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Supplementary Information

Supplementary Figure 1: Configuration of GMR connexions. a Current perpendicu-
lar to the plane (CPP) configuration. b Current in plane (CIP) configuration used during
the probe fabrication process.
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Supplementary Figure 2: Voltage variation of each of the three segments as a function of
an in-plane field applied along the pinned layer magnetization.
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Supplementary Figure 3: Setup used for DC measurements, with Rbridge = 500Ω. The
value of Radj is set to the same value as Rgmr so that the differential output of the
Wheatstone bridge is close to 0 V, in order to only amplify the variations of Rgmr.
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Model

Single fiber model. The muscle cell was modeled as a cylindrical cable composed of 1000
compartments of 10µm length and 40µm diameter. Because of poor space-clamp, voltage-
clamp recordings in soleus skeletal muscle were difficult. For this reason, we performed
the voltage-clamp characterization of muscle cell currents in cultured xenopus myocytes
and of synaptic currents in the flexor-digitorum-brevis (FDB) of the mouse. We then
ajusted the parameters that characterize the different currents in order to reproduce the
AP shape recorded on the soleus skeletal muscle cells under floating electrode recording
conditions. All simulations were performed with NEURON (Hines and Carnevale 1997).

Procedure to characterize soleus skeletal muscle currents. We combined the
results obtained from the myocyte voltage-clamp recordings with recordings of synaptic
conductance and EPSP in the flexor-digitorum-brevis (FDB) of the mouse, in order to
reproduce the AP recorded in the soleus skeletal muscle. We proceeded as follows:
Synaptic current. The synaptic current was modeled as a current of the form: Isyn =
gsyn(t)(V − Esyn), with reverse potential, Esyn = 0, and synaptic conductance of the
form, gsyn(t) = gsyn,max exp (−t/τsyn). The synaptic decay time constant was fitted from
recordings of synaptic conductance of the FDB under voltage-clamp and set to τsyn =
0.58ms. Since the maximal conductance, g(syn,max), recorded in the FDB was not sufficient
to elicit an AP in our model fiber, we choose to set the maximal synaptic conductance at
the minimal value necessary to elicit an AP, which was g(syn,max) = 10µS.
Kir and leak currents. The characteristics of the Kir current were obtained from the
myocyte voltage-clamp study. Myocyte Kir current was expressed by the form:IKir =
gmaxm(V − EK), where the maximal conductance gmax is set to 600µS/cm2, and the
variable m evolves in time according to:

m(t) = m∞ − (m∞ −m0)e
t/τm (1)

where m∞ and τm where determined through fitting of the isolated Kir current, as:

m∞ =
1

1 + exp(−0.074(−91.6− V ))
(2)

and τm = 0.2ms The leak current was then adjusted in order to reproduce the decay
dynamics of the EPSP recorded in FDB voltage-clamp recordings (Fig. 4b). The leak
current was modeled as: Ileak = gleak(V − Eleak), where gleak = 200µS/cm2 and Eleak =
−90mV .
Sodium and potassium currents. After determining the synaptic, Kir and leak currents
parameters, we adjusted the parameters of sodium and potassium currents in order to fit
the average AP recorded during floating electrode recordings on the soleus skeletal muscle
(Fig. 4a). Since the average baseline membrane potential was slightly depolarized due to
pipette leak, we added in the compartment corresponding to the recording site, a pipette
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leak current of conductance gpipette = 43µS/cm2 and reversal potential Epipette = 0.After
adding the pipette leak, we adjusted the sodium and potassium currents that were modeled
as follows:

INa = g(Na,max)m
3h(V −ENa) (3)

with gNa,max = 0.028S/cm2 and ENa = 50mV and:

m∞ =
1

1 + exp (0.43(−37.7− V ))
(4)

τm = 0.12 exp (−0.01354(V + 55)) (5)

h∞ =
1

1 + exp (−0.8(−50− V ))
(6)

τh = 0.48 exp (−0.01252 ∗ (V + 22)) (7)

I(K,TEA) = g(K,TEA,max)n
4(V − EK)

with g(K,TEA,max) = 0.02S/cm2 and EK = −90mV and:

n(∞,TEA) =
1

1 + exp (0.06(−30− V ))
(8)

τ(n,TEA) = 1.6 exp (−0.005(V + 20)) (9)

I(K,4AP ) = g(K,4AP,max)n
4(V −EK)

with g(K,4AP,max) = 0.2S/cm2 and EK = −90mV and

n(∞,4AP ) =
1

1 + exp (0.08(−36− V ))
(10)

τ(n,4AP ) = 1.6 exp (−0.0193(V − 79)) (11)

