Supplementary Figures

Supplementary Figure 1. Flowchart of scanning and quality control for initial release of UK Biobank tract-averaged DT-MRI data.

Note. Following safety ascertainment, 5,455 MRIs were completed. Of these, 4,888 comprised compatible DT-MRI data, and a total of 3,513 passed quality control (QC) procedures and exclusion criteria. Coding outside refers to instances in which yes or no were not applicable (see <u>http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=12188</u>). DT-MRI acquired in Phase 2 was not comparable to subsequent phases, and was therefore removed from analysis.

Supplementary Figure 2. Tract-averaged diffusion characteristics of brain white matter in UK BioBank.

Note. FA = fractional anisotropy, MD = Mean diffusivity ($\times 10^{-3} \text{ mm}^2/\text{s}$), ICVF = intracellular volume fraction, ISOVF = isotropic volume fraction, OD = orientation dispersion. AR: acoustic radiation, ATR: anterior thalamic radiation, CingG: cingulum gyrus, CingPH: cingulum parahippocampal, CST: corticospinal tract, FMaj: forceps major, FMin: forceps minor, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus, MCP: middle cerebellar peduncle, ML: medial lemniscus, PTR: posterior thalamic radiation, SLF: superior longitudinal fasciculus, STR: superior thalamic radiation, Unc: uncinate fasciculus, 1: left, r: right. Data has been jittered for visualisation purposes.

Supplementary Figure 3. Tract-averaged characteristics of supplementary brain white matter parameters in UK BioBank.

Note. $\lambda ax = axial$ diffusivity, $\lambda rad = radial$ diffusivity, MO = diffusion tensor mode. AR: acoustic radiation, ATR: anterior thalamic radiation, CingG: cingulum gyrus, CingPH: cingulum parahippocampal, CST: corticospinal tract, FMaj: forceps major, FMin: forceps minor, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus, MCP: middle cerebellar peduncle, ML: medial lemniscus, PTR: posterior thalamic radiation, SLF: superior longitudinal fasciculus, STR: superior thalamic radiation, Unc: uncinate fasciculus, l: left, r: right. Data has been jittered for visualisation purposes.

Supplementary Figure 4. Heatmaps of inter- and intra-hemispheric associations (Pearson's r) for tract fractional anisotropy (blue), mean diffusivity (green), ICVF (red), ISOVF (purple), OD (orange), MO (pink and blue), λax (grey) and λrad (turquoise).

Note. Y-axis denotes left hemisphere tracts, central diagonal indicates left:right associations of tracts, except for the MCP, FMaj and FMin (where r = 1). In each case, the heatmaps are arranged by grouping highly-correlated variables around the diagonal. The comparative absence of correlations among those tracts that show the lowest age effects (pale "L" shape; FMaj, MCP, CingPH and ML) is notable for FA, MD, λ rad, ICVF and ISOVF.

Supplementary Figure 5. Heatmap of inter- and intra-hemispheric associations (Pearson's r) among FA, MD, IVCF, ISOVF and OD.

Note. Y-axis denotes left hemisphere tracts, central diagonal indicates left:right associations of tracts, except for the MCP, FMaj and FMin (where r = 1). Correlations are arranged by grouping highly-correlated variables around the diagonal.

Supplementary Figure 6. Left: Scree slopes for the exploratory factor analysis, showing the eigenvalue against the number of factors for λax , λrad and MO. Centre: Age trajectories of the first (latent) factor of white matter microstructure for λax and λrad . Right: Age de-differentiation of white matter microstructure.

Note. Age trajectories for the proportion of total variance in each tract measurement explained by the general factor for λax and λrad . The shaded region around each trajectory shows ± 1 SD of the mean.

Supplementary Figure 7. Common + independent pathways models for latent microstructural indices.

Note. Values are standardized path coefficients. For clarity, between-tract residual correlations are not shown here. FA (blue): fractional anisotropy, MD (green): mean diffusivity, ICVF (red): intracellular volume fraction, ISOVF (purple): isotropic volume fraction, OD (orange): orientation dispersion, grey: λax, turquoise: λrad. Squares indicate manifest variables and ellipses indicate latent variables.

