- 1 Supplementary Figure 1. Design of linker truncation library between
- 2 Nluc and either Venus or mNeonGreen
 - $mNeonGreen {\it \Delta C0}$ GT $mNeonGreen \Delta C1$ GT GT mNeonGreen∆C2 GT Nluc∆N1 GT Nluc∆N2 $mNeonGreen \Delta C3$ GT GT Nluc_{AN3} GT $mNeonGreen {\it \Delta C4}$ Nluc∆N4 GT $mNeonGreen \Delta C5$ GT Nluc∆N5 GT mNeonGreen∆C6 GT mNeonGreen∆C7 GT mNeonGreen∆C8 GT mNeonGreen∆C9 GT mNeonGreen∆C10 GT pRSET_B GT Venus∆C0 GT Venus∆C1 Venus∆C2 GT Nluc∆N1 GT Venus∆C3 GT Nluc∆N2 GT Venus∆C4 GT GT Nluc_{AN3} Venus∆C5 GT Nluc∆N4 GT Venus∆C6 GT Nluc∆N5 GT Venus∆C7 GT GT Venus∆C8 Venus∆C9 GT Venus∆C10 GT Venus∆C11 GT Venus∆C12 GT pRSET_R
- 4

5 The cDNA of C-terminally deleted FPs (mNeonGreen or Venus) mutants 6 and N-terminally deleted Nluc mutants with two residues GT (highlighted 7 in orange color), derived from the recognition sequence of *KpnI* (ggtacc), 8 were mixed together, and subcloned in-frame into the *BamHI/EcoRI* sites 9 of pRSET_B. We generated and screened 55 and 65 linker combinations of 10 mNeonGreen-Nluc and Venus-Nluc pairs, respectively.

Supplementary Figure 2. Emission spectra of linker truncation variants of mNeonGreen-Nluc and Venus-Nluc

Luminescence spectra of *E. coli* suspension colonies that showed bright luminescence signal on an agar plate at first screening. The spectra were normalized to the peak of Nluc emission intensity. Spectra were measured by micro-plate reader (SH-9000; Corona Electric). Among them, mNeonGreen Δ C10-GT-Nluc Δ N5 and Venus Δ C12-GT-Nluc Δ N4 exhibited high FRET efficiency.

Supplementary Figure 3. Design of randomized linker library in mNeonGreen-Nluc and Venus-Nluc fusion protein

	mNeonGreen	Resectable region	Nluc	
	Linker sequence			
Δ0	KAFTDVMGMD	ELYK GT MVF	TLEDFVGD	$\Delta 0$
Δ 10	K A F T	GT	E D F V G D	$\Delta 5$
Δ 10	K A F T	XX	E D F V G D	$\Delta 5$

		Venus	F	Resectable	e region	NI	uc	
		Linker sequence						
	$\Delta 0$	VTAAGITHO	6 M D I	ELYKG	ΤMV	FTLEC	FVGD	$\Delta 0$
	∆12	V T A		G	T	L E C) F V G D	$\Delta 4$
	∆ 12	V T A		X	X	L E C) F V G D	$\Delta 4$
25								
26								
27								
28								
29								
30	Using ml	NeonGreen∆C10-	GT-N	luc∆N5 a	nd Ven	us∆C12	-GT-Nluc	ΔN4 as
31	templates	, we performed	site-di	rected ra	ndom r	nutagene	esis at th	e linker
32	region, -C	Gly-Thr						
33								
34								
35								

Supplementary Figure 4. Emission spectra of randomized linker variants in mNeonGreen-Nluc and Venus-Nluc fusion protein

mNeonGreen-Nluc

Luminescence spectra of E. coli suspension of colonies that showed bright 39luminescence signal on an agar plate at first screening. The spectra were 40 normalized to the peak of Nluc emission intensity. Spectra were measured 41 Corona by micro-plate reader (SH-9000; Electric). 42mNG Δ C10-GF-Nluc Δ N5 (GeNL) and Venus Δ C12-AM-Nluc Δ N4 (YeNL) 43exhibited the highest FRET efficiency. 44

45 Supplementary Figure 5. Design of linker library in mTurquoise2-Nluc 46 and tdTomato-Nluc fusion protein

- 47
- 48
- 49

	mTurquoise2	Resectable region	Nluc	
	Linker sequence			
$\Delta 0$	VTAAGITHGMD	ELYK <mark>GT</mark> MVF	TLEDFVGD	$\Delta 0$
$\Delta 10$	V T A A G	X X	E D F V G D	$\Delta 5$
$\Delta 10$	V T A A G	X X	- LEDFVGD	$\Delta 4$
$\Delta 10$	V T A A G	<mark>X X</mark>	TLEDFVGD	Δ3
	Unstructured mTQ2	residues Unstru		es

	tdTomato	Resectable	region	Nluc	
	Linker sequence				
$\Delta 0$	RHHLFLYGMD) E L Y K G T	MVF	TLEDFVGD	$\Delta 0$
Δ9	R H H L F	X X		E D F V G D	Δ5
Δ8	RHHLFL	X X		E D F V G D	∆5
		/ to residues	Unstru	/ ctured Nluc residu	les
			Chotra		

50

- 51
- 52

In the mTurquoise2-Nluc and tdTomato-Nluc pair, we created a series of linker libraries by systematically truncating resectable regions and randomizing two residues at the junction simultaneously. Those libraries with different linker lengths were mixed together and screened.

Supplementary Figure 6. Emission spectra of linker library in 58tdTomato-Nluc fusion protein 59

- 60
- 61
- 62
- 63

Wavelength (nm)

tdTomato-Nluc pair

- 64 65
- 66

Luminescence spectra of E. coli suspension of colonies that showed bright 67 luminescence signal on an agar plate at first screening. The spectra were 68 normalized to the peak of Nluc emission intensity. Spectra were measured 69 by micro-plate reader (SH-9000; Corona Electric). Among them, 70tdTomato Δ C9-RL-Nluc Δ N5 (ReNL) exhibited the highest FRET 71efficiency. 72

- 73
- 74

Supplementary Figure 7. Design of Orange eNano-lantern 75

78

(a) 3D structure of Nluc predicted by I-TASSER with the positions of 79 cysteine insertion (50, 66, 97 and 136th). (b) Luminescence spectra of Nluc 80 conjugated with eosin-maleimide at designated cysteine. Each cysteine 81 substitution was introduced to mutated Nluc whose intrinsic cysteine 82 residue was substituted with alanine (C166A). (c) The flexible linker was 83 introduced to flank mKOk. Typical Glycine-rich linkers and mimics of 84 GFP C-terminal 10 amino acids were employed as flexible linkers at the 85 N-terminus and C-terminus of mKOk, respectively. All possible 86 combinations were screened. 87

Supplementary Figure 8. Emission spectra of FRET proteins based on the design of OeNL

mKO_k-Nluc pair

Luminescence spectra of E. coli colony suspensions showing the brightest luminescence signal on initial agar plate screening. The spectra measured by micro-plate reader (SH-9000; Corona Electric) and were normalized to the peak of Nluc emission intensity.

104 Supplementary Figure 9. Characterization of luminescent proteins

(a) Quantum yield was estimated from the integrated light output for 200 s 107until reaction of 500 pM of furimazine with 1 nM luminescent protein 108 approached completion. Intensities were measured in triplicate, and data 109are presented as mean. (b) Kinetics parameters were estimated from the 110 plot of the initial light output (first 12 second integration) versus the 111 concentration of the furimazine. All intensities were measured in triplicate, 112and the average data were fitted to Michaelis-Menten equation. The results 113 are summarized in Table S3. 114

Supplementary Figure 10. Single-cell imaging of HeLa cells expressing CeNL localized to various cellular compartments

Fluorescence images (left) of mTurquoise2 moiety in CeNL and
luminescence images (right) of CeNL localized to the nucleus,
mitochondria, ER, lysosome, actin, and microtubule (exposure times for
luminescence image acquisition times were 2 s, 20 s, 5 s, 10 s, 20 s, and 5 s,
respectively). Scale bars, 10 μm.

