e-03) (5.78e-06) (9.49e-01) (1.64e-03) (7.78e-06)

rs4242066 5 CDH18∗ 1.28 0.27 -0.40 -0.99 0.06 -0.44 -0.99
(1.08e-01) (8.24e-04) (1.13e-02) (6.02e-06) (7.65e-01) (2.93e-03) (7.26e-06)

rs1391429 5 CDH18∗ 1.22 0.24 -0.43 -0.90 -0.03 -0.45 -0.90
(1.73e-01) (1.75e-03) (5.80e-03) (2.00e-05) (8.95e-01) (1.99e-03) (2.50e-05)

rs7842063 8 N/A 0.91 -0.10 0.44 0.64 0.17 0.41 0.64
(3.79e-01) (3.16e-02) (8.69e-05) (1.29e-05) (2.52e-01) (7.77e-05) (4.41e-05)

rs4404875 8 RP1L1 0.86 -0.11 0.35 0.66 0.05 0.36 0.66
(1.52e-01) (2.06e-02) (2.19e-03) (1.89e-05) (7.23e-01) (6.89e-04) (1.74e-05)

rs1655645 15 FAM189A1∗ 0.95 -0.12 0.28 0.55 -0.03 0.26 0.55
(5.89e-01) (1.25e-03) (1.99e-03) (8.48e-06) (8.05e-01) (2.17e-03) (2.08e-05)

rs1893213 18 N/A 0.89 -0.10 0.28 0.54 0.00 0.28 0.54
(1.68e-01) (1.40e-02) (2.30e-03) (1.03e-05) (9.91e-01) (1.04e-03) (5.98e-06)

rs4805573 19 ZNF536 1.36 0.08 -0.65 -1.06 -0.27 -0.67 -1.06
(6.63e-02) (2.63e-01) (1.77e-04) (4.52e-06) (2.38e-01) (2.91e-05) (1.29e-06)

rs4805574 19 ZNF536 1.34 0.07 -0.65 -1.02 -0.30 -0.67 -1.02
(8.39e-02) (3.43e-01) (1.84e-04) (1.13e-05) (1.85e-01) (3.51e-05) (3.99e-06)
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Table 7: Top 10 SNPs from the genome-wide case-only analysis of
√

pack-years. Estimates of the additive
genetic effect on smoking behavior (α̂G) and their p values from a 1-DF Wald test for the ad hoc methods and

IPW regression. Marker-lung cancer effect estimates (ÔRDG = exp(β̂G)), estimates for interaction between

SNPs and smoking behavior on lung cancer risk (β̂GY ), and their p values from a 1-DF Wald test are also
provided. Genes that have been identified in previous GWASs of smoking cessation are marked by asterisks.

Lung cancer Smoking behavior

SNP Chr. Gene ÔRDG β̂GY Näıve Control-only Case-only Adjusted IPW

rs1108089 1 N/A 1.27 -0.18 -0.45 -0.01 -0.92 -0.48 -0.01
(9.95e-02) (4.25e-03) (4.38e-03) (9.62e-01) (2.55e-06) (9.70e-04) (9.58e-01)

rs959903 4 SEL1L3∗ 1.02 -0.12 -0.26 0.05 -0.56 -0.24 0.05
(8.26e-01) (4.78e-03) (8.29e-03) (6.84e-01) (1.97e-05) (1.09e-02) (6.76e-01)

rs415426 5 SLC36A1∗ 1.02 0.13 0.20 -0.15 0.48 0.16 -0.15
(8.26e-01) (9.38e-04) (2.47e-02) (2.03e-01) (1.31e-05) (4.78e-02) (2.00e-01)

rs9341360 6 RIMS1∗ 0.84 0.08 0.25 0.06 0.52 0.28 0.06
(4.07e-02) (3.99e-02) (5.77e-03) (6.05e-01) (1.00e-05) (8.60e-04) (5.86e-01)

rs7317390 13 COL4A2 1.21 -0.03 -0.25 0.02 -0.61 -0.29 0.02
(4.33e-02) (5.64e-01) (1.31e-02) (8.78e-01) (2.87e-06) (2.63e-03) (8.73e-01)

rs4906879 15 LOC105370740 0.78 0.14 0.12 -0.13 0.58 0.20 -0.13
(4.59e-03) (8.19e-04) (1.75e-01) (2.98e-01) (9.41e-07) (1.94e-02) (2.96e-01)