Supplementary Figure 8. Mediation model for age, gFA, gICVF, and gOD.

Note. The relationship between gFA and age (path c) is 75% mediated (note lower value of path c') via a combination of gICVF and gOD. The majority of the mediation takes place through gICVF rather than OD (respective indirect effects are $\beta = -0.232$ and $\beta = 0.044$; see Supplementary Table 8). Standardised β s reported. Squares indicate manifest variables and ellipses indicate latent variables.

Supplementary Figure 9. Associations between volumetric brain MRI measures and age.

Note. Volumes in mm³, adjusted for head size. Shaded area around the regression lines are 95% CIs. Dotted line denotes left hippocampus or thalamus, dashed line denotes right.

Supplementary Figure 10. De-differentiation trajectories for FA.

Note. Trajectories for factor loadings (left), tract uniquenesses (centre) and tract communalities (right) for fractional anisotropy (FA), taken from the multi-parameter age moderation model (top row) and LOSEM model (bottom row).

Supplementary Figure 11. De-differentiation trajectories for MD.

Note. Trajectories for factor loadings (left), tract uniquenesses (centre) and tract communalities (right) for mean diffusivity (MD), taken from the multi-parameter age moderation model (top row) and LOSEM model (bottom row).

Supplementary Figure 12. De-differentiation trajectories for ICVF.

Note. Trajectories for factor loadings (left), tract uniquenesses (centre) and tract communalities (right) for intracellular volume fraction (ICVF), taken from the multi-parameter age moderation model (top row) and LOSEM model (bottom row).

Supplementary Figure 13. De-differentiation trajectories for ISOVF.

Note. Trajectories for factor loadings (left), tract uniquenesses (centre) and tract communalities (right) for isotropic volume fraction (ISOVF), taken from the multi-parameter age moderation model (top row) and LOSEM model (bottom row).

Supplementary Figure 14. De-differentiation trajectories for OD.

Note. Trajectories for factor loadings (left), tract uniquenesses (centre) and tract communalities (right) for orientation dispersion (OD), taken from the multi-parameter age moderation model (top row) and LOSEM model (bottom row).

Supplementary Figure 15. De-differentiation trajectories for axial diffusivity.

Note. Trajectories for factor loadings (left), tract uniquenesses (centre) and tract communalities (right) for axial diffusivity (λax), taken from the multi-parameter age moderation model (top row) and LOSEM model (bottom row).

Supplementary Figure 16. De-differentiation trajectories for radial diffusivity.

Note. Trajectories for factor loadings (left), tract uniquenesses (centre) and tract communalities (right) for radial diffusivity (λ rad), taken from the multi-parameter age moderation model (top row) and LOSEM model (bottom row).