Supplementary Figure 11. Single-cell imaging of HeLa cells expressing YeNL localized to various cellular compartments

- images (right) of YeNL localized to the nucleus, mitochondria, ER, actin,
 and microtubule (exposure times for luminescence images were 5 s, 5 s, 5 s,
- 139 5 s, and 10 s, respectively). Scale bars, 10 μm.

 $132\\133$

142 Supplementary Figure 12. Single-cell imaging of HeLa cells expressing 143 OeNL localized to various cellular compartments

Fluorescence images (left) of mKOκ moiety in OeNL and luminescence
images (right) of OeNL localized to the nucleus, mitochondria, plasma
membrane, lysosome, actin, and microtubule (exposure time for
luminescence images were 3 s, 10 s, 10 s, 5 s, 10 s, and 5 s, respectively).
Scale bars, 10 μm.

Supplementary Figure 13. Single-cell imaging of HeLa cells expressing ReNL localized to various cellular compartments

 $\begin{array}{c} 161 \\ 162 \end{array}$

Fluorescence images (left) of the tdTomato moiety in ReNL and
luminescence images (right) of ReNL localized to the nucleus,
mitochondria, ER, lysosome, actin, and microtubule (exposure time for
luminescence images were 3 s, 10 s, 10 s, 5 s, 10 s, and 5 s, respectively).
Scale bars, 10 μm.

Supplementary Figure 14. Multi-color luminescence imaging with linear unmixing

(a) HeLa cells expressing either mito-Nluc, CeNL-ER, GeNL-fibrillarin
Lyn-OeNL or ReNL-H2B were imaged with five filters. Scale bars, 20 μm.
(b) Linear spectral unmixing coefficient was determined from the control
experiments as in a. (c) The emission spectra of Nluc, CeNL, GeNL, OeNL,
and ReNL. Dashed line represents the emission filters used to acquire each
luminescent protein signal.

181 Supplementary Figure 15. Identification of optimal insertion site of
 182 CaM-M13 into Nluc

183

184

(a) 3D structure of Nluc predicted by I-TASSER with the candidate CaM-M13 insertion sites (37/38, 63/64, 69/70, 97/98, 103/104, 107/108, 121/122 and 148/149th with red and yellow color) and final optimal insertion site at 66/67th of GeNL(Ca²⁺) with green and blue color. (b) Relative brightness of Nluc_CaM-M13 protein extracted from periplasmic region with or without Ca²⁺. (c) Normalized luminescence spectra of GeNL(Ca²⁺)_67 and GeNL(Ca²⁺)_70 with or without Ca²⁺. Supplementary Figure 16. Direct comparison of GeNL(Ca²⁺) and
either GCaMP3 or Fura-2

195

196

197

Spontaneous Ca^{2+} spiking in GH3 cells were monitored with the indicators (vertical axis) at designated frame rate (Upper). Illumination power was 130 mW cm⁻² for GCaMP3, 100 mW cm⁻² (384 nm) and 34 mW cm⁻² (340 nm) for dual excitation ratio imaging of Fura-2. The background drift was manually subtracted using Origin7 software (OriginLab)

203

Supplementary Table 1. Enzymatic characteristics of luminescent proteins

	LQY	$K_{ m m}$	${V}_{ m max}$	$k_{\rm cat}$
	(%)	(µM)	(photon s ⁻¹ molecule ⁻¹)	(s^{-1})
Nluc	28 ± 3.0	0.36 ± 0.0038	$1.9 \ \pm 0.0061$	6.6 ± 0.73
CeNL	42 ± 1.1	0.37 ± 0.0042	3.0 ± 0.010	7.1 ± 0.19
GeNL	45 ± 1.8	0.47 ± 0.010	$3.3\ \pm 0.021$	7.3 ± 0.30
YeNL	33 ± 1.1	0.61 ± 0.0088	$2.0\ \pm 0.088$	6.1 ± 0.34
OeNL	30 ± 0.48	0.31 ± 0.0025	$2.1\ \pm 0.043$	7.0 ± 0.18
ReNL	26 ± 1.0	0.49 ± 0.0064	1.9 ± 0.069	7.3 ± 0.20
Rluc8 ^a	5.8 ± 0.63	2.0 ± 0.057	0.22 ± 0.0018	3.8 ± 0.12

206

205

207 LQY, luminescent quantum yield. Data are presented as mean \pm s.d., n = 3.

^a measured with 0.1% BSA

Supplementary Table 2. Affinity for Ca²⁺ of GeNL(Ca²⁺) variants

	Linker of CaM and M13	Dynamic range / %	Relative luminescence	$K_d^{}/nM$	Hill coefficient
$GeNL(Ca^{2+})_{520}$	104Q-2G	280	1	520	1.5
$GeNL(Ca^{2+})_{480}$	104Q-2GS	490	0.87	480	1.2
GeNL(Ca ²⁺)_250	104Q-3GS	190	0.79	260	1.2
$GeNL(Ca^{2+})_{60}$	104E-4GS	270	0.76	56	1.1

Supplementary Table 3. Oligonucleotides used in this study

Name of primer	Oligonucleotide seguence (5' to 3')
F-BH1-G-afp 1	
E Kopi Nius 2	
F-Kpr1 Nlug 2	
F-Kpiil-Nuc_3	
F-Kpn1-Nuc_4	
F-Kpn1-Niuc_5	
F-Kpn1-Niuc_6	
R-Kpn1-mNG_235	
R-Kpn1-mNG_234	
R-Kpn1-mNG_233	GCCGGTACCCTCGTCCATGCCCATCACATCG
R-Kpn1-mNG_232	GCCGGTACCGTCCATGCCCATCACATCGG
R-Kpn1-mNG_231	GCCGGTACCCATGCCCATCACATCGGTAAAG
R-Kpn1-mNG_230	GCCGGTACCGCCCATCACATCGGTAAAGGCC
R-Kpn1-mNG_229	GCCGGTACCCATCACATCGGTAAAGGCCTTTTGC
R-Kpn1-mNG_228	GCCGGTACCCACATCGGTAAAGGCCTTTTGC
R-Kpn1-mNG_227	GCCGGTACCATCGGTAAAGGCCTTTTGCCAC
R-Kpn1-mNG_226	GCCGGTACCGGTAAAGGCCTTTTGCCACTCC
F-XX-Nluc_6	NNKNNKGAAGATTTCGTTGGGGACTGG
R-mNG_226	GGTAAAGGCCTTTTGCCACTCC
R-Kpn1-gfp_229	ATGGTACCCCGGCGGCGGTCACGAAC
F-XX-Nluc_5	NNKNNKGAAGATTTCGTTGGGGACTG
F-XX-Nluc_4	NNKNNKCTCGAAGATTTCGTTGGGG
F-XX-Nluc_3	NNKNNKACACTCGAAGATTTCGTTG
R-gfp_229	CCCGGCGGCGGTCACGAAC
F-Xhol-mKO_2	ATTCTCGAGGTGAGCGTGATCAA
F-Xhol-G-mKO 2	ATTCTCGAGGGCGTGAGCGTGATCAAGC
F-Xhol-GG-mKO 2	ATTCTCGAGGGCGGTGTGAGCGTGATCAAGC
F-Xhol-GGS-mKO 2	ATTCTCGAGGGCGGTAGCGTGAGCGTGATCAAGC
F-Xhol-GGSG-mKO 2	ATTCTCGAGGGCGGTAGCGGTGTGAGCGTGATCAAGC
F-Xhol-GGSGG-mKO-2	ATTCTCGAGGGCGGTAGCGGTGGCGTGAGCGTGATCAAGCCCGA
F-Xhol-GGSGGS-mKO-2	ATTCTCGAGGGCGGTAGCGGTGGCAGCGTGAGCGTGATCAAGCCCGA
F-Xhol-GGSGGSG-mKO-2	ATTCTCGAGGGCGGTAGCGGTGGCAGCGGAGTGAGCGTGATCAAGCCCGA
F-Xhol-GGSGGSGG-mKO-2	ATTCTCGAGGGCGGTAGCGGTGGCAGCGGAGGTGTGAGCGTGATCAAGCCCGA
F-Xhol-GGSGGSGGS-mKO-2	ATTCTCGAGGGCGGTAGCGGTGGCAGCGGAGGTAGCGTGAGCGTGATCAAGCCCGA
R-Sac1-mKO 218	ATTGAGCTCGGAGTGGGCCACGGCG
R-Sac1-T-mKO 218	ATTGAGCTCAGTGGAGTGGGCCACGGCG
R-Sac1-TL-mKO_218	ATTGAGCTCGAGAGTGGAGTGGGCCACGGCG
R-Sac1-TLG-mKO 218	ATTGAGCTCGCCGAGAGTGGAGTGGGCCACGGCG
R-Sac1-TLGM-mKO_218	ATTGAGCTCCATGCCGAGAGTGGAGTGGGCCACGGCG
R-Sac1-TLGMD-mKO_218	ATTGAGCTCGTCCATGCCGAGAGTGGAGTGGGGCCACGGCG
R-Sac1-TLGMDE-mKO_218	
R-Sac1-TLGMDEL-mKO_218	
R-Sac1-TLGMDELY-mKO_218	
R-Sac1-TLGMDELYK-mKO_218	
R-Gact-TEGMIDEETR-IIIKO_210	
E Nius	
R-Nuc_0-XX-tdTA_407	
R-Nuc_0-XX-tdTA_400	
R-INIUC_0-XX-IGTA_405	
P Nord Nike 27	
F-Sac1-NIUC_64	
R-Nc01-Nluc_63	
F-Sac1-Nluc_67	
R-Nco1-Nluc_66	GAACCATGGACCTTCATACGGGATGATGAC

