Naa50/San-dependent N-terminal acetylation of Scc1 is potentially important for sister chromatid cohesion.

Ana L. Ribeiro^{1,2}, Rui D. Silva^{1,2}, Håvard Foyn⁴, Margarida N. Tiago^{1,2}, Om S. Rathore^{1,2}, Thomas Arnesen^{4,5}, Rui Gonçalo Martinho^{1,2,3,#}.

Supplementary Information:

D

Scc1 chromosomal localization during prometaphase/metaphase

D

Figure 6 Dalmatian

Figure 6C

Supplementary Fig.2C

Supplementary Fig.3A

Supplementary Fig. 3B

Supplementary Fig. 5

Name	Genotyne	Description	Source/			
	00000 PC	2 ipuon	Reference			
Oregon R (OR)		Wild type stock.				
Nubbin-Gal4	y , w ¹¹¹⁸ ; P{w ⁺ , nubbin-GAL4}	Contains the Nubbin-Gal4 driver for specific expression in the pouch of wing imaginal disc.	BDSC			
UAS-San RNAi	$y w^{1118}$; P{KK101696, y^+ , $w^{3'}$ }	Contains a dsRNA under UAS control for RNAi of san.	VDRC			
UAS-mCherry RNAi	$y^1 sc^* v^1$; P{ $y^{+t7.7} v^{+t1.8}$ =VALIUM20-mCherry}attP2	Contains a dsRNA under UAS control for RNAi of mCherry.	BDSC/TRiP			
UAS-deco RNAi	$y^{1} sc^{*} v^{1}; P\{ y^{+t7.7} v^{+t1.8} = TRiP.GL00528 \} attP2$	Contains a dsRNA under UAS control for RNAi of deco.	BDSC/TRiP			
UAS-vtd RNAi	$y^{1} sc^{*} v^{1}; P\{ y^{+t7.7} v^{+t1.8} = TRiP.GL00522\}attP2/TM3, Sb^{1}$	Contains a dsRNA under UAS control for RNAi of vtd/ scc1.	BDSC/TRiP			
UAS-mau-2 RNAi	$y^{1} sc^{*} v^{1}; P\{ y^{+t7.7} v^{+t1.8} = TRiP.HMS02374 \} attP2$	Contains a dsRNA under UAS control for RNAi of mau-2.	BDSC/TRiP			
UAS-Smc3- Scc1-fusion	UAS-Smc3-Scc1-GFP fusion	Contains smc3 c-terminally fused with the N-terminus of vtd/scc1 under UAS control.	(Eichinger et al., 2013)			
UAS-dmt	w^{1118} ; P{w ⁺ , UAS-Dmt}	Contains dmt/soronin under UAS control.	(Kerman and Andrew, 2010)			
dmt ¹¹⁸⁴	dmt ¹¹⁸⁴ /Tm3	Carries a loss of function allele of dmt/soronin.	(Kerman and Andrew, 2010)			
Nubbin-Gal4 UAS-san RNAi	w^{1118} ; P{w ⁺ , nubbin-GAL4}, P{KK101696, y ⁺ , w ³ }/CyO	Contains the Nubbin-Gal4 driver and a dsRNA under UAS control for RNAi of san.	This study			
san ³	w/w; FRT42B B16-79/ CyO	Loss of function allele of san.	Pimenta-Marques et al., 2008			
san ⁴	w/w; FRT42B B50-26/ CyO	Loss of function allele of san.	Pimenta-Marques et al., 2008			
Wild type san genomic construct in <i>san</i> ⁴ background	w/w; FRT42B B50-26/ CyO; P{w ⁺ =WALIUM22-San}attP2/ TM6B	Carries a loss of function allele san^4 and a genomic construct that expresses a wild type Naa50/San under the control of its endogenous promoter.	This study			
san ^{R84A Y124F} genomic construct in <i>san⁴</i> background	w/w; FRT42B B50-26/ CyO; P{w ⁺ =WALIUM22-S san ^{R84A Y124F} }attP2/TM6B	Carries the loss of function allele san ⁴ and expresses san ^{R84A Y124F} under control of the endogenous promoter.	This study			

Suppl. Table 1. Drosophila stocks used in this study.