rs1484197 15 N/A 0.87 0.09 0.32 0.06 0.60 0.32 0.06
(1.55e-01) (4.47e-02) (1.43e-03) (6.42e-01) (1.88e-06) (4.92e-04) (6.32e-01)

rs2966249 16 HSD17B2∗ 0.96 0.06 0.38 0.17 0.52 0.35 0.17
(6.72e-01) (1.63e-01) (4.04e-05) (1.75e-01) (9.68e-06) (6.31e-05) (1.77e-01)

rs1017243 16 HSD17B2∗ 0.96 0.05 0.38 0.18 0.51 0.34 0.18
(6.74e-01) (1.81e-01) (4.22e-05) (1.53e-01) (1.55e-05) (6.54e-05) (1.55e-01)

rs2829949 21 N/A 0.95 0.22 0.54 -0.08 1.03 0.48 -0.08
(7.56e-01) (3.70e-02) (4.33e-03) (7.59e-01) (1.41e-05) (6.31e-03) (7.45e-01)

Table 8: Top 10 SNPs from the genome-wide adjusted analysis of
√

pack-years. Estimates of the additive
genetic effect on smoking behavior (α̂G) and their p values from a 1-DF Wald test for the ad hoc methods and

IPW regression. Marker-lung cancer effect estimates (ÔRDG = exp(β̂G)), estimates for interaction between

SNPs and smoking behavior on lung cancer risk (β̂GY ), and their p values from a 1-DF Wald test are also
provided. Genes that have been identified in previous GWASs of smoking cessation are marked by asterisks.

Lung cancer Smoking behavior

SNP Chr. Gene ÔRDG β̂GY Näıve Control-only Case-only Adjusted IPW

rs7588326 2 TACR1∗ 1.16 0.04 -0.40 -0.51 -0.30 -0.40 -0.51
(8.41e-02) (3.54e-01) (9.82e-06) (2.02e-05) (9.97e-03 (2.02e-06) (8.82e-06)

rs3771823 2 TACR1∗ 1.15 0.04 -0.40 -0.51 -0.30 -0.40 -0.51
( 1.13e-01) (3.36e-01) (9.35e-06) (2.32e-05) (1.13e-02) (2.48e-06) (1.02e-05)

rs10878841 12 N/A 1.07 0.02 -0.39 -0.38 -0.35 -0.36 -0.39
(4.45e-01) (6.45e-01) (7.95e-06) (9.68e-04) (2.19e-03) (1.01e-05) (1.01e-03)

rs12172796 13 NBEA∗ 0.96 -0.04 0.67 0.66 0.52 0.59 0.66
( 7.30e-01) (4.85e-01) (3.93e-07 2.76e-04) (1.61e-03) (1.15e-06) (2.18e-04)

rs9788362 13 NBEA∗ 0.97 -0.05 0.66 0.68 0.48 0.58 0.68
(8.22e-01) (3.99e-01) (6.95e-07 2.49e-04) (3.35e-03) (2.41e-06) (2.21e-04)

rs9574213 13 NBEA∗ 1.00 -0.06 0.62 0.65 0.42 0.54 0.65
(9.98e-01) (2.87e-01) (2.93e-06) (4.23e-04) (1.08e-02) (1.24e-05) (3.40e-04)

rs1952512 14 TMEM253 0.72 0.09 0.59 0.42 0.87 0.64 0.42
(3.12e-02) (2.25e-01) (2.69e-04) (5.27e-02) (4.24e-05) (2.34e-05) (4.94e-02)

rs8053423 16 N/A 0.69 0.01 0.39 0.48 0.44 0.47 0.48
(2.55e-04) (8.69e-01) (3.07e-04) (5.25e-04) (2.34e-03) (2.11e-06) (2.25e-04)

rs12941222 17 SDK2 0.87 -0.03 0.38 0.48 0.29 0.38 0.48
(1.39e-01) (4.32e-01) (9.36e-05) (2.30e-04) (2.10e-02) (2.35e-05) (1.28e-04)

rs4805573 19 ZNF536 1.36 0.08 -0.65 -1.06 -0.27 -0.67 -1.06
(6.63e-02) (2.63e-01) (1.77e-04) (4.52e-06) (2.38e-01) (2.91e-05) (1.29e-06)
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Table 9: Top 10 SNPs from the genome-wide IPW analysis of
√

pack-years. Estimates of the additive genetic
effect on smoking behavior (α̂G) and their p values from a 1-DF Wald test for the ad hoc methods and IPW

regression. Marker-lung cancer effect estimates (ÔRDG = exp(β̂G)), estimates for interaction between SNPs

and smoking behavior on lung cancer risk (β̂GY ), and their p values from a 1-DF Wald test are also provided.
Genes that have been identified in previous GWASs of smoking cessation are marked by asterisks.