F-Sac1-Nluc_70	GCCGAGCTCGACCAAATGGGCCAGATC
R-Nco1-Nluc_69	GAACCATGGGCCGCTCAGACCTTCATACGG
F-Sac1-Nluc_98	GCCGAGCTCACACTGGTAATCGACGGGG
R-Nco1-Nluc_97	GAACCATGGGCCATAGTGCAGGATCACC
F-Sac1-Nluc_104	GCCGAGCTCGTTACGCCGAACATGATC
R-Nco1-Nluc_103	GAACCATGGCCCGTCGATTACCAGTGTG
F-Sac1-Nluc_108	GCCGAGCTCATGATCGACTATTTCGGACGG
R-Nco1-Nluc_107	GAACCATGGGTTCGGCGTAACCCCGTC
F-Sac1-Nluc_122	GCCGAGCTCTTCGACGGCAAAAAGATCACTG
R-Nco1-Nluc_121	GAACCATGGCACGGCGATGCCTTCATAC
F-Sac1-Nluc_149	GCCGAGCTCGGCTCCCTGCTGTTCCGAG
R-Nco1-Nluc_148	GAACCATGGGTCGGGGTTGATCAGGCGCTC
F-BH1-koz-hmNG	ATGGATCCCGCCACCATGGTGTCCAAGGGCGAAGAG
F-BH1-G-hmNG	ATGGATCCGATGGTGTCCAAGGGCGAAG
F-BH1-hmNG	ATGGATCCATGGTGTCCAAGGGCGAAGAG
F-Kpn1-hmNG_2	ATGGTACCGTGTCCAAGGGCGAAGAG
F-Hind3-koz-hmNG_1	ATAAGCTTCGCCACCATGGTGTCCAAGGGCGAAGAG
F-Sal1-link-hmNG_1	ATGTCGACGGTACCGCGGGCCCGGGATCCAATGGTGTCCAAGGGCGAAGAG
F-Nhe1-koz-hmNG_1	ATGCTAGCCGCCACCATGGTGTCCAAGGGCGAAGAGG
R-Xho1-x-Nluc_171	ATCTCGAGTTACGCCAGAATGCGTTCGCACAG
R-ER1-x-Nluc_171	ATGAATTCTTACGCCAGAATGCGTTCGCACAG
R-Nluc_171-ER1	ATGAATTCCGCCAGAATGCGTTCGCACAG
R-Kpn1-Nluc_171	TATGGTACCCGCCAGAATGCGTTCGCACAG
R-Kpn1-GGSG-Nluc_171	ATGGTACCGCCTGATCCACCCGCCAGAATGCGTTCGCACAG
R-Not1-x-NLuc_171	ATGCGGCCGCTTACGCCAGAATGCGTTCGC
R-Bgl2-Nluc_171	ATTAGATCTCGCCAGAATGCGTTCGCACAG
F-Sal1-GS10 linker	TCGACCGGATCTGGCGGGGGGGGAGGGGGGGGGGGGGGG
R-Sal1-GS10 linker	TCGACCCTCCGCTTCCTCCGCCGCCAGATCCGG
F- BH1-koz-gfp_1	ATGGATCCCCACCATGGTGAGCAAGGGCGAGGAG
F-Hind3-koz-gfp_1	ATAAGCTTCGCCACCATGGTGAGCAAGGGCGAGGAG
F- BH1-gfp_1	TTGGATCCATGGTGAGCAAGGGCGAGGAG
F-GS-VCL_2	GGAGGCGGAGGATCAGGCGGATCTGGGCCCGTCTTCCACACGCGCAC
F-Kpn1-GS	ATGGTACCGGCGGCGGAGGAAGCGGAGGCGGAGGATCAGGCGGATC
R-ER1-x-VCL_1066	ATGAATTCTTACTGATACCATGGGGTCTTTC
F-Hind3-koz-LAMP_1	ATAAGCTTCGCCACCATGGCGGCGCCCGGGCGCCCGG
R-Kpn1-LAMP_407	ATGGTACCGATGGTCTGATAGCCCGCGTGAC
F-BH1-Nluc_1	A GGATCC G ATGGTCTTCACACTCGAAGATTTCGTTGGGGACTGG
F-BH1-NLuc_1	ATGGATCCATGGTCTTCACACTCGAAG
F-Hind3-koz-Nluc_1	ATAAGCTTCGCCACCATGGTCTTCACACTCGAAG
F-ER1-Nluc_1	AGAATTCATGGTCTTCACACTCGAAGATTTCGTTGGGGACTGG
Nluc_C166A	GGCTGGCGGCTGGCCGAACGCATTCTG
F-Nluc_G50C	TGCGAAAATGGGCTGAAGATC
R-Nluc_49	GCTCAGGACAATCCTTTG
F-Nluc_G66C	TGCCTGAGCGGCGACCAAATG
R-Nluc_65	TTC ATACGGGATGATGAC
F-Nluc_G97C	TGCACACTGGTAATCGACGGG
R-Nluc_96	ATAGTGCAGGATCACC
F-Nluc_G136C	TGCAACAAAATTATCGACGAGC
R-Nluc_135	GTTCCACAGGGTCCCTG

218 Supplementary Note 1

219 Consideration of the insertion site of mKOĸ

To achieve efficient FRET from Nluc to mKOk, we decided to insert mKOk into the 220221loop region of Nluc. To find the closest position of the luciferin-binding site, we 222 substituted a glycine residue with a cysteine residue at four putative flexible loop regions of Nluc (50th, 66th, 97th, and 136th) and conjugated eosin, a yellowish orange 223fluorescent dye, with each cysteine residue via the maleimide functional group 224225(Supplementary Fig. 7a and 7b). The Nluc conjugated with eosin at the 50th residue exhibited the highest FRET efficiency among tested constructs, suggesting that the 226227 luciferin binding site is close to the 50th residue of Nluc. Thus, we inserted mKOk in between Gly₅₀ and Glu₅₁ of Nluc and generated a small library with flexible linker 228229amino acids inserted at the N- and C-termini of the mKOk domain (Supplementary Fig. 2307c).