BDSC - Bloomington Drosophila Stock Center; VDRC - Vienna Drosophila RNAi Center; TRiP - Transgenic RNAi Project.

Complete list of primers											
Primer name	Comment										
san RNAi Fw	TAATACGACTCACTATAGGGAGAA GCAGCATCGAACTGGGC	For san (CG12352) siRNA									
san RNAi Rv	TAATACGACTCACTATAGGGAGAC GCTTATAGTATTGCTCCTTGGT	For san (CG12352) siRNA									
sanAmp2 RNAi Fw	TAATACGACTCACTATAGGGAG ACAACACTGAGAACCAGCGGC	For san (CG12352) siRNA second amplicon									
sanAmp2 RNAi Rv	TAATACGACTCACTATAGGGAGAC GTAGTAAAGCACGACAGTTCAC	For san (CG12352) siRNA second amplicon									
deco RNAi Fw	GGATCCTAATACGACTCACTA TACGCTGGCCCGGATGTT	For deco (CG8598) siRNA									
deco RNAi Rv	GGATCCTAATACGACTCACTATAC AACCTCCCGTCCACTATT	For deco (CG8598) siRNA									
gfp RNAi Fw	TAATACGACTCACTATAGGGAGAC TTCAGCCGCTACCCC	For control siRNA									
gfp RNAi Rv	TAATACGACTCACTATAGGGAGAT GTCGGGCAGCACG	For control siRNA									
Scc1(Wt) Fw	GGGGACAAGTTTGTACAAAAAAGC AGGCTAAATGTTCTATGAGCACAT TATTTTGGC	For attB PCR to allow expression of native <i>Drosophila</i> Sec1 (CG17436) in pDONR221.									
Scc1(MP-) Fw	GGGGACAAGTTTGTACAAAAAAGC AGGCTAAATGCCCTATGAGCACAT TATTTTGGC	For attB PCR to allow expression of native <i>Drosophila</i> Scc1 (CG17436) with a proline residue after the methionine in pDONR221.									
Scc1(ME-) Fw	AGGCTAAATGGAGTATGAGCACAT TATTTTGGC	For attB PCR to allow expression of native $Drosophila$ Scc1 (CG17436) with a glutamate residue after the methionine in pDONR221.									
Scc1 Rv	GGGGACCACTTTGTACAAGAAAGC TGGGTCTTAAATTTTTGGGTTTTCG	For attB PCR to allow expression of <i>Drosophila</i> Sec1 (CG17436) in pDONR221.									
a371t_Rv	CGAAACCAAACTTCTTAAAGAACT CGATGGCTCCG	To generate pETM41-san ^{R84A, Y124F} mutant plasmid with pETM41-san plasmid as template									
a371t	CGGAGCCATCGAGTTCTTTAAGAA GTTTGGTTTCG	To generate pETM41-san ^{R84A, Y124F} mutant plasmid with pETM41-san plasmid as template									
c250g_g251c_rev	GATGCCCAGGCGCGCGTACGGGGA GAGG	To generate pETM41-san ^{R84A, Y124F} mutant plasmid with pETM41-san plasmid as template									
c250g_g251c	CCTCTCCCCGTACGCGCGCCTGGGC ATC	To generate pETM41-san ^{R84A, Y124F} mutant plasmid with pETM41-san plasmid as template									

Suppl. Table 2 – Complete list of primers used in this study.

cross	Total number of F1 flies (n)		Cy+	Cy
$\frac{W}{W}; \frac{san^4}{CyO}; \frac{san \text{ genomic}^{Wt}}{MKRS}$	n = 173	<i>Sb</i> ⁺	48 (28%)	125 (72%)
$\xrightarrow{W}; \frac{san^3}{CyO}; \frac{+}{+}$	n = 97	Sb	0 (0%)	97 (100%)
$\frac{W}{W}; \frac{san^3}{CyO}; \frac{+}{+}$	n = 155	Tb+	47 (30%)	108 (70%)
$\frac{W}{\swarrow}; \frac{san^4}{CyO}; \frac{x}{San \text{ genomic}^{Wt}}$	n = 77	Tb	0 (0%)	77 (100%)
$\frac{W}{W}; \frac{san^4}{CyO}; \frac{san \text{ genomic}^{\text{R84AY124F}}}{\text{TM6B}}$	n = 84	Tb+	0 (0%)	84 (100%)
$\frac{W}{\swarrow};\frac{san^3}{CyO};\frac{+}{+}$	n = 43	Tb	0 (0%)	43 (100%)
$\frac{W}{W}; \frac{san^3}{CyO}; \frac{+}{+}$	n = 64	Tb ⁺	0 (0%)	64 (100%)
$\xrightarrow{W}; \xrightarrow{san^4}_{CyO}; \xrightarrow{x}_{San \text{ genomic}^{R84AY124F}}_{TM6B}$	n = 77	Тb	0 (0%)	77 (100%)