Supplementary Tables

1	Variable	Unit	M(SD)	Ν
Demographics	Age	Years	61.72 (7.47)	3513
	Sex	F:M (%F)	1849:1664 (53%)	3513
	College Degree	Yes (Yes%)	1493 (43%)	3511
	Heart or cardiac problem	Yes (Yes%)	9 (<1%)	3511
	Diagnosis of diabetes	Yes (Yes%)	99 (3%)	3511
	Hypertension	Yes (Yes%)	697 (20%)	3511
	Ethnicity	W:M:O	3419:13:79	3511
	Handedness	R:L:B	3137:314:60	3511
Association Fibres	Inferior Fronto-Occipital Fasciculus	FA	0.472 (0.020)	3512
		$MD (\times 10^{-3} \text{ mm}^2/\text{s})$	0.805 (0.030)	3511
	Inferior Longitudinal Fasciculus	FA	0.458 (0.019)	3513
		MD (×10 ⁻³ mm ² /s)	0.815 (0.031)	3513
	Superior Longitudinal Fasciculus	FA	0.435 (0.020)	3513
		MD (×10 ⁻³ mm ² /s)	0.746 (0.029)	3513
	Uncinate Fasciculus	FA	0.393 (0.020)	3510
		MD (×10 ⁻³ mm ² /s)	0.791 (0.033)	3511
	Cingulum (Gyrus)	FA	0.519 (0.029)	3513
		MD (×10 ⁻³ mm ² /s)	0.756 (0.026)	3513
	Cingulum (Parahippocampal)	FA	0.311 (0.029)	3513
		MD (×10 ⁻³ mm ² /s)	0.881 (0.055)	3512
Thalamic Projections	Anterior Thalamic Radiation	FA	0.398 (0.017)	3513
		MD (×10 ⁻³ mm ² /s)	0.774 (0.033)	3512
	Posterior Thalamic Radiation	FA	0.456 (0.019)	3513
		MD (×10 ⁻³ mm ² /s)	0.842 (0.038)	3513
	Superior Thalamic Radiation	FA	0.423 (0.020)	3513
		MD (×10 ⁻³ mm ² /s)	0.754 (0.275)	3513
Sensory Projections	Acoustic Radiation	FA	0.421 (0.019)	3513
		MD (×10 ⁻³ mm ² /s)	0.782 (0.032)	3513
	Corticospinal Tract	FA	0.545 (0.021)	3513
		$MD (\times 10^{-3} \text{ mm}^2/\text{s})$	0.772 (0.219)	3513
	Middle Cerebellar Peduncle	FA	0.475 (0.033)	3512
		MD (×10 ⁻³ mm ² /s)	0.774 (0.067)	3512
	Medial Lemniscus	FA	0.419 (0.020)	3513
		MD (×10 ⁻³ mm ² /s)	0.906 (0.034)	3512
Callosal Fibres	Forceps Major	FA	0.585 (0.026)	3513
		MD (×10 ⁻³ mm ² /s)	0.892 (0.050)	3513
	Forceps Minor	FA	0.467 (0.021)	3513
		$MD (\times 10^{-3} \text{ mm}^2/\text{s})$	0.829 (0.034)	3510

Supplementary Table 1. Characteristics of participants and tract-averaged water diffusion parameters of white matter pathways.

Note. Tract values are reported for average of left and right. FA: fractional anisotropy, MD: mean diffusivity, ethnicity reported as white:mixed:other, handedness reported as right:left:both.

	Variable	Unit	M(SD)	Ν
Association Fibres	Inferior Fronto-Occipital Fasciculus	ICVF	0.527 (0.036)	3512
	_	ISOVF	0.061 (0.011)	3511
		OD	0.168 (0.009)	3512
	Inferior Longitudinal Fasciculus	ICVF	0.519 (0.031)	3513
		ISOVF	0.067 (0.012)	3513
		OD	0.184 (0.007)	3513
	Superior Longitudinal Fasciculus	ICVF	0.617 (0.033)	3513
		ISOVF	0.077 (0.013)	3513
		OD	0.227 (0.011)	3513
	Uncinate Fasciculus	ICVF	0.476 (0.027)	3513
		ISOVF	0.031 (0.009)	3512
		OD	0.231 (0.013)	3511
	Cingulum (Gyrus)	ICVF	0.558 (0.032)	3513
		ISOVF	0.045 (0.013)	3513
		OD	0.137 (0.016)	3513
	Cingulum (Parahippocampal)	ICVF	0.450 (0.023)	3513
		ISOVF	0.080 (0.031)	3513
		OD	0.290 (0.025)	3513
Thalamic Projections	Anterior Thalamic Radiation	ICVF	0.540 (0.029)	3512
·		ISOVF	0.055 (0.011)	3513
		OD	0.240 (0.011)	3512
	Posterior Thalamic Radiation	ICVF	0.518 (0.029)	3513
		ISOVF	0.086 (0.019)	3513
		OD	0.185 (0.009)	3513
	Superior Thalamic Radiation	ICVF	0.605 (0.026)	3513
	-	ISOVF	0.076 (0.012)	3513
		OD	0.248 (0.015)	3513
Sensory Projections	Acoustic Radiation	ICVF	0.548 (0.026)	3513
		ISOVF	0.068 (0.017)	3513
		OD	0.247 (0.013)	3513
	Corticospinal Tract	ICVF	0.682 (0.022)	3513
		ISOVF	0.116 (0.012)	3513
		OD	0.157 (0.013)	3513
	Middle Cerebellar Peduncle	ICVF	0.733 (0.028)	3512
		ISOVF	0.139 (0.037)	3512
		OD	0.233 (0.022)	3512
	Medial Lemniscus	ICVF	0.606 (0.021)	3512
		ISOVF	0.167 (0.022)	3512
		OD	0.184 (0.012)	3512
Callosal Fibres	Forceps Major	ICVF	0.598 (0.030)	3513
	· · · · · · · · · · · · · · · · · · ·	ISOVF	0.141 (0.025)	3513
		OD	0.127 (0.010)	3513
	Forceps Minor	ICVF	0.549 (0.036)	3513
		ISOVF	0.089 (0.017)	3513
		OD	0.196 (0.010)	3513