231

232 Supplementary Note 2

Estimation of photon number that single GeNL molecule emits

Based on enzymatic parameters, the photon number that can be emitted by a single 234molecule of GeNL during camera exposure was 590 \pm 3.8 photons (3.3 photons s⁻¹ x 235180 s, mean \pm SD, n = 3). The reported photon detection efficiency of an objective lens 236(NA 1.45, x100 magnification, oil immersion), similar to that used is 15% when the 237specimen is located at a height of 200 nm from the glass-water interface¹ (typical 238thickness of agarose used here²). Thus the number of photons reaching the camera is 239anticipated to be 89 ± 0.57 photons (mean \pm SD). Separately, we calculated the total 240number of counts collected from single luminescence spots and then converted this 241242number to the number of photons using 5.8 conversion efficiency, 1200 electron multiplication, an ADC gain setting of 5, and a quantum efficiency of 0.9 at 520 nm 243(ImagEM, Hamamatsu Photonics). The number of detected photons was 75 ± 30 244photons (mean \pm SD, n = 919). 245

246

248 Supplementary Note3

249 Consideration of the insertion site for eNL-based indicators

To develop a Ca^{2+} indicator based on GeNL, we adopted the intramolecular 250complementation of split luciferase, in which the sensor domain of a bioactive molecule 251is inserted into luciferase. The conformational change of the sensor domain by analyte 252binding induces the reconstitution of the split luciferase domains. We chose a fusion 253protein of calmodulin and M13 as a Ca^{2+} sensing domain. To create high-performance 254255CSL-based indicators, it is important to design an appropriate insertion site that allows the split Luciferase to display a large dynamic range in signal change, an intensity 256bright enough for imaging. Thus we systematically screened and identified the 257appropriate sites of Nluc for CaM-M13 insertion. Through the use of transposon-based 258mutagenesis³, we constructed a library of Nluc gene variants that contained 15 base 259pairs of DNA inserted at a random location, followed by expression in E. $coli^3$. We 260screened several thousand individual clones and picked 40 based on the luminescence 261signal intensity. Subsequent DNA sequencing revealed the insertion sites within the 262263Nluc (37/38, 63/64, 69/70, 97/98, 103/104, 107/108, 121/122 and 148/149th residue) at 264which five amino acids were inserted without obliterating the intrinsic activity of Nluc (Supplementary Fig. 16a). Next we inserted the CaM-M13 domain into the identified 265sites within Nluc. As a result, CaM-M13 insertion in between Gly₆₉ and Asp₇₀ of Nluc 266yielded a 60% signal increase upon Ca^{2+} binding (Supplementary Fig. 16b). The 267construct, in which CaM-M13 was inserted in between Gly₆₉ and Asp₇₀ of the Nluc 268moiety in GeNL, showed almost the same signal change (60%). The spectrum profile 269was unchanged upon Ca^{2+} binding, indicating that the eNL-based Ca^{2+} indicator indeed 270used a Ca^{2+} -dependent CSL mechanism whose emission color was changed by FRET. 271but which was insensitive to Ca^{2+} . We searched for a more optimal insertion sites 272around Gly₆₉/Asp₇₀, and identified that the insertion in between Gly₆₆ and Leu₆₇ of the 273Nluc moiety in GeNL yielded a 180% signal increase upon Ca^{2+} binding 274(Supplementary Fig. 16c). Thus we named this construct $GeNL(Ca^{2+})$. 275

276

278 Supplementary Note4

279 Nucleotide sequences of eNL constructs used in this study are listed below. Acceptor

- 280 fluorescent proteins is highlighted in yellow, Nluc highlighted in cyan, CaM-M13
- highlighted in green.
- 282
- 283 >CeNL

284	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTC
285	GAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGC
286	GAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCG
287	GCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGTCCTGGGGCGT
288	GCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAG
289	TCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACG
290	ACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGG
291	TGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCC
292	TGGGGCACAAGCTGGAGTACAACTACTTTAGCGACAACGTCTATATCACCGC
293	CGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACAT
294	CGAGGACGGCGGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCAT
295	CGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTC
296	CAAGCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGA
297	GTTCGTGACCGCCGCGGGTTGCATACACTCGAAGATTTCGTTGGGGACTGG
298	CGACAGACAGCCGGCTACAACCTGGACCAAGTCCTTGAACAGGGAGGTGTG
299	TCCAGTTTGTTTCAGAATCTCGGGGGTGTCCGTAACTCCGATCCAAAGGATTGT
300	CCTGAGCGGTGAAAATGGGCTGAAGATCGACATCCATGTCATCATCCCGTATG
301	AAGGTCTGAGCGGCGACCAAATGGGCCAGATCGAAAAAATTTTTAAGGTGG
302	TGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTGCACTATGGCACACTG
303	GTAATCGACGGGGTTACGCCGAACATGATCGACTATTTCGGACGGCCGTATGA
304	AGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTAACAGGGACCCTGTG
305	GAACGGCAACAAAATTATCGACGAGCGCCTGATCAACCCCGACGGCTCCCTG
306	CTGTTCCGAGTAACCATCAACGGAGTGACCGGCTGGCGGCTGTGCGAACGCA
307	TTCTGGCGTAA
308	
309	>GeNL
310	ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
311	GAGCTGCACATCTTCGGCAGCATCAACGGCGTGGACTTCGACATGGTGGGAC
312	AGGGCACCGGCAACCCAACGACGGCTACGAGGAACTGAACCTGAAGTCCA
313	CAAAGGGCGACCTGCAGTTCAGCCCCTGGATTCTGGTGCCCCACATCGGCTA
314	CGGCTTCCACCAGTACCTGCCCTACCCCGACGGCATGAGCCCTTTCCAGGCC
315	GCTATGGTGGATGGCAGCGGCTACCAGGTGCACCGGACCATGCAGTTTGAGG
316	ACGGCGCCAGCCTGACCGTGAACTACCGGTACACATACGAGGGCAGCCACAT
317	CAAGGGCGAGGCCCAAGTGAAGGGCACAGGCTTTCCAGCCGACGGCCCCGT
318	GATGACCAATAGCCTGACAGCCGCCGACTGGTGCAGAAGCAAGAAAACCTA
319	CCCCAATGACAAGACCATCATCAGCACCTTCAAGTGGTCCTACACCACCGGC
320	AATGGCAAGCGGTACAGAAGCACCGCCCGGACCACCTACACCTTCGCCAAA
321	CCTATGGCCGCCAACTACCTGAAGAACCAGCCTATGTACGTGTTCCGCAAGA
322	CCGAGCTGAAGCACTCCAAGACAGAACTGAACTTCAAAGAGTGGCAGAAA
323	GCCTTCACCGGGTTTGAAGATTTCGTTGGGGGACTGGCGACAGACA
324	ACAACCTGGACCAAGTCCTTGAACAGGGAGGTGTGTCCAGTTTGTTT
325	TCTCGGGGTGTCCGTAACTCCGATCCAAAGGATTGTCCTGAGCGGTGAAAAT