Axial intracellular currents. In section ’Magnetic Recordings’, we showed that trans-
membrane currents do not generate a detectable MF. This result was not unexpected both
because transmembrane currents generates opposite contributions to the MF, thanks to
the quasi-homogeneous distribution of channels on the membrane surface and because the
MF produced by trans-membrane currents is expected to be negligible compared to that
of axial currents (Woosley et al. 1985; Hamalainen et al. 1993). On the contrary, currents
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flowing along the muscle axis were found to be the primary generators of the recorded
MF.
The axial intacellular currents in each compartment i, were calculated as

Ii =
(Vi+1 − Vi)

Ri

(12)

where Vi and Ri are respectively the membrane potential and the axial resistance of
compartment i. Ri can be expressed in term of specific resistivity ρ as:

Ri =
ρ l

A
(13)

where l and A are length and cross section of the compartment.
Even if transmembrane currents do not contribute to the generation of a detectable MF,
they are at the origin of the currents flowing in the extracellular medium (Einevoll et al.
2013). As shown in the scheme of Figure 1a, if a local source and sink of current (in this
example a depolarizing sodium current and a leak current) are present at two different
sites along the cable, local charge variations in the extracellular medium create a poten-
tial gradient with opposite polarity with respect to the intracellular space. Hence, extra-
and intracellular gradients generates currents in opposite directions. Because of the small
extracellular resistivity, extracellular currents are generally smaller than intracellular cur-
rents and dispersed, at least in the cortex, in a larger volume. On the contrary, inside
of the muscle, the fibers are closely packed and the extracellular currents are confined to
flow along the fiber in an interstitial space of a few micrometers. Since the axial resis-
tance is inversely proportional to the cross section (Eq. 13), small cross section means
high axial resistance, which in turn translates to larger potential gradients. As shown in
section ’Electrophysiological Recordings’, when APs were triggered in the muscle, a po-
tential with a peak-to-peak amplitude of around 6 mV was recorded in the extracellular
medium. Extracellular currents in the muscle are then likely to contribute considerably
to the generation of the MF.
Calculation of the magnetic field generated by the soleus skeletal muscle. The
magnetic field produced by an AP travelling in a single muscle cell was calculated using
the approach developed by (Roth and Wikswo 1985) for an axon in a nerve bundle, and we
generalized it to the case of a muscle composed by several fibers. For the sake of clarity,
we summarize here the main lines of the method and we describe how the calculations
were generalized for the case of the entire muscle.
The geometry of the muscle is depicted in figure 4c. A cylindrical fiber of diameter,
a = 40µm, is located at a distance, t, from the center of the bundle. The bundle has
a diameter, b = 170µm, which was the resulting diameter of N = 887, 40 µm diameter
fibers separated by a 10 µm interstitial space and it is surrounded by a sheath of thickness,
δ = 10µm. Two coordinates systems are necessary to describe the bundle: the primed
system which is centered at the fiber, and an unprimed system centered at the bundle.
The two systems are related by simple relationships (Roth and Wikswo 1985).
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Supplementary Figure 4: a Comparison between the recorded (red, mean ± SD, n=6)
and the simulated (black) action potential. b Comparison between the EPSP produced
by synaptic stimulation of the FDB cholinergic synapse (red) and the EPSP in the fiber
model due to one synaptic input (black). c Scheme of the muscle model. d Scheme to
explain the approximation used in the determination of the MF of the entire muscle (see
text).
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The interior of the fiber and the physiological saline had homogeneous, isotropic conduc-
tivities σi and σe. In order to mimick both the presence of the others fibers, that limit the
diffusion of the currents along the radial direction, and the interstitial space, that, instead,
favours the diffusion of the currents along the axial direction in the near surrounding of
the fiber surface, the bundle itself was modeled as an anisotropic medium, with different
conductivities along the radial and axial directions, σρ and σz . The bundle itself was then
surrounded by a thin sheath of connective tissue with conductivity σs.
The calculation of the MF passes first through the calculation of the potential in each of
the regions of the system. This can be done by solving Laplace’s equation with suitable
boundary conditions. Since we know from the simulation of the AP dynamics, the value
of the transmembrane potential along the fiber at every point in time, the first boundary
condition consists in assuming that the potential at ρ

′

= a is equal to the membrane
potential, φm(z), at each point z along the fiber. Furthermore, the potential has to be
continuous at the boundaries, ρ = b and ρ = c, and the normal component of the current
density has to be continuous across all three interfaces. The potential in the bundle,
which is anisotropic, also solves the Laplace’s equation provided the following coordinate
transformation: ρ∗ =

√

(σz/σρ)ρ.
The potential in the four regions can be written in the Fourier space as expansions in
the eigenfunctions of the Laplace’s equation in cylindrical coordinates, i.e. in terms of
modified Bessel functions and Fourier sum of trigonometric functions,