Lung cancer Smoking behavior

SNP Chr. Gene ÔRDG β̂GY Näıve Control-only Case-only Adjusted IPW

rs7588326 2 TACR1∗ 1.16 0.04 -0.40 -0.51 -0.30 -0.40 -0.51
(8.41e-02) (3.54e-01) (9.82e-06) (2.02e-05) (9.97e-03) (2.02e-06) (8.82e-06)

rs3771823 2 TACR1∗ 1.15 0.04 -0.40 -0.51 -0.30 -0.40 -0.51
(1.13e-01) (3.36e-01) (9.35e-06) (2.32e-05) (1.13e-02) (2.48e-06) (1.02e-05)

rs741418 2 TACR1∗ 1.08 0.04 -0.38 -0.51 -0.19 -0.36 -0.51
(3.68e-01) (2.74e-01) (4.22e-05) (2.41e-05) (1.13e-01) (3.09e-05) (1.19e-05)

rs4242066 5 CDH18∗ 1.28 0.27 -0.40 -0.99 0.06 -0.44 -0.99
(1.08e-01) (8.24e-04) (1.13e-02) (6.02e-06) (7.65e-01) (2.93e-03) (7.26e-06)

rs4461636 5 CDH18∗ 1.25 0.24 -0.44 -0.98 0.01 -0.46 -0.98
(1.44e-01) (2.11e-03) (5.57e-03) (5.78e-06) (9.49e-01) (1.64e-03) (7.78e-06)

rs4942376 13 N/A 0.87 -0.07 0.32 0.58 0.06 0.33 0.58
(1.63e-01) (1.40e-01) (1.74e-03) (2.43e-05) (6.72e-01) (6.47e-04) (7.89e-06)

rs1893213 18 N/A 0.89 -0.10 0.28 0.54 0.00 0.28 0.54
(1.68e-01) (1.40e-02) (2.30e-03) (1.03e-05) (9.91e-01) (1.04e-03) (5.98e-06)

rs4805573 19 ZNF536 1.36 0.08 -0.65 -1.06 -0.27 -0.67 -1.06
(6.63e-02) (2.63e-01) (1.77e-04) (4.52e-06) (2.38e-01) (2.91e-05) (1.29e-06)

rs4805574 19 ZNF536 1.34 0.07 -0.65 -1.02 -0.30 -0.67 -1.02
(8.39e-02) (3.43e-01) (1.84e-04) (1.13e-05) (1.85e-01) (3.51e-05) (3.99e-06)

rs6052961 20 SLC23A2 1.08 0.12 -0.26 -0.52 0.03 -0.25 -0.52
(3.50e-01) (4.20e-03) (4.72e-03) (3.63e-05) (8.17e-01) (2.84e-03) (7.46e-06)

Table 10: Top 10 novel SNPs from the genome-wide control-only analysis of
√

pack-years. Estimates of
the additive genetic effect on smoking behavior (α̂G) and their p values from a 1-DF Wald test for the
ad hoc methods and IPW regression. SNPs are novel in the sense that they are nominally significant
(p < 10−3) when analyzed by the control-only analysis, but nominally insignificant (p ≥ 10−3) when analyzed

by the adjusted and IPW analyses. Marker-lung cancer effect estimates (ÔRDG = exp(β̂G)), estimates for

interaction between SNPs and smoking behavior on lung cancer risk (β̂GY ), and their p values from a 1-DF
Wald test are also provided. Genes that have been identified in previous GWASs of smoking cessation are
marked by asterisks.

Lung cancer Smoking behavior

SNP Chr. Gene ÔRDG β̂GY Näıve Control-only Case-only Adjusted IPW

rs1568340 1 N/A 0.88 -0.12 0.23 0.49 -0.02 0.25 0.49
(1.94e-01) (3.47e-03) (3.56e-02) (7.05e-04) (9.11e-01) (1.35e-02) (1.48e-03)

rs7643114 3 N/A 0.79 -0.20 0.19 0.60 -0.13 0.25 0.60
(4.52e-02) (1.03e-05) (1.19e-01) (2.06e-04) (4.17e-01) (2.86e-02) (1.25e-03)