327	ACCAAAIGGGCCAGAICGAAAAAAITTTTTAAGGIGGIGIGIACCCIGIGGAIGA
328	TCATCACTTTAAGGTGATCCTGCACTATGGCACACTGGTAATCGACGGGGTTA
329	CGCCGAACATGATCGACTATTTCGGACGGCCGTATGAAGGCATCGCCGTGTTC
330	GACGGCAAAAAGATCACTGTAACAGGGACCCTGTGGAACGGCAACAAAATT
331	ATCGACGAGCGCCTGATCAACCCCGACGGCTCCCTGCTGTTCCGAGTAACCA
332	TCAACGGAGTGACCGGCTGGCGGCTGTGCGAACGCATTCTGGCG <mark>TAA</mark>
333	
334	>YeNL
335	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTC
336	GAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGC
337	GAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGCTGATCTGCACCACC
338	GGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGGGCTACGGCC
339	TGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAA
340	GTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGAC
341	GACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTG
342	GTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATC
343	CTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCACCG
344	CCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACA
345	TCGAGGACGGCGGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCA
346	TCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCTACCAGTC
347	CGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGA
348	GTTCGTGACCGCC GCGATGCTCGAAGATTTCGTTGGGGACTGGCGACAGACA
349	GCCGGCTACAACCTGGACCAAGTCCTTGAACAGGGAGGTGTGTCCAGTTTGT
350	TTCAGAATCTCGGGGTGTCCGTAACTCCGATCCAAAGGATTGTCCTGAGCGG
351	IGAAAAIGGGCIGAAGAICGACAICCAIGICAICAICCCGIAIGAAGGICIGA
352	GCGGCGACCAAATGGGCCAGATCGAAAAAATTTTTTAAGGTGGTGTACCCTGT
353	GGATGATCACTTTTAAGGTGATCCTGCACTATGGCACACTGGTAATCGACG
354	GGGTTACGCCGAACATGATCGACTATTTCGGACGGCCGTATGAAGGCATCGC
355	CGTGTTCGACGGCAAAAAGATCACTGTAACAGGGACCCTGTGGAACGGCAA
356	
357	GIAACCAICAACGGAGIGACCGGCIGGCGGCIGIGCGAACGCAIICIGGCG
358	AA
359	S O₂NII
360	
361	
362	
303 264	
204 265	
366	
367	CANTEGAGEGTEAGEGEACAGECAGACCTTACEAGEGACATCAGEAGATGA
368	CARTECROOOTOAOOOCACAOOCACAO ACCITACOAOOOACATCAOOAOATOA
360	GGTGTCCCACGTGTTCTGTTACGGCCACAGAGTGTTTACTAAATATCCAGAAG
370	AGATCCCAGACTATTTCAAGCAGGCCTTTCCTGAGGGCCTGTCCTGGGAGAG
371	GTCCTGGAGTTCGAGGACGGCGCCTCCGCCTCCGTGAGCGCCCACATCAG
372	CCTGAGGGGCAACACCTTCTACCACAAGTCCAAGTTCACCGGCGTGAACTTC
373	CCCGCCGACGGCCCCATCATGCAGAACCAGAGCGTGGACTGGGAGCCCTCC
374	ACCGAGAAGATCACCGCCAGCGACGCGTGCTGAAGGGCGACGTGACCATG
375	TACCTGAAGCTGGAGGGCGGCGGCGAACCACAAGTGCCAGATGAAGACCACC
376	TACAAGGCCGCCAAGGAGATCCTGGAGATGCCCGGCGACCACTACATCGGCC
377	ACAGGCTGGTGAGGAAGACCGAGGGCAACATCACCGAGCAGGTGGAGGAC
378	GCCGTGGCCCACTCCGAGCTCGAAAATGGGCTGAAGATCGACATCCATGTCA
379	TCATCCCGTATGAAGGTCTGAGCGGCGACCAAATGGGCCAGATCGAAAAAAT
380	TTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTGCACT

381	ATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTATTTCGG
382	ACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTAACA
383	GGGACCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGATCAACCCC
384	GACGGCTCCCTGCTGTTCCGAGTAACCATCAACGGAGTGACCGGCTGGCGGC
385	TGTGCGAACGCATTCTGGCG <mark>TAA</mark>
386	
387	>ReNL
388	ATGGTGAGCAAGGGCGAGGAGGTCATCAAAGAGTTCATGCGCTTCAAGGTG
389	CGCATGGAGGGCTCCATGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGC
390	GAGGGCCGCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAG
391	GGCGGCCCCCTGCCCTCGCCTGGGACATCCTGTCCCCCAGTTCATGTACG
392	GCTCCAAGGCGTACGTGAAGCACCCCGCCGACATCCCCGATTACAAGAAGCT
393	GTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGG
394	CGGTCTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCACGCTGAT
395	TACAAGGTGAAGATGCGCGGCACCAACTTCCCCCCGACGGCCCCGTAATGC
396	AGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCG
397	ACGGCGTGCTGAAGGGCGAGATCCACCAGGCCCTGAAGCTGAAGGACGGCG
398	GCCACTACCTGGTGGAGTTCAAGACCATCTACATGGCCAAGAAGCCCGTGCA
399	ACTGCCCGGCTACTACTACGTGGACACCAAGCTGGACATCACCTCCCACAAC
400	GAGGACTACACCATCGTGGAACAGTACGAGCGCTCCGAGGGCCGCCACCAC
401	CTGTTCCTGGGGCATGGCACCGGCAGCACCGGCAGCGGCAGCTCCGGCACC
402	GCCTCCTCCGAGGACAACAACATGGCCGTCATCAAAGAGTTCATGCGCTTCA
403	AGGTGCGCATGGAGGGCTCCATGAACGGCCACGAGTTCGAGATCGAGGGCG
404	AGGGCGAGGGCCGCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTG
405	ACCAAGGGCGGCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCAGTTCA
406	TGTACGGCTCCAAGGCGTACGTGAAGCACCCCGCCGACATCCCCGATTACAA
407	GAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGA
408	GGACGGCGGTCTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCAC
409	GCTGATCTACAAGGTGAAGATGCGCGGCACCAACTTCCCCCCGACGGCCCC
410	GTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTAC
411	CCCCGCGACGGCGTGCTGAAGGGCGAGATCCACCAGGCCCTGAAGCTGAAG
412	GACGGCGGCCACTACCTGGTGGAGTTCAAGACCATCTACATGGCCAAGAAG
413	CCCGTGCAACTGCCCGGCTACTACTACGTGGACACCAAGCTGGACATCACCT
414	CCCACAACGAGGACTACACCATCGTGGAACAGTACGAGCGCTCCGAGGGCC
415	GCCACCACCTGTTCCGGCTGGAAGATTTCGTTGGGGACTGGCGACAGACA
416	CCGGCTACAACCTGGACCAAGTCCTTGAACAGGGAGGTGTGTCCAGTITGTT
417	TCAGAATCTCGGGGTGTCCGTAACTCCGATCCAAAGGATTGTCCTGAGCGGT
418	GAAAATGGGCTGAAGATCGACATCCATGTCATCATCCCGTATGAAGGTCTGA
419	GCGGCGACCAAATGGGCCAGATCGAAAAAATTTTTTAAGGTGGTGTACCCTGT
420	GGATGATCATCACTTTAAGGTGATCCTGCACTATGGCACACTGGTAATCGACG
421	GGGTTACGCCGAACATGATCGACTATTTCGGACGGCCGTATGAAGGCATCGC
422	CGIGITCGACGGCAAAAAGATCACIGIAACAGGGACCCIGIGGAACGGCAA
423	
424	GIAACCAICAACGGAGIGACCGGCIGGCGGCIGIGCGAACGCAIICIGGCG
425	AA
426	$\sim C_{-} N I (C_{-}^{2+}) 520$
427	$>$ GenL(Ca) $_{220}$
428	
429	
43U 491	
401 499	
404 199	COULTICEACCAOTACCTOCCCTACCACCTCCACCCTTTCAOOCC
400 494	
494	ACOUCOCCAUCITUACCITUAACIACUUTACACATACUAUUUCAUCACAT