φi(ρ
′

, θ
′

, k) = A0(k)I0(|k|ρ
′

) + 2
∞
∑

m=1

Am(k)Im(|k|ρ
′

)cos(mθ
′

) (14)

φb(ρ
′∗, θ

′

, k) = B0(k)I0(|k|ρ
′∗) + C0(k)K0(|k|ρ

′∗)

+ 2
∞
∑

n=1

(Bn(k)In(|k|ρ
′∗) + Cn(k)Kn(|k|ρ

′∗))cos(nθ
′

) (15)

φs(ρ, θ, k) = D0(k)I0(|k|ρ) + E0(k)K0(|k|ρ)

+ 2

∞
∑

m=1

(Dm(k)Im(|k|ρ) + Em(k)Km(|k|ρ))cos(mθ) (16)

φe(ρ, θ, k) = F0(k)K0(|k|ρ) + 2
∞
∑

m=1

Fm(k)Km(|k|ρ)cos(mθ) (17)

where k denotes the spatial frequency andAm(k), Bm(k), Cm(k), Dm(k), Em(k) and Fm(k)
are unknown coefficients that have to be determinated from the boundary conditions.
As mentioned above, there are six boundary conditions: one, at ρ

′

= a, imposes that
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the Fourier transform of the membrane potential is equal to the difference between the
intracellular and bundle potential, φm(k) = φi(a, θ

′

, k) − φb(a, θ
′

, k). The others five
conditions are given imposing the continuity of the potential at ρ = b and ρ = c and of
the normal component of the current density across all three surfaces. The full expressions
of these boundary conditions are detailed in (Roth and Wikswo 1985) and were solved
using standard Python routines (available in NumPy package) for a system of linear scalar
equations. We used m = 6 terms to approximate the infinite series in equations 14-17.
Once the expressions of the potential are obtained, the current density can be calculated
by differentiating equations 14-17 and through the equality J = −σ∇φ. From the current
density (Roth and Wikswo 1985), one calculates the azimuthal component of the MF
averaged over all angle θ using the Ampere’s law. The integration over θ eliminates all
terms in the expression of the current density as a Fourier sum except the m = 0 term,
hence greatly simplifying the calculations. The integration performed over each region of
the system gives the expression of the magnetic field in the Fourier space, B, as follows:

B(ρ, k) = Bi(ρ, k) +Bb(ρ, k) +Bs(ρ, k) +Be(ρ, k) (18)

where

Bi(ρ, k) = i
µ0σika

ρ|k|
A0(k)I1(|k|a). (19)

Bb(ρ, k) = Bb1(ρ, k) +Bb2(ρ, k) +Bb3(ρ, k) (20)

where

Bb1(ρ, k) = i
µ0σzk

ρ|k|

√

σρ

σz

[[

B0(k)I0

(

|k|

√

σz

σρ

t

)

+ 2
∞
∑

n=1

Bn(k)In

(

|k|

√

σz

σρ

t

)]

+

[

C0(k)K0

(

|k|

√

σz

σρ
t

)

+ 2

∞
∑

n=1

Cn(k)Kn

(

|k|

√

σz

σρ
t

)]]

tI1

(

|k|

√

σz

σρ
t

)

(21)

Bb2(ρ, k) = i
µ0σzk

ρ|k|

√

σρ

σz

[[

B0(k)I0

(

|k|

√

σz

σρ

t

)

+ 2
∞
∑

n=1

Bn(k)In

(

|k|

√

σz

σρ

t

)]

×

[

bI1

(

|k|

√

σz

σρ
b

)

− tI1

(

|k|

√

σz

σρ
t

)]

+

[

C0I0

(

|k|

√

σz

σρ
t

)

+ 2
∞
∑

n=1

Cn(k)In

(

|k|

√

σz

σρ
t

)]

×

[

tK1

(

|k|

√

σz

σρ

t

)

− bK1

(

|k|

√

σz

σρ

b

)]]

(22)
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Bb3(ρ, k) = −i
µ0σzk

ρ|k|

√

σρ

σz

[

B0(k)aI1

(

|k|

√

σz

σρ
a

)

+ C0(k)

[

1

|k|

√

σρ

σz
− aK1

(

|k|

√

σz

σρ
a

)]]

(23)

Bs(ρ, k) = i
µ0σsk

ρ|k|
(D0(k)(cI1(|k|c)− bI1(|k|b)) + E0(k)(bK1(|k|b)− cK1(|k|c))). (24)

Be(ρ, k) = i
µ0σek

ρ|k|
F0(k)(cK1(|k|c)− ρK1(|k|ρ)). (25)