rs4955322 3 N/A 0.76 -0.20 0.19 0.58 -0.09 0.26 0.58
(2.06e-02) (2.34e-05) (1.25e-01) (3.20e-04) (5.65e-01) (2.23e-02) (1.71e-03)

rs950206 4 N/A 1.07 0.02 -0.25 -0.43 -0.05 -0.24 -0.42
(4.48e-01) (6.06e-01) (7.02e-03) (7.53e-04) (6.86e-01) (4.93e-03) (1.05e-03)

rs221723 6 PDE10A∗ 0.88 -0.09 0.24 0.45 0.02 0.25 0.44
(1.58e-01) (2.40e-02) (1.32e-02) (4.68e-04) (8.41e-01) (4.89e-03) (1.03e-03)

rs221725 6 PDE10A∗ 0.87 -0.09 0.23 0.44 0.02 0.25 0.44
(1.36e-01) (2.87e-02) (1.57e-02) (5.45e-04) (8.41e-01) (5.30e-03) (1.22e-03)

rs596077 11 LOC105369591 1.07 -0.14 0.19 0.45 -0.18 0.14 0.45
(4.63e-01) (2.52e-04) (5.67e-02) (5.94e-04) (1.43e-01) (1.15e-01) (1.16e-03)

rs1241482 14 LOC105370414 0.96 -0.13 0.29 0.51 -0.01 0.26 0.51
(7.35e-01) (3.24e-03) (1.09e-02) (6.61e-04) (9.34e-01) (1.19e-02) (1.35e-03)

rs2289567 17 KSR1∗ 0.97 -0.17 0.19 0.53 -0.16 0.17 0.53
(7.92e-01) (2.55e-04) (1.02e-01) (6.84e-04) (2.68e-01) (1.07e-01) (1.50e-03)

rs10513972 18 DOK6∗ 1.30 0.13 0.01 -0.58 0.36 -0.08 -0.58
(2.59e-02) (2.20e-02) (9.04e-01) (7.35e-04) (1.86e-02) (5.06e-01) (1.05e-03)
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Table 11: Top 10 novel SNPs from the genome-wide adjusted analysis of
√

pack-years. Estimates of the
additive genetic effect on smoking behavior (α̂G) and their p values from a 1-DF Wald test for the ad hoc
methods and IPW regression. SNPs are novel in the sense that they are nominally significant (p < 10−3)
when analyzed by the adjusted analysis, but nominally insignificant (p ≥ 10−3) when analyzed by the control-

only and IPW analyses. Marker-lung cancer effect estimates (ÔRDG = exp(β̂G)), estimates for interaction

between SNPs and smoking behavior on lung cancer risk (β̂GY ), and their p values from a 1-DF Wald test
are also provided. Genes that have been identified in previous GWASs of smoking cessation are marked by
asterisks.

Lung cancer Smoking behavior

SNP Chr. Gene ÔRDG β̂GY Näıve Control-only Case-only Adjusted IPW

rs696981 1 N/A 0.90 0.01 0.35 -0.40 0.28 0.35 -0.40
(1.94e-01) (8.65e-01) (1.14e-04) (1.09e-03) (1.71e-02) (3.55e-05) (1.16e-03)

rs4851022 2 SLC9A2∗ 0.96 -0.01 0.50 0.48 0.43 0.45 0.48
(6.82e-01) (8.67e-01) (2.20e-05) (3.24e-03) (4.06e-03) (3.64e-05) (3.13e-03)

rs11889631 2 SLC9A2∗ 0.98 -0.02 0.51 0.48 0.43 0.45 0.48
(8.42e-01) (7.26e-01) (1.61e-05) (3.18e-03) (4.15e-03) (3.88e-05) (3.29e-03)

rs6431588 2 ILKAP 1.21 0.04 -0.47 -0.47 -0.47 -0.47 -0.47
(1.01e-01) (4.23e-01) (1.49e-04) (6.15e-03) (2.09e-03) (4.06e-05) (4.34e-03)

rs4540426 8 N/A 0.77 0.04 0.51 0.41 0.68 0.54 0.41
(4.50e-02) (4.62e-01) (2.68e-04) (3.01e-02) (1.67e-04) (4.00e-05) (3.45e-02)

rs1952512 14 TMEM253 0.72 0.09 0.59 0.42 0.87 0.64 0.42
(3.12e-02) (2.25e-01) (2.69e-04) (5.27e-02) (4.24e-05) (2.34e-05) (4.94e-02)