Supplementary Table 2. Tract-averaged NODDI characteristics of white matter pathways.

Note. NODDI: Neurite orientation dispersion and density imaging, ICVF: intracellular volume fraction, ISOVF: isotropic volume fraction, OD: orientation dispersion.

$ \begin{array}{ccccccc} &\lambda rad (\times 10^{-3}) & 0.916 (0.048) & 3512 \\ MO & 0.538 (0.031) & 3512 \\ \lambda ax (\times 10^{-2}) & 0.126 (0.003) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.941 (0.049) & 3513 \\ MO & 0.491 (0.030) & 3513 \\ MO & 0.491 (0.030) & 3513 \\ \lambda rad (\times 10^{-2}) & 0.111 (0.003) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.904 (0.046) & 3513 \\ MO & 0.307 (0.040) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.904 (0.046) & 3513 \\ MO & 0.307 (0.040) & 3513 \\ \lambda rad (\times 10^{-2}) & 0.115 (0.004) & 3510 \\ \lambda rad (\times 10^{-3}) & 0.962 (0.052) & 3510 \\ MO & 0.493 (0.035) & 3506 \\ \lambda ax (\times 10^{-2}) & 0.126 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.806 (0.046) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.126 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.118 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 1.140 (0.089) & 3513 \\ \lambda rad (\times 10^{-3}) & 1.140 (0.089) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.941 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.941 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.941 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.941 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.941 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.941 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Inferior Longitudinal Fasciculus $\lambda ax (\times 10^{-2})$ $0.126 (0.003)$ 3513 $\lambda rad (\times 10^{-3})$ $0.941 (0.049)$ 3513 MO Superior Longitudinal Fasciculus $\lambda ax (\times 10^{-3})$ $0.941 (0.049)$ 3513 $\Delta ax (\times 10^{-2})$ $0.111 (0.003)$ 3513 $\lambda rad (\times 10^{-3})$ Superior Longitudinal Fasciculus $\lambda ax (\times 10^{-2})$ $0.111 (0.003)$ 3513 $\lambda rad (\times 10^{-3})$ $0.904 (0.046)$ 3513 $\Delta rad (\times 10^{-3})$ Uncinate Fasciculus $\lambda ax (\times 10^{-2})$ $0.115 (0.004)$ 3510 $\lambda rad (\times 10^{-3})$ $0.962 (0.052)$ 3510 $\Delta rad (\times 10^{-3})$ MO $0.493 (0.035)$ 3506 Cingulum (Gyrus) $\lambda ax (\times 10^{-2})$ $0.126 (0.005)$ 3513 $\lambda rad (\times 10^{-2})$ MO $0.608 (0.057)$ 3513 $\lambda rad (\times 10^{-2})$ $0.118 (0.005)$ 3513 $\lambda rad (\times 10^{-2})$ Thalamic ProjectionsAnterior Thalamic Radiation $\lambda ax (\times 10^{-2})$ $0.112 (0.004)$ 3513 $\lambda rad (\times 10^{-3})$ MO $0.410 (0.037)$ 3513 $\lambda rad (\times 10^{-3})$ $0.948 (0.500)$ 3513 $\lambda rad (\times 10^{-3})$ MO $0.410 (0.037)$ 3513 $\lambda rad (\times 10^{-3})$ $0.971 (0.058)$ 3513