The integration over all angles θ was justified in the work of (Roth and Wikswo 1985),
because, in their case, the MF produced by an axon was considered to be measured by a
toroid encircling the nerve bundle. Here, we want to calculate the azimuthal component
of the field in a point at distance ρ and angle θ = 0 from the center of the bundle, hence,
in principle, the averaging over θ should not be appropriate. However, if we consider
a set of Nt fibers equally distributed on a circle of radius t inside the bundle, we can
approximate the MF generated by the Nt fibers in a point P1 as Nt〈Bt〉, where 〈Bt〉 is the
θ-averaged MF of a single fiber at distance t from the center (i.g. the black fiber in figure
4d (left). This is because, averaging the MF of a single fiber across θ means summing
the contributions of the MF at every point on a given circle around the muscle, as, for
example, points P2 and P3 of figure 4d (left). However, the MF generated by the black
fiber in P2 and P3 is equivalent to the MF generated in P1 by respectively the green and
red fibers depicted in figure 4d (right). This fact being true for all fibers Nt, permits to
approximate the MF of the entire muscle, composed by N fibers, as

∑

{t} Nt〈Bt〉. This
approximation is as more precise as t is close to the bundle radius, because the most
superficial layers have an higher Nt. However, because of the dependency of the screening
on the position of the fiber (see below and Fig. 5d), 90% of the signal is due to the five
more superficial layers which have large values of Nt. Hence, we can consider

∑

{t} Nt〈Bt〉
as a resonable first approximation of the entire MF.
The method of (Roth and Wikswo 1985) presents the advantage of using the Ampere’s
law which permits to calculate separately the contributions to the MF due to the currents
present in each of the regions in Fig. 4b(i). We have seen that the intra- and extracellular
currents flow in opposite directions. Since currents of opposite direction produce MF of
opposite sign, we can expect that the MF generated by the extracellular currents could
screen, at least partially, the MF generated by the intracellular currents. The Ampere’s
law permits to evaluate the importance of these effects by calculating the contributions
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due to the currents flowing inside the fiber, in the bundle, in the sheath and in the external
saline.
The number of parameters in the model could be large (values of the conductivities,
dimensions, etc). However, most of the parameters in the model were kept fixed at
plausible values and we reduced to three the number of free parameters. First, our
measurements of MF were performed at an estimated distance of ∼ 30 µm from the
surface of the muscle, considering that the muscle was practically in contact with the
probe, and that only a passivation layer of ∼15 µm separated the sensor from the saline.
The value of the saline conductivity was set to typical value for Ringer solution, 1.6 S/m
(Koch ), while the value of the intracellular conductivity was fixed at 1.25 S/m, in order
to reproduce both the AP dynamics (Fig. 4a(i)) and the magnetic signal pattern (Fig.
4b(iii)). Finally, as mentioned above, number and dimensions of fibers, and dimension
of the interstitial space were fixed at average values taken from literature. Therefore,
the number of free parameters that were varied in the model in order to reproduce the
amplitude of the recorded signal, were only the conductivities of the bundle, σρ and σz ,
and the conductivity of the sheath, σs.
The MF can be calculated for a single fiber located at different distances, t, from the
center of the bundle. This permits to understand the behaviour of the MF due to the
different currents of the system as a function of the conductivities. Figure 5d shows
the total MF, Btot, perceived in the point P and the relative contributions due to the
intracellular current, Bi, the currents flowing in the bundle, Bb, in the sheath, Bs, and in
the external saline, Be. As more as the fiber is far from the internal surface of the bundle
(black → light gray), as more the currents in the bundle become important and screen
the MF generated by the intracellular currents. This screening effect is larger and larger
as the ratio σz/σρ increases (Fig. 5a). On the contrary, contributions from the currents
in the bath and the sheath, are stronger when part of the currents in the bundle can
flow outside, i.e when the fiber is closer to the surface. However, contributions from bath
and sheath currents are much smaller than that of bundle currents. Hence, extracellular
bundle currents can be considered as the primary source of screening.
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Supplementary Figure 5: a Punctual magnetic field generated by the entire muscle at
30µm from the surface for different values of the ratio σz/σρ (σs = 3S/m). b Same as in
(a), but when varying σs (σρ = 0.01S/m, σz = 3S/m ). c Effect of the averaging over the
probe length: the punctual magnetic field generated at 30µm from the surface is shown
for different position along the muscle (colored traces). The black trace represents the
time evolution of the average of the magnetic field over the positions spanning the probes
length (1.7 mm). d Behavior of the MF of a single fiber depending on its position inside
the bundle. Top: net magnetic field. Bottom: The different MF components due to the
currents flowing in the fiber (Bi), the bundle (Bb), the sheath (Bs) and the saline (Be)
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