435	CAAGGGCGAGGCCCAAGTGAAGGGCACAGGCTTTCCAGCCGACGGCCCCGT
436	GATGACCAATAGCCTGACAGCCGCCGACTGGTGCAGAAGCAAGAAAACCTA
437	CCCCAATGACAAGACCATCATCAGCACCTTCAAGTGGTCCTACACCACCGGC
438	AATGGCAAGCGGTACAGAAGCACCGCCCGGACCACCTACACCTTCGCCAAA
439	CCTATGGCCGCCAACTACCTGAAGAACCAGCCTATGTACGTGTTCCGCAAGA
440	CCGAGCTGAAGCACTCCAAGACAGAACTGAACTTCAAAGAGTGGCAGAAA
441	GCCTTCACC GGGTTTGAAGATTTCGTTGGGGACTGGCGACAGACAGCCGGCT
442	ACAACCTGGACCAAGTCCTTGAACAGGGAGGTGTGTCCAGTTTGTTT
443	TCTCGGGGTGTCCGTAACTCCGATCCAAAGGATTGTCCTGAGCGGTGAAAAT
444	GGGCTGAAGATCGACATCCATGTCATCATCCCGTATGAAGGTCCATGG <mark>ATGCA</mark>
445	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA
446	TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT
447	ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA
448	ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA
449	TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA
450	GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCTCAGT
451	TACGTCACGTCATGACAAACCTCGGGGTGAAGTTAACAGATGAAGAAGTTGA
452	TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA
453	GAGTTTGAACAAATGATGACAGCAAAGGGGGGGGAAGAGGGGGCGCTGGAAGAA
454	A A ACTTC ATTGCCGTC AGCGCTGCC A ACCGGTTC A AGA AGATCTCC AGCTCC
455	GGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAAAAATT
456	TTTA AGGTGGTGTACCCTGTGGATGATCATCACTTTA AGGTGATCCTGCACTA
457	TGGC & C & C TGGT & ATCG & CGGGGGTT & CGCCG & A C ATG ATCG & C TATTTCGG &
457	CGCCCGTATGA AGCCATCGCCGTGTTCGACGCCA A A A A GATCACTGTA A CAG
450	GGACCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGATCAACCCCG
400	ACCCCTCCCTCCTCTTCCCAACTAATIATCOACOAOCOCCTOATCAACCCCCO
400	
161	
461 462	GIGCGAACGCAIICIGGCG <mark>IAA</mark>
461 462 463	SGeNI (Ca^{2+}) 480
461 462 463 464	$Sent(Ca^{2+})_{480}$
461 462 463 464 465	SGeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGCAACATGGCCAGCCTGCCT
461 462 463 464 465 466	SGeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGCAACATGGCCAGCCTGCCT
$ \begin{array}{r} 461 \\ 462 \\ 463 \\ 463 \\ 464 \\ 465 \\ 466 \\ 467 \\ \end{array} $	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGACAACATGGCCAGCCTGCCT
$ \begin{array}{r} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ \end{array} $	SGeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGACAACATGGCCAGCCTGCCT
$ \begin{array}{r} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 466\\ 467\\ 468\\ 469\\ \end{array} $	SGeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461 \\ 462 \\ 463 \\ 463 \\ 464 \\ 465 \\ 466 \\ 467 \\ 468 \\ 469 \\ 470 \end{array}$	SGeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGCAACATGGCCAGCCTGCCT
$\begin{array}{c} 461 \\ 462 \\ 463 \\ 464 \\ 465 \\ 466 \\ 467 \\ 468 \\ 469 \\ 470 \\ 471 \end{array}$	SGeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGCAACATGGCCAGCCTGCCT
$\begin{array}{c} 461 \\ 462 \\ 463 \\ 464 \\ 465 \\ 466 \\ 467 \\ 468 \\ 469 \\ 470 \\ 471 \\ 472 \end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ \end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 474\end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGCACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 474\\ 475\\ \end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGCACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 474\\ 475\\ 476\end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGCAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 474\\ 475\\ 476\\ 477\end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 474\\ 475\\ 476\\ 477\\ 478\end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 478\\ 476\\ 477\\ 478\\ 479\\ \end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 474\\ 475\\ 476\\ 477\\ 478\\ 479\\ 480\\ \end{array}$	SGECGAACGCAITCIGGCGTAA SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 478\\ 476\\ 477\\ 478\\ 479\\ 480\\ 481 \end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 478\\ 477\\ 478\\ 479\\ 480\\ 481\\ 482\\ \end{array}$	SGENL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 478\\ 477\\ 478\\ 479\\ 480\\ 481\\ 482\\ 483\\ \end{array}$	>GEGCGAACGCATTCTGGCGTAA >GeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGAGCAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 478\\ 477\\ 478\\ 479\\ 480\\ 481\\ 482\\ 483\\ 484\\ \end{array}$	SGIGCGAACGCATTCTGGCGTAA SGeNL(Ca ²⁺)_480 ATGGTGCCAAGGGCGAAGAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 478\\ 477\\ 478\\ 479\\ 480\\ 481\\ 482\\ 483\\ 484\\ 485\end{array}$	SGECGAACGCATTCTGGCGTAA SGeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 478\\ 477\\ 478\\ 479\\ 480\\ 481\\ 482\\ 483\\ 484\\ 485\\ 486\end{array}$	SGECGAACGCATTCTGGCGTAA SGeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 478\\ 477\\ 478\\ 477\\ 478\\ 479\\ 480\\ 481\\ 482\\ 483\\ 484\\ 485\\ 486\\ 487\end{array}$	SGECGAACGCATTCTGGCGTAA >GeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGGACAACATGGCCAGCCTGCCT
$\begin{array}{c} 461\\ 462\\ 463\\ 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 474\\ 475\\ 476\\ 477\\ 478\\ 479\\ 480\\ 481\\ 482\\ 483\\ 484\\ 485\\ 486\\ 487\\ 488\end{array}$	SGRUCGAACGCATTCTGGCGTAA >GeNL(Ca ²⁺)_480 ATGGTGTCCAAGGGCGAAGAGAGGACAACATGGCCAGCCTGCCT