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccc} MO & 0.491 (0.030) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.111 (0.003) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.904 (0.046) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.904 (0.046) & 3513 \\ MO & 0.307 (0.040) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.115 (0.004) & 3510 \\ \lambda rad (\times 10^{-3}) & 0.962 (0.052) & 3510 \\ MO & 0.493 (0.035) & 3506 \\ \lambda ax (\times 10^{-2}) & 0.126 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.806 (0.046) & 3513 \\ MO & 0.608 (0.057) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.806 (0.046) & 3513 \\ MO & 0.608 (0.057) & 3513 \\ \lambda rad (\times 10^{-3}) & 1.140 (0.089) & 3513 \\ \lambda rad (\times 10^{-3}) & 1.140 (0.089) & 3513 \\ MO & 0.427 (0.054) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ MO & 0.410 (0.037) & 3513 \\ MO & 0.410 (0.037) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \end{array} $
Superior Longitudinal Fasciculus $\lambda ax (\times 10^{-2})$ $0.111 (0.003)$ 3513 $\lambda rad (\times 10^{-3})$ $0.904 (0.046)$ 3513 $\lambda rad (\times 10^{-3})$ $0.904 (0.046)$ 3513 MO $0.307 (0.040)$ 3510 $\lambda ax (\times 10^{-2})$ $0.115 (0.004)$ 3510 $\lambda rad (\times 10^{-3})$ $0.962 (0.052)$ 3510 $\lambda rad (\times 10^{-3})$ $0.962 (0.052)$ 3510 $\lambda rad (\times 10^{-3})$ $0.962 (0.052)$ 3513 $\lambda rad (\times 10^{-2})$ $0.126 (0.005)$ 3513 $\lambda rad (\times 10^{-2})$ $0.126 (0.005)$ 3513 $\lambda rad (\times 10^{-2})$ $0.118 (0.005)$ 3513 $\lambda rad (\times 10^{-2})$ $0.118 (0.005)$ 3513 $\lambda rad (\times 10^{-2})$ $0.118 (0.005)$ 3513 $\lambda rad (\times 10^{-2})$ $0.112 (0.004)$ 3513 $\lambda rad (\times 10^{-3})$ $0.948 (0.050)$ 3513 $\lambda rad (\times 10^{-3})$ $0.948 (0.050)$ 3513 $\lambda rad (\times 10^{-3})$ $0.948 (0.050)$ 3513 $\lambda rad (\times 10^{-3})$ $0.971 (0.058)$ 3513
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \lambda rad (\times 10^{-3}) & 0.806 (0.046) & 3513 \\ MO & 0.608 (0.057) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.118 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 1.140 (0.089) & 3513 \\ \lambda rad (\times 10^{-3}) & 1.140 (0.089) & 3513 \\ MO & 0.427 (0.054) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.112 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ MO & 0.410 (0.037) & 3513 \\ \lambda rad (\times 10^{-2}) & 0.130 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \end{array} $
$ \begin{array}{ccccccc} MO & 0.608 & (0.057) & 3513 \\ \lambda ax & (\times 10^{-2}) & 0.118 & (0.005) & 3513 \\ \lambda ax & (\times 10^{-3}) & 1.140 & (0.089) & 3513 \\ \lambda rad & (\times 10^{-3}) & 1.140 & (0.089) & 3513 \\ MO & 0.427 & (0.054) & 3513 \\ \lambda ax & (\times 10^{-2}) & 0.112 & (0.004) & 3513 \\ \lambda rad & (\times 10^{-3}) & 0.948 & (0.050) & 3513 \\ MO & 0.410 & (0.037) & 3513 \\ MO & 0.410 & (0.037) & 3513 \\ \lambda rad & (\times 10^{-2}) & 0.130 & (0.004) & 3513 \\ \lambda rad & (\times 10^{-3}) & 0.971 & (0.058) & 3513 \\ \end{array} $