a 1	T 11 2	A 1 1/	D	1 • 1	· ·	• 1 • 1 • 4	
Nunnl	I able 4 -	. Adult i	Iraca	nhila	ZUGOTIC	V19h1l1fV	
Subbi.	I a U U J =	- Auun I	DIUSUI	onna	ZVEUUC	viaunity	
					10		

Protoins immuno	perocipitated with and	geonus Scol		ant	i-Scc1 / siGFF	e (control RNAi)	D	etailed	LC-MS a	analysis anti-	of endo	genous laa50/San RN/	Scc1 c	o-immun	opreci	pitation	assays.	/ siGFP (contr	ol RNAi)			pre-imu	ne control (-) /	/ siSan (Naa50	/San RNAi)	
Proteins Immuno	oprecipitated with end	ogeonus Scc1		Rep 1	8		Rep 2	SB		Rep 1	S9		Rep 2	S9		Rep 1	8		Rep 2	sa		Rep 1	se		Rep 2	S8
CG Dro	osophila Human	Mass (kDa)	Score	Matche	Sequenc	Score	Matche	Sequenc	Score	Matche	Sequenc	Score	Matche	Sequenc	Score	Matche	Sequenc	Score	Matche	Sequenc	Score	Matche	Sequenc	Score	Matche	Sequenc
Cohesion complex CG6057-PA SMC1 CG9802-PA SMC3 CG3423-PA SA CG17436-PA vtd	x 11 SMC1 13 SMC3 STAG1 Rad21/Scc1	143298 140409 130999 80033	1797 1729 942 711	35 36 20 15	32 33 19 14	1280 1452 1019 534	29 35 22 12	28 28 20 12	1084 1702 584 676	27 35 13 14	27 28 12 14	1283 1653 971 531	28 37 21 11	25 - 33 - 19 - 11 -		-	-	-	-	-	-	-	-	-	- - -	-
CG1404-PB Ran CG31611-PA His4 CG9888-PA Fib	RAN HIST1H4 FIB	24877 11374 34662	244 210 210	5 4 5	3 4 5	89 123 59	1 2 1	1 2 1	69 182	2 4	2 4	128 131	3 3	- 3 - 3 -		-	-	-	-	-	-	-	-	-	-	-
Ribosomal CosS02-PA RpL4 COSS02-PA RpL4 COSS02-PA RpL5 COSS02-PA RpL5 COSS02-PA RpL5 COSS02-PA RpL5 COSS02-PA RpL5 COSS02-PA RpL5 COSS02-PA RpL7 COSS02-PA RpL7 CRB1 COSS02-PA RpL7 COSS02-PA RpL1 COSS02-PA RpL7 COSS02-PA RpL7 COSS02-PA RpL1 COSS02-PA RpL7 COSSS02-PA	4 RP14 4 RP52 3 RP53 4 RP54 7 RP57 8 RP53 9 RP132 13 RP113 14 RP516 15 RP113 16 RP518 88 RP118 89 RP128 6 RP511 8 RP511 8 RP18	450905 29053 27153 29055 22545 22155 23837 29580 30851 30851 30851 16055 24002 25028 24002 25028 17601 24121 16855 21052 21052 16019 225709 225709 235728 18232 257957 21516	754 580 574 565 553 502 490 462 434 418 313 287 285 265 265 265 265 258 257 257 257 257 257 258 259 245 240 211 210 219 219 219 219 219 219 219 219 219 219	13 11 9 9 9 11 9 8 6 7 6 7 6 6 7 6 6 7 5 5 5 5 4 3	10 9 7 7 5 8 7 7 5 5 5 5 5 5 5 5 5 5 7 7 5 5 5 5	229 213 77 115 139 156 213 164 168 3 3 2128 213 165 168 3 3 2128 20 9 9 150 150 150 150 150 150 150 72 72 75 75 77	6 4 1 4 4 3 4 2 6 3 2 2 4 4 2 2 2 4 4 2 2 2 4 2 2 4 2 4 2	6 4 1 4 4 3 4 2 2 2 4 4 2 2 2 4 2 2 4 2 2 2 4 2 2 2 4 2 2 3 1	644 282 3800 287 325 246 246 