489	GAGITIGAACAAAIGAIGACAGCAAAG <u>GGIGGCICC</u> AAGAGGCGCIGGAAG
490	AAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGATCTCCAGCT
491	CCGGGGCACTG GAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAAAAA
492	TTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTGCAC
493	TATGGCACACTGGTAATCGACGGGGGTTACGCCGAACATGATCGACTATTTCGG
494	ACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTAACA
495	GGGACCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGATCAACCCC
496	GACGGCTCCCTGCTGTTCCG <u>AGT</u> AACCATCAACGGAGTGACCGGCTGGCGGC
497	TGTGCGAACGCATTCTGGCG <mark>TAA</mark>
498	
100	$\sim C_{2} NI (C_{2}^{2+}) 250$
499	$>$ UCINL(Ca)_230
500	
501	
502	
000 504	
504 505	
505	
505	
507	CAROUCCUAUUCCUAUTUAAUUUCACAUUCTTTCCAUCCUACUUCCCUT
500	CCCCAATCACAACCATCATCACCACCTCCAACCAACCAA
509	
510	
511	
512	CCCACCICAACACACACACACACACACACACACACACAC
514	ACAACCTGGACCAAGTCCTTGAACAGGGAGGTGTGTCCAGTTTGTTT
515	TCTCGGGGTGTCCGTA ACTCCGATCCA A AGGATTGTCCTGAGCGGTGA A A AT
516	GGGCTGA A GATCGA CATCCATGTCATC ATCCCGTATGA A GGTCCATGG <mark>ATGCA</mark>
517	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGGAGCCTTCTCATTA
517 518	TGACCAACTGACAGAAGAGCAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA
517 518 519	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA
517 518 519 520	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA
517 518 519 520 521	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA
510 517 518 519 520 521 522	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCTCAGT
517 518 519 520 521 522 523	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGATTGA
517 518 519 520 521 522 523 524	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA
517 518 519 520 521 522 523 524 525	TGACCAACTGACAGAAGAGCAGATTGCAGAGGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAAG <u>GGAAGGTGGCCAAGTAAACTATGAA</u>
510 517 518 519 520 521 522 523 524 525 526	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAAGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGATGAA GAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGAAGACAGCAAAG <u>GGAGGTGGCCAAG</u> TAAACTATGAA GAGTTTGAACAAATGATGACAGCAAAG <u>GGAAGGGCCCAAGTAAACTATGAA</u>
510 517 518 519 520 521 522 523 524 525 526 527	TGACCAACTGACAGAAGAGCAGATTGCAGAGGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGATGAA GAGTTTGAACAAGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAAG <u>GGAGGTGGCTCC</u> AAGAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGATCTCCA GCTCCGGGGCACTG <mark>GAGCTCCTGAGCGCGCCGACCAAATGGGCCAAGTCGAAA</mark>
510 517 518 519 520 521 522 523 524 525 526 527 528	TGACCAACTGACAGAAGAGCAGATTGCAGAGGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGCAAAG <u>GGAAGGTGGCTCC</u> AAGAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCAAGGGCGCCCAAGTAAACTATGAA GCTCCGGGGCACTGGAGCTCCTGAGCGCGCGCCAACTCAGGCCAGATCGAAG AACTTTTTAAGGTGGTGTCACCTGTGGATGATCATCACTTTAAGGTGATCGAAG
510 517 518 519 520 521 522 523 524 525 526 527 528 529	TGACCAACTGACAGAAGAGCAGATTGCAGAGGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGATGA GAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGCAGAGGGAGGCGCCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAGCAAAG <u>GGAAGGTGGCCCA</u> AGAAGAGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGATCTCCA GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTATTT
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530	TGACCAACTGACAGAAGAGCAGATTGCAGCCGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAAG <u>GGAGGTGGCTCC</u> AAGAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGATCTCCA GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCGACTAT CACTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTATT CGGACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCGAACATGATCGACTATTT CGGACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTA
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531	TGACCAACTGACAGAAGAGCAGATTGCAGAGGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGATGAT GAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGCAAAG <u>GGAAGTGGCCAAG</u> TAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGCAAAG <u>GGAGGTGGCTCC</u> AAGAAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGATCTCCA GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTATTT CGGACGGCCGTATGAAGGCATCGCCGCGGTTCCGACGGCAAAAAGATCACTGTA
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532	TGACCAACTGACAGAAGAGCAGCAGCATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACCGATTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGATGAT GAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAGAGAGGGGGGGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAGCAGAAGGGGGGGGGCCCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAGCAGCGGCGACCAAATGGGCCAGATCGCA GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGTACGCCGAACATGATCGACTATTT CGGACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGATCAAC CCCGACGGCCACACGGCTTCCGAGCGACAACACAAC
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 532	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGCAGAGGTGGCTCCAAGAGAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGATCTCCA GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGCGTTCCAACGGCAACATGATCGACTGTA CGGACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCAACATGATCGACTGTA ACAGGGACCCTGTGGAACGCAACAAAATTATCGACGAGCGCCTGATCAAC CCCGACGGCTCCCTGCGGCTAACCATCAACGGAGTGACCGGCTGGC GGCTGTGCGAACGCATTCTGGCGTAA
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 532	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAAGTCGATGCTGATGGCAATGGAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGAGGAGAAGATGA GAGTTTGAACAAAGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAAG <u>GGAAGGTGGCTCC</u> AAGAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGGCTGCCAACCGGTTCAAGAAGAGTCCCA GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTGTA ACAGGGACCCTGTGGAAGGCATCGCCGGGTTCGACGGCAAAAAGATCACTGTA ACAGGGACCCTGTGGAAGGCATCGCCGTGTCCGACGGCAAAAAGATCACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGGCGAACAAAGATCACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGAGGCGCTGGC GGCTGTGCGAACGCATTCTGGCGTAACCATCAACGGAGTGACCGGCTGGC GGCTGTGCGAACGCATTCTGGCGTAACCATCAACGGAGTGACCGGCTGGC GGCTGTGCGAACGCATTCTGGCGTAA
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 535	TGACCAACTGACAGAGAGAGAGAGATGCAGAGATTGCAGAGGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAAGTCGATGCTGATGGCAAAACCCAACGGAAGCAGAATTGCAGGATATGATCAA ATGAAGTCGATGCTGATGGCAATGGAACGATTACTTTCCTGAATTTCTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGTGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGTGAACGTGAACGAGAAAACTATGAA GAATTGAAAGGGAAGCAGATATCGATGGTGATGGCCAAGTGAAGAAGATGAA GAGTTTGAACAAATGATGACAGCAAAAG <u>GGAAGGTGGCTCC</u> AAGAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCAGCGACCAAATGGGCCAGATCGAAA GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGAGGCCAGATCCAA GCTCCGGGGCACTGGAGCCTCCTGAGCGGCGACCAAATGGATCGACCAGAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGGTTACGCCGAACATGATCGACCAGAT CGGACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCCAAAAAGATCACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGGC GGCTGTGCGAACGCATCGCCGCTAACCATCAACGGAGGGCCTGGC GGCTGTGCGAACGCATTCTGGCGTAACCATCACCTCAACGGAGCGCCTGGC GGCTGTGCGAACGCATTCTGGCGTAACCACCACACACGGAGTGACCCGCCTGGC GGCTGTGCGAACGCATTCTGGCGTAACCACCACACACGCACG
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 535 536 536 537	TGACCAACTGACAGAAGAGCAGATGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGGAAGCAGAAGTGCAAGTTTCCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGACACAGACAGCGAAGAGGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGGCGAAGTGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAAG <u>GGAGGTGGCTCC</u> AAGAAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGAGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGGCGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGGTAACGCGAACATGATCGACTGTA ACAGGGACCCTGTGGAAGGCATCGCCGTGTTCGACGGCCAACATGATCGACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGGCAAAAAGATCACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGAGGCGCTGGC GGCTGTGCGAACGCATTCTGGCG TA >GeNL(Ca ²⁺)_60 ATGGTGTCCCAAGGGCGAAGAGGGCAACAACATGGCCAGCCTGCCGCCGCCGCCCCCCCC
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 536 537	TGACCAACTGACAGAAGAGCAGATGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAACTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGATGAA GAGTTTGAACAAATGATGACAGCAGAGAGGGGGGGGCCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGCGACTGCCAACCGGTTCAAGAAGAGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGAGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCGCGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTGTA ACAGGGACCCTGTGGAAGGCATCGCCGTGTTCGACGGCAACATGATCGACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGGCGAACATGATCAAC CCCGACGGCCGTATGAAGGCATCGCCGTAACCATCAACGGAGTGACCGGCTGCC GGCTGTGCGAACGCATCGCGCTAACCATCAACGGAGTGACCGGCTGGC GGCTGTGCGAACGCATCGGCGAACAACATGGCCAGCCTGCCGCGCGCG
510 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 536 537 538 538 537 538	TGACCAAGGACGGAAGAAGAGCAGACACATGGCCAGCCTGCCACCAC TGACCAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAAGTCGATGCTGATGGCAAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGCAGATGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAGCAGACTGGCGACCAAGTAAACTATGAA GAGTTTGAACAAATGATGCCGTCAGCGCTGCCAACCGGTCCAAGAGGCGCTGG AAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGATCTCCA GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTATTT CGGACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGATCAAC CCCGACGGCCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGATCAAC CCCGACGGCCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGACCAGC GGCTGTGCGAACGCATCTGGCGTAACCATCAACGGAGTGACCGGCTGGC GGCTGTGCGAACGCAACGGCAACAACATGGCCAGCCTGCCCGCCC
510 517 518 519 520 521 522 523 524 525 526 527 528 529 531 532 533 534 535 536 537 538 536 537 538 539 536 537 538 539 539 538 539 539 536 537 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 538 539 539 540	TGACCAACTGACAGAAGAGCAGCATGATGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAAGTCGATGCTGATGGCAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAAAGGAACGATTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAGACAGCGAGTGGCCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAGCAGCAGGCGGCGCCCCAAGTAAACTATGAA GAGATTTTAAGGTGGTGTCCCTGAGCGCGCGCCACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCACCGGTTCAAGAAGATCCCA GCTCCGGGGCACTGGAGCGTCCTGAGCGGCGACCAAATGGGCCAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGCGTACACCACTTAAGGTGATCATCTA CGGACGGCCGTATGAAGGCATCGCCTGTTCGACGGCAAAAAGATCACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGGCAAAAAGATCACTGTA CCCGACGGCCGTATGAAGGCAACGCAAC
510 517 518 519 520 521 522 523 524 525 526 527 528 529 531 532 533 534 535 536 537 538 536 537 538 539 534 535 536 537 538 539 540 541	TGACCAACTGACAGAAGAGCAGATGCACCATCACCAGAGTTCAAAGAAGACCTTCTCATTA TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT ATGAAGTCGATGCTGATGGCAATGGAACCGACACCACAAGGGAACTTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGACTTACTTTCCTGAATTTCTTACTA TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGTGAACGTAACAGAGGAGAAGTTGA TGAAATGATAAGGGAAGCAGAAACCTCGGGGGTGAAGTTAACAGATGAAGAAGATGTA GAGTTGACACGTCATGACAAACCTCGGGGTGAAGTTAACAGATGAAGAAGATGTAA GAGTTTGAACAAATGATGACAGCAAAGGGAGGGCGCCAAGTAAACTATGAA GAGTTTGAACAAATGATGACAGCAAAGGGAGGGTGGCTCCAAGAAGACTATGAA GAGTTTGAACAAATGATGACAGCAAAGGGAGGGTGGCTCCAAGAAGATCCAG GCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAAGATCGAAA AAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTG CACTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTATT CGGACGGCCCGTATGAAGGCATCGCCGTGTTCGACGGCCAAAAAGATCACTGTA ACAGGGACCCTGTGGAAGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTA ACAGGGACCCTGTGGAAGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTA ACAGGGACCCTGTGGAAGGGCAACAAAATTATCGACGGCGAACAAAGATCACTGTA ACAGGGACCCTGCGGTGTCCGAGGACAACATGGCCAGCCGCCTGATCAAC CCCGACGGCCACTTCGGCGGCAACAAAATTATCGACGGCGCTGCCGCGCG GGCTGTGCCAAGGGCGAAGAGGGACAACATGGCCAGCCTGCCGCCGCGGGACCACGGCACCAC GAGCTGCCACACCCCAACGACGGCTACCAGGGGAACTGAACCTGAAGTCCA CAAAGGGCACCGGCAACCAACGGCTACGAGGAACTGAACCTGAAGTCCA CAAAGGGCACCGGCAACCCCAACGACGGCTACGAGGAACTGAACCTGAAGTCCA CAAAGGGCACCGGCAACCCCAACGACGGCTACCGAGGAACTGAACCTGAAGTCCA CAAAGGGCGACCTGCCGAGCTACCCCGGCCCGG
510 517 518 519 520 521 522 523 524 525 526 527 528 529 531 532 533 534 535 536 537 538 539 536 537 538 539 540 541 542	TGACCAACTGACAGAAGAGCAGCAGCATGACCAGCAGAGTTCAAAGAAGCCTTCTCATTA TTCGACAAGGATGGGGACGGCACGACCATCACCACAAGGGAACTTGGCACCGTT ATGAAGTCGATGCTGATGGCAATGGAACGGAAGCAGGAAATTGCAGGATATGATCA ATGAAGTCGATGCTGATGGCAATGGAACGGAACGCGAAGAGGAAATCCGAGGAA GCATTCCGTGTTTTTGACAAGGACACGGGAACGGCTACATCAGCGCTGCT <u>CAG</u> T TACGTCACGTCATGACAAACCTCGGGGTGAAGTTAACAGATGAAGAAGTTGA TGAAATGATAAGGGAAGCAGAAACCTCGGGGTGAAGTTAACAGATGAAAACTATGAA GAGTTTGAACAAATGATGACAGCAAAGGGCAACCGGTTCCAAGAAGAAGTTGA GAGTTTGAACAAATGATGACAGCAAAGGGCAACCGGTTCAAGAAGAAGTTCCCA GCTCCGGGGGCACTGGAGGCCCTGCCAACCGGTTCAAGAAGATCTCCA GCTCCGGGGGCACTGGAGGTCCTGGGGCGACCAAATGGGCCAGATCACCTG CACTATGGCACACTGGTGTTACCCTGTGGATGATCATCACTTTAAGGTGATCCTCG CACTATGGCACACTGGTGATCGCCGCGGTTACGCCGAACATGATCGACTATTT CGGACGGCCCGTATGAAGGCATCGCCGTGTTCGACGGCAACATGATCACTGTA ACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGGAGCACATGATCACTGTA ACAGGGACCCTGTGGAACGCAACAACATAGCGCGAACAAGATCACTGTA ACAGGGACCCTGTGGGAACGGCAACAAAATTATCGACGGAGGCCCTGATCAAC CCCGACGGCCCTGCTGTTCGACGGCACCACACGGCAGCCGCCTGGC GGCTGTGCGAAACGCATTCTGGCG TA >GeNL(Ca ²⁺)_60 >GeCTGTGCGAACGCATTCTGGCGCAACAACGGGCACCTGAACAGGCCCCAC CACAGGGCACCGGCAACCACACGGCTACGAGGGCACCTGACCGGCCACACAC CACAGGGCACCGGCAACCAACACGGCTACGAGGGACACCGGCTGGCCCACCAC CAAAGGGCGACCCGAACGCATCCACCCGGCTACGAGGGCACCTGAACCTGAAGTCCAC CAAAGGGCGACCCGCAGCATCCCCCAGGCCCCGGCTGGCCCCACACAC CACAGGGCACCGGCAACCCCAACGACGGCTACCAGGGCACCCACC