$\begin{array}{c} \mbox{Cingulum (Parahippocampal)} & \lambda ax (\times 10^{-2}) & 0.118 (0.005) & 3513 \\ \lambda rad (\times 10^{-3}) & 1.140 (0.089) & 3513 \\ \hline MO & 0.427 (0.054) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.112 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \hline MO & 0.410 (0.037) & 3513 \\ \hline MO & 0.410 (0.037) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.130 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \end{array}$
$ \begin{array}{ccc} \lambda rad (\times 10^{-3}) & 1.140 (0.089) & 3513 \\ \hline MO & 0.427 (0.054) & 3513 \\ \hline MO & 0.427 (0.054) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.112 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ \hline MO & 0.410 (0.037) & 3513 \\ \hline MO & 0.410 (0.037) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.130 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \\ \end{array} $
$\begin{array}{cccc} MO & 0.427 \ (0.054) & 3513 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c c} \underline{\text{Thalamic Projections}} & \text{Anterior Thalamic Radiation} & \lambda ax (\times 10^{-2}) & 0.112 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ MO & 0.410 (0.037) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.130 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \end{array}$
$\begin{array}{lll} \lambda rad (\times 10^{-3}) & 0.948 (0.050) & 3513 \\ MO & 0.410 (0.037) & 3513 \\ \lambda ax (\times 10^{-2}) & 0.130 (0.004) & 3513 \\ \lambda rad (\times 10^{-3}) & 0.971 (0.058) & 3513 \end{array}$
MO0.410 (0.037)3513Posterior Thalamic Radiation $\lambda ax (\times 10^{-2})$ 0.130 (0.004)3513 $\lambda rad (\times 10^{-3})$ 0.971 (0.058)3513
Posterior Thalamic Radiation $\lambda ax (\times 10^{-2})$ 0.130 (0.004)3513 $\lambda rad (\times 10^{-3})$ 0.971 (0.058)3513
$\lambda rad (\times 10^{-3}) 0.971 (0.058) 3513$
MO 0.484 (0.040) 3512
Superior Thalamic Radiation $\lambda ax (\times 10^{-2})$ 0.112 (0.004)3513
$\lambda rad (\times 10^{-3}) = 0.911 (0.040) = 3513$
MO 0.404 (0.054) 3511
<u>Sensory Projections</u> Acoustic Radiation $\lambda ax (\times 10^{-2}) = 0.115 (0.004) = 3513$
$\lambda rad (\times 10^{-3}) 0.953 (0.049) 3513$
MO 0.354 (0.048) 3513
Corticospinal Tract $\lambda ax (\times 10^{-2})$ 0.131 (0.004) 3513
$\lambda rad (\times 10^{-3}) = 0.810 (0.036) = 3513$
MO 0.634 (0.041) 3513
Middle Cerebellar Peduncle $\lambda ax (\times 10^{-2})$ 0.120 (0.009)3512
$\lambda rad (\times 10^{-3}) = 0.888 (0.091) = 3512$
MO 0.499 (0.068) 3510
Medial Lemniscus $\lambda ax (\times 10^{-2}) = 0.140 (0.004) = 3513$
λ rad (×10 ⁻³) 1.035 (0.053) 3513
MO 0.670 (0.038) 3510
Callosal FibresForceps Major $\lambda ax (\times 10^{-2})$ $0.157 (0.006)$ 3513
$\lambda rad (\times 10^{-3}) = 0.873 (0.081) = 3513$
MO 0.729 (0.033) 3510
Forceps Minor $\lambda ax (\times 10^{-2}) = 0.130 (0.004) = 3513$
$\lambda rad (\times 10^{-3}) 0.943 (0.053) 3513$
MO 0.494 (0.038) 3513