246 246 248 259 378 378 354 218 354 219 150 239 181 171 78 94 180 138 148 74 264	13 5 6 4 8 3 6 5 3 7 8 2 5 8 5 3 6 4 4 3 3 3 2 4 2 3	10 5 5 4 6 3 6 5 3 7 7 2 4 7 5 3 5 4 4 3 3 3 2 4 2 3	460 169 178 216 188 132 223 183 183 186 243 120 165 56 83 110 127 60 82 121 132 218 41	10 3 3 4 5 5 5 5 5 1 5 3 3 1 2 2 4 1 2 2 4 1 2 2 5 5	9 - 3 - 3 - 5 - 5 - 5 - 5 - 1 - 2 - 5 - 1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 2 - 5		-	-	- - - - - - - - - - - - - - - - - - -	-	-	-	-	-	- - - - - - - - - - - - - - - - - - -		-
								Detai	led LC-	MS anal	ysis of S	cc1-My	c co-imr	nunopre	cipitat	ion assa	ays.	1.1050 (1.001413						0.000	
Proteins imm	nunoprecipitated with	Scc1-Myc	a	Rep 1	abeads & Sccl	L-Myc / siGFP (co	Rep 2		an	Rep 1	eads & Scc1-M	yc / siSan (Na	a50/San RNAi) Rep 2			Rep 1	fyc & control (-)	/ siGFP (conti	Rep 2			Rep 1	& control (-) /	/ siSan (Naa50	Rep 2	
CG Dro	osophila Human	Mass (kDa)	Score	Matches	sedneuces	Score	Matches	Sequences	Score	Matches	Sequences	Score	Matches	Sequences	Score	Matches	Sequences	Score	Matches	Sequences	Score	Matches	Sequences	Score	Matches	Sequences
Cohesion complex CG17436-PA vtd CG9802-PA SMC3 CG3423-PA SA CG6057-PA SMC1	RAD21 3 SMC3 STAG1 1 SMC1	80033 140409 130999 143298	592 303 242 160	13 8 6 5	11 8 6 5	1296 696 478 830	24 19 11 20	19 19 11 20	808 149 106 118	19 7 2 4	16 7 2 4	1122 740 609 793	23 18 11 20	19 - 16 - 10 - 18 -		-	-	-	- - -	-	-	- - -	-	-	-	-
Miscellaneous CG4264-PE Hsc7/ CG4147-PB Hsc7/ CG1913-PA aTubi CG1994-PA sesB CG1404-PB Ran CG1154-PA ATPsy CG31611-PA His4 CG32743-PA nonC	70-4 HSPA8 70-3 HSPA5 884B TUBA3D 556D TUBB4B 8 SLC25A4 RAN 8γnβ ATP5B HIST1H4 C SMG1	71317 72308 50428 51632 33072 24877 54074 11374 365311	508 162 370 259 59 79 50 37 33	11 3 4 1 2 1 1	10 3 5 4 1 2 1 1	710 182 560 463 143 40 106 161 39	12 3 11 9 5 1 1 3 2	11 3 9 6 4 1 1 3 1	95 728 352 593 121 50 106	10 2 6 11 3 1 2	10 2 6 9 3 1 2	1130 256 347 696 299 39 135 30	20 4 6 11 8 1 2	16 - 4 - 5 - 10 - 7 - 1 - 2 - 1 -		-	-	-	-	-	-	-	-	-		-
CG6779-PA RpS3 CG7808-PC RpS8 CG3203-PB RpL1 CG1883-PD RpS7 CG6684-PA RpS2 CG11522-PA RpL6	3 RPS3 8 RPS8 17 RPL17 7 RPS7 25 RPS25 5 RPL6	27638 23837 21855 22156 13193 27727	173 128 100 98 97 87	5 2 3 2 3 2	4 2 2 3 2	566 223 51 219 92 116	10 4 1 6 1 2	8 3 1 6 1 2	266 120 53 104 47 141	7 2 1 2 1 3	7 2 1 2 1 3	504 178 178 125 295	8 2 3 1	7 - 2 - 2 - 1 - 4 -		-	-	-	-	-	-	-	-	-	-	-