543	CAAGGGCGAGGCCCAAGTGAAGGGCACAGGCTTTCCAGCCGACGGCCCCGT
544	GATGACCAATAGCCTGACAGCCGCCGACTGGTGCAGAAGCAAGAAAACCTA
545	CCCCAATGACAAGACCATCATCAGCACCTTCAAGTGGTCCTACACCACCGGC
546	AATGGCAAGCGGTACAGAAGCACCGCCCGGACCACCTACACCTTCGCCAAA
547	CCTATGGCCGCCAACTACCTGAAGAACCAGCCTATGTACGTGTTCCGCAAGA
548	CCGAGCTGAAGCACTCCAAGACAGAACTGAACTTCAAAGAGTGGCAGAAA
549	GCCTTCACCGGGTTTGAAGATTTCGTTGGGGACTGGCGACAGACA
550	ACAACCTGGACCAAGTCCTTGAACAGGGAGGTGTGTCCAGTTTGTTT
551	TCTCGGGGTGTCCGTAACTCCGATCCAAAGGATTGTCCTGAGCGGTGAAAAT
552	GGGCTGAAGATCGACATCCATGTCATCATCCCGTATGAAGGTCCATGGATGCA
553	TGACCAACTGACAGAAGAGCAGATTGCAGAGTTCAAAGAAGCCTTCTCATTA
554	TTCGACAAGGATGGGGACGGCACCATCACCACAAGGGAACTTGGCACCGTT
555	ATGAGGTCGCTTGGACAAAACCCAACGGAAGCAGAATTGCAGGATATGATCA
556	ATGAAGTCGATGCTGATGGCAATGGAACGATTTACTTTCCTGAATTTCTTACTA
557	TGATGGCTAGAAAAATGAAGGACACAGACAGCGAAGAGGAAATCCGAGAA
558	GCATTCCGTGTTTTTGACAAGGATGGGAACGGCTACATCAGCGCTGCT <u>GAA</u> T
559	TACGTCACGTCATGACAAACCTCGGGGTGAAGTTAACAGATGAAGAAGTTGA
560	TGAAATGATAAGGGAAGCAGATATCGATGGTGATGGCCAAGTAAACTATGAA
561	GAGTTTGAACAAATGATGACAGCAAAG <u>GGGGGGGGGGGG</u>
562	TGGAAGAAAAACTTCATTGCCGTCAGCGCTGCCAACCGGTTCAAGAAGATCT
563	CCAGCTCCGGGGCACTGGAGCTCCTGAGCGGCGACCAAATGGGCCAGATCG
564	AAAAAATTTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATC
565	CTGCACTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGATCGACTA
566	TTTCGGACGGCCGTATGAAGGCATCGCCGTGTTCGACGGCAAAAAGATCACT
567	GTAACAGGGACCCTGTGGAACGGCAACAAAATTATCGACGAGCGCCTGATC_
568	AACCCCGACGGCTCCCTGCTGTTCCG <u>AGT</u> AACCATCAACGGAGTGACCGGCT
569	GGCGGCTGTGCGAACGCATTCTGGCG <mark>TAA</mark>

571 Supplementary References

- Leutenegger, M. & Lasser, T. Detection efficiency in total internal reflection
 fluorescence microscopy. *Opt Express* 16, 8519-8531 (2008).
- 574 2. Watanabe, R. et al. Biased Brownian stepping rotation of FoF1-ATP synthase driven
 575 by proton motive force. *Nat Commun* 4, 1631 (2013).
- 576 3. Li, Y., Sierra, A.M., Ai, H.W. & Campbell, R.E. Identification of sites within a
 577 monomeric red fluorescent protein that tolerate peptide insertion and testing of
 578 corresponding circular permutations. *Photochem Photobiol* 84, 111-119 (2008).
- 579
- 580
- 581
- 582