rs10514525 16 N/A 0.95 0.04 0.38 0.24 0.47 0.35 0.24
(5.13e-01) (3.16e-01) (2.75e-05) (5.44e-02) (4.24e-05) (3.06e-05) (4.82e-02)

rs4888202 16 HSD17B2∗ 0.96 0.04 0.38 0.23 0.47 0.35 0.23
(6.62e-01) (3.46e-01) (2.64e-05) (6.67e-02) (5.94e-05) (4.08e-05) (6.66e-02)

rs8111069 19 CLPTM1 1.18 -0.04 -0.35 -0.34 -0.38 -0.37 -0.34
(6.58e-02) (3.93e-01) (2.43e-04) (9.62e-03) (2.15e-03) (4.39e-05) (6.16e-03)

rs4823168 22 N/A 1.00 -0.00 -0.42 -0.36 -0.35 -0.37 -0.36
(9.74e-01) (9.41e-01) (8.30e-06) (3.98e-03) (5.94e-03) (3.53e-05) (3.01e-03)

Table 12: Top 10 novel SNPs from the genome-wide IPW analysis of
√

pack-years. Estimates of the additive
genetic effect on smoking behavior (α̂G) and their p values from a 1-DF Wald test for the ad hoc methods and
IPW regression. SNPs are novel in the sense that they are nominally significant (p < 10−3) when analyzed
by IPW regression, but nominally insignificant (p ≥ 10−3) when analyzed by the control-only and adjusted

analyses. Marker-lung cancer effect estimates (ÔRDG = exp(β̂G)), estimates for interaction between SNPs

and smoking behavior on lung cancer risk (β̂GY ), and their p values from a 1-DF Wald test are also provided.
Genes that have been identified in previous GWASs of smoking cessation are marked by asterisks.

Lung cancer Smoking behavior

SNP Chr. Gene ÔRDG β̂GY Näıve Control-only Case-only Adjusted IPW

rs6691873 1 C1orf95∗ 1.18 0.34 -0.29 -0.82 0.21 -0.30 -0.82
(3.53e-01) (2.77e-03) (1.31e-01) (1.47e-03) (3.81e-01) (8.49e-02) (2.11e-04)

rs1552290 1 N/A 1.24 -0.16 0.28 0.65 -0.21 0.17 0.65
(9.96e-02) (3.24e-03) (4.36e-02) (1.18e-03) (2.17e-01) (1.99e-01) (3.22e-04)

rs11722134 4 N/A 1.23 -0.07 0.30 0.71 -0.24 0.19 0.71
(1.73e-01) (3.14e-01) (6.10e-02) (1.92e-03) (2.34e-01) (2.00e-01) (1.74e-04)

rs1316405 4 ARHGAP24∗ 1.04 0.26 -0.33 -0.76 0.18 -0.31 -0.75
(8.00e-01) (1.11e-02) (6.69e-02) (1.43e-03) (4.58e-01) (6.72e-02) (2.92e-04)

rs1870658 5 LOC105379037 1.29 0.23 -0.40 -0.72 -0.15 -0.44 -0.72
(9.81e-02) (4.96e-03) (1.34e-02) (1.02e-03) (4.63e-01) (3.25e-03) (6.45e-05)

rs471405 5 LOC105379037 1.29 0.23 -0.40 -0.72 -0.15 -0.44 -0.72
(9.81e-02) (4.96e-03) (1.34e-02) (1.02e-03) (4.63e-01) (3.25e-03) (6.45e-05)

rs26008 5 FNIP1 1.11 0.27 -0.56 -0.85 -0.17 -0.53 -0.84
(5.68e-01) (1.39e-02) (4.58e-03) (1.07e-03) (5.28e-01) (4.04e-03) (2.58e-04)

rs2642576 10 N/A 1.05 -0.19 0.10 0.69 -0.58 0.07 0.69
(7.27e-01) (6.02e-03) (5.47e-01) (2.09e-03) (6.64e-03) (6.47e-01) (2.20e-04)

rs9921063 16 CDYL2∗ 0.95 0.32 -0.35 -0.67 0.14 -0.29 -0.67
(7.39e-01) (3.77e-04) (2.72e-02) (1.09e-03) (4.89e-01) (4.82e-02) (2.29e-04)

rs549300 18 N/A 1.10 0.14 -0.35 -0.63 -0.06 -0.34 -0.63
(4.70e-01) (3.93e-02) (1.53e-02) (1.08e-03) (7.37e-01) (1.14e-02) (3.82e-04)
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