Α

в

Supplementary Figure 1. Examples of the scored adult wing phenotypic

classes. Class 1 only includes flies with wild type wings, class 2 includes flies with weak wing phenotype, class 3 includes flies with *san* RNAi-like wing phenotype, class 4 includes highly abnormal wings and class 5 only includes flies with absent or vestigial adult wings.

Supplementary Figure 2. Naa50/San is required for chromosomal localization of Scc1 in *Drosophila* S2 cells.

Scc1 association to chromosomes, but not its protein stability, is impaired after depletion of Naa50/San (A-D). Representative images of *Drosophila* S2 cells analyzed 96 hours after control RNAi (A) or *san* RNAi (B). S2 cells were stained for DNA (blue), Scc1 (red) and α -Tubulin (green). Scc1 colocalized with DNA during prometaphase/metaphase in control RNAi-treated cells (A), but not in *san* RNAi-treated cells (B). (C) Western blot of total protein extracts from *san* RNAi-treated S2 cells and embryos mutant for *san* (maternal mutants) showed no clear reduction of Scc1 and Smc1 protein levels. α -Tubulin was used as a loading control. (D) Quantification of Scc1 mislocalization phenotype during prometaphase/metaphase after depletion of Naa50/San. Reduced colocalization between Scc1 and DNA: control RNAi-treated S2 cells (0%, n=20), *san* RNAi-treated S2 cells 86.9 % ± 10.2 (n=26). Scale bars equal 5 µm.

Supplementary Figure 3. Naa50/San is efficiently depleted by *san* RNAitreatment in *Drosophila* S2 cells. Absence of Naa50/San in embryos mutant for *san* (maternal mutants). Naa50/San expression levels are identical for a wild type (San^{wt}) and a catalyticaly dead-version (San^{R84A} ^{Y124F}). Levels of Scc1 after ectopic expression of Scc1MF (wild-type) or Scc1MP are equivalent.

(A) Western blot analysis of total protein extracts from *Drosophila* S2 cells treated with *san* RNAi for 72 hours (left) and 96 hours (right), showed reduced levels of Naa50/San protein when compared with control RNAi-treated cells. Depletion of Naa50/San was more efficient 96 hours after *san* RNAi-treatment.

a-Tubulin was used as loading control. (B) Wild type and catalytically dead genomic constructs expressed similar levels of Naa50/San. Western blot analysis of total protein extracts from san mutant embryos with one copy of a wild type genomic construct (san^{wt}), and san mutant embryos with one copy of a catalytically dead genomic construct (san^{R84A Y124F}). α-Tubulin was used as loading control. san mutant embryos (maternal mutants) were obtained after the induction of germ line clones using the FRT/*ovo^D* system{Chou, 1992 #67} and a previously published loss-of-function allele of san (san³){Pimenta-Marques, 2008 #5}. Both wild type (san^{wt}) and catalytically dead genomic constructs (san^{R84A Y124F}) contain the gene endogenous promoter and were integrated in the same attP2 site (for more details see material and methods). ¹ and ² indicate that the genomic constructs although identical are from two independently generated *Drosophila* stocks. (C) Western blot analysis of total protein extracts from control RNAi and san RNAi-treated S2 cells, transfected with an empty plasmid (pHW), wild type Scc1 (Scc1Wt), or a non acetylatable mutant Scc1 (Scc1MP), showed identical levels of Scc1. There were no reproducible variations of Scc1 protein levels for any of the tested mutant alleles. A reduction in Naa50/San protein levels was always observed in san RNAi-treated cells. a-Tubulin was used as loading control. (D) Representation of the different Scc1 constructs used: a NatE (Naa50/San)-like substrate (Wild-type Scc1; Scc1Wt), a NatB-like substrate Scc1 (Scc1ME mutant variant), and a non-acetylatable mutant Scc1 (Scc1MP mutant variant).

Supplementary Figure 4. Naa50/San is not enriched in the nucleus of *Drosophila* S2 cells. (A and B). Representative images of *Drosophila* S2 cells analyzed 96 hours after control RNAi (A) or *san* RNAi (B). S2 cells were stained for DNA (blue) and San (red). San is not enriched in the nucleus during interphase (A){Williams, 2003 #4;Aksnes, 2015 #200}. In *san* RNAitreated cells there is, as expected, a reduction of San protein levels which confirms signal specificity (B). Scale bars equal 5 μm. **Supplementary Figure 5. Scc1 antibody is specific for Scc1 protein. (A)** Western blot analysis of total protein extracts from *Drosophila* S2 cells treated with control RNAi (left) or *scc1* RNAi for 96 hours (right). *scc1*-RNAi treated cells showed reduced levels of Scc1 protein when compared with control RNAi-treated cells. α-Tubulin was used as loading control.

Supplementary Figure 6. The mitotic index of cells treated with colchicine is significantly increased. Mitotic index (% of phospho-H3 (pSer10) positive cells) for control RNAi and *san* RNAi-treated cells (96 hours after RNAi-treatment) transfected with an empty plasmid or a GFP-tagged Smc3 was, respectively, $5.6\% \pm 0.6$ (n=358), $19.9\% \pm 4.2$ (n=335), $11.7\% \pm 3.6$ (n=274) and $13.2\% \pm 1.3$ (n=270). The mitotic index for control RNAi and *san* RNAi-treated cells transfected with an empty plasmid or a GFP-tagged Smc3 and treated cells transfected with an empty plasmid or a GFP-tagged Smc3 and treated with 25μ M of colchicine for 12 hours was, respectively, $34.3\% \pm 5.9$ (n=173), $38.8\% \pm 5.5$ (n=228), $34.9\% \pm 2.2$ (n=133) and $42.1\% \pm 1.7$ (n=152).

Supplementary Figure 7. Uncropped images of all protein blots shown in this manuscript.

Supplementary Table 1. *Drosophila* stocks used in this study.

Supplementary Table 2. Complete list of primers used in this study.

Supplementary Table 3. Naa50/San catalytic activity is essential for adult *Drosophila* viability. A genomic construct carrying a wild type copy of *san* (*san*^{*Wt*}), but not a catalytically dead allele of *san* (*san*^{*R84A* Y124F}), efficiently rescued the zygotic lethality of two loss-of-function alleles of *san* (*san*³ and *san*⁴){Pimenta-Marques, 2008 #5}. Given the indicated crosses, and since *Drosophila* flies homozygous for the CyO balancers are not viable, full complementation of *san* mutant viability corresponds to 33% of the total number of progeny (F1) *Drosophila* flies with the genomic transgene.

Supplementary Table 4. Detailed LC-MS analysis of endogenous Scc1 and Scc1-Myc tagged co-immunoprecipitation assays.

All subunits of the cohesin complex, but not Dalmatian/Soronin, were efficiently immunoprecipitated with endogenous Scc1 (A) or with Myc-tagged Scc1 (B) after depletion of Naa50/San. Co-immunoprecipitations with an anti-Scc1 antibody or with anti-c-Myc Magnetic beads (Invitrogen, Grand Island, NY, USA) were performed, respectively, using total protein extracts from *Drosophila* S2 cells or expressing a Myc-tagged Scc1. Both sets of cells were either treated with control RNAi or *san* RNAi before immunoprecipitation. Score, number of detected peptides (matches) and non-repeated peptides (sequences) for each immunoprecipitated protein is indicated. None of the proteins shown in this table were detected in the negative controls (respectively, (A) pre-immune serum or (B) *Drosophila* S2 cells expressing an empty plasmid). Two biological replicas (Rep1 and Rep2) are shown for each experimental condition.

Movie S1. Control S2 cells (96h RNAi treatment), GFP-Histone H2B (green) and α -Tubulin-mCherry (red).

Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red) after 96 hours of control RNAi treatment. For more experimental details please see methods.

Movie S2. San depleted S2 cells (96h RNAi treatment), GFP-Histone H2B (green) and α -Tubulin-mCherry (red).

Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red) after 96 hours of *san* RNAi treatment. For more experimental details please see methods. The arrowhead is labeling a single chromatid at the different time points.

Movie S3. San depleted S2 cells (96h RNAi treatment), GFP-Histone H2B (green) and α -Tubulin-mCherry (red).

Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red) after 96 hours of *san* RNAi treatment. For more experimental details please see methods. The arrowhead is labeling a single chromatid at the different time points.

Movie S4. San depleted S2 cells (96h RNAi treatment), GFP-Histone H2B (green) and α -Tubulin-mCherry (red), using a distinct non-overlapping dsRNA.

Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red) after 96 hours of *san* RNAi treatment with a non-overlapping dsRNA. For more experimental details please see methods. The arrowhead is labeling a single chromatid at the different time points.

Movie S5. Control S2 cells (96h RNAi treatment), GFP- α -Tubulin (green) and CID-mCherry (red). Time-Lapse microscopy of S2 cells stably expressing GFP- α -Tubulin (green) and CID-mCherry (red) after 96 hours of control RNAi treatment. For more experimental details please see methods.

Movie S6. San depleted S2 cells (96h RNAi treatment), GFP- α -Tubulin (green) and CID-mCherry (red). Time-Lapse microscopy of S2 cells stably expressing GFP- α -Tubulin (green) and CID-mCherry (red) after 96 hours of *san* RNAi treatment. For more experimental details please see methods. The arrowhead is labeling a single chromatid at the different time points.

Movie S7. Control S2 cells (72h RNAi treatment), GFP-Histone H2B (green) and α -Tubulin-mCherry (red).

Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red) after 72 hours of control RNAi treatment. For more experimental details please see methods.

Movie S8. Deco depleted S2 cells (72h RNAi treatment), GFP-Histone H2B (green) and α -Tubulin-mCherry (red). Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red) after 72 hours of *deco* RNAi treatment. For more experimental details please see methods.

Movie S9. San depleted S2 cells (72h RNAi treatment), GFP-Histone H2B (green) and α -Tubulin-mCherry (red). Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red) after 72 hours of *san* RNAi treatment. For more experimental details please see methods.

Movie S10. San and Deco co-depleted S2 cells (72h RNAi treatment), GFP-Histone H2B (green) and α -Tubulin-mCherry (red). Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red) after 72 hours of *san* and *deco* RNAi co-treatment. For more experimental details please see methods. The arrowhead is labeling a single chromatid at the different time points.

Movie S11. Control S2 cells, GFP-Histone H2B (green) and α -TubulinmCherry (red), transfected with pHW.

Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with pHW (empty plasmid), and treated with control RNAi for 96 hours. For more experimental details please see methods.

Movie S12. San depleted S2 cells, GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with pHW.

Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with pHW (empty plasmid), and treated with *san* RNAi for 96 hours. For more experimental details please

see methods. The arrowhead is labeling a single chromatid at the different time points.

Movie S13. Control S2 cells, GFP-Histone H2B (green) and α -TubulinmCherry (red), transfected with pHW(Scc1Wt). Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with Scc1Wt, and treated with control RNAi for 96 hours. For more experimental details please see methods.

Movie S14. San depleted S2 cells, GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with pHW(Scc1Wt). Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with Scc1Wt, and treated with *san* RNAi for 96 hours. For more experimental details please see methods.

Movie S15. Control S2 cells, GFP-Histone H2B (green) and α -TubulinmCherry (red), transfected with pHW(Scc1MP). Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with Scc1MP, and treated with control RNAi for 96 hours. For more experimental details please see methods. The arrowhead is labeling a single chromatid at the different time points.

Movie S16. San depleted S2 cells, GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with pHW(Scc1MP). Time-Lapse microscopy of S2 cells stably expressing GFP-Histone H2B (green) and α -Tubulin-mCherry (red), transfected with Scc1MP, and treated with *san* RNAi for 96 hours. For more experimental details please see methods. The arrowhead is labeling a single chromatid at the different time points.