Supplementary Table 3. Tract-averaged axial, radial and MO characteristics of white matter pathways.

Note. $\lambda ax = axial diffusivity$, $\lambda rad = radial diffusivity$, MO = diffusion tensor mode.

	Tract		Age	Age ²	Sex	Hemisphere	Sex*Age	R^2
Association Fibres	IFOF	FA^{\dagger}	-0.221 (< 0.001)	-0.023 (0.035)	0.007 (0.523)	-0.264 (< 0.001)	0.017 (0.128)	0.116
		MD^\dagger	0.338 (< 0.001)	0.070 (< 0.001)	0.034 (0.002)	0.129 (< 0.001)	-0.009 (0.404)	0.127
	ILF	$\mathbf{F}\mathbf{A}^{\dagger}$	-0.252 (< 0.001)	-0.025 (0.022)	-0.012 (0.293)	-0.249 (< 0.001)	0.016 (0.162)	0.123
		MD^\dagger	0.306 (< 0.001)	0.058 (< 0.001)	0.053 (< 0.001)	0.138 (< 0.001)	-0.011 (0.326)	0.112
	SLF	$\mathbf{F}\mathbf{A}^{\dagger}$	-0.213 (< 0.001)	-0.030 (0.005)	0.031 (0.005)	-0.386 (< 0.001)	0.042 (< 0.001)	0.193
		MD^{\dagger}	0.312 (< 0.001)	0.061 (< 0.001)	-0.009 (0.415)	0.175 (< 0.001)	-0.037 (0.001)	0.123
	Uncinate	FA	-0.219 (< 0.001)		0.134 (0.001)	-0.025 (0.028)	0.006 (0.623)	0.061
		MD^\dagger	0.321 (< 0.001)	0.058 (< 0.001)	-0.011 (0.334)	0.055 (< 0.001)	-0.001 (0.964)	0.099
	Cingulum (Gyrus)	FA	-0.132 (< 0.001)		0.137 (< 0.001)	-0.511 (< 0.001)	0.001 (0.898)	0.294
		MD	0.139 (< 0.001)		-0.081 (< 0.001)	0.068 (< 0.001)	-0.053 (< 0.001)	0.031
	Cingulum (PH)	FA	-0.036 (0.002)		0.202 (< 0.001)	-0.02 (0.042)	-0.042 (< 0.001)	0.043
		MD^\dagger	0.165 (< 0.001)	0.062 (< 0.001)	0.059 (< 0.001)	0.083 (< 0.001)	0.025 (0.031)	0.038
Thalamic Projections	ATR	FA	-0.255 (< 0.001)		0.106 (<0.001)	-0.215 (< 0.001)	0.035 (0.002)	0.119
		MD^{\dagger}	0.496 (< 0.001)	0.103 (< 0.001)	0.056 (< 0.001)	0.003 (0.783)	-0.003 (0.752)	0.238
	PTR	$\mathbf{F}\mathbf{A}^{\dagger}$	-0.226 (< 0.001)	-0.039 (< 0.001)	0.002 (0.835)	-0.113 (< 0.001)	-0.018 (0.132)	0.061
		MD^{\dagger}	0.362 (< 0.001)	0.096 (< 0.001)	0.104 (< 0.001)	0.044 (< 0.001)	0.038 (<0.001)	0.144
	STR	FA	-0.028 (0.016)		0.190 (< 0.001)	-0.040 (< 0.001)	0.067 (< 0.001)	0.042
		MD^{\dagger}	0.361 (< 0.001)	0.057 (< 0.001)	-0.034 (0.002)	-0.060 (< 0.001)	0.007 (0.519)	0.126
Sensory Projections	AR	FA	-0.036 (0.002)		0.170 (< 0.001)	-0.232 (< 0.001)	0.020 (0.082)	0.083
		MD	0.043 (< 0.001)		-0.114 (0.001)	0.047 (< 0.001)	0.005 (0.701)	0.016
	Corticospinal Tract	FA	-0.086 (< 0.001)		0.218 (< 0.001)	-0.151 (< 0.001)	0.079 (< 0.001)	0.080
		MD^\dagger	0.155 (< 0.001)	0.039 (< 0.001)	-0.033 (0.005)	0.093 (< 0.001)	0.054 (< 0.001)	0.034
	MCP	FA	-0.047 (0.005)		0.171 (0.001)	-	0.006 (0.734)	0.030
		MD	0.152 (< 0.001)		0.103 (< 0.001)	-	0.072 (< 0.001)	0.041
	Medial Lemniscus	FA	-0.019 (0.113)		0.193 (< 0.001)	0.065 (< 0.001)	0.035 (0.003)	0.042
		MD	0.045 (< 0.001)		-0.110 (< 0.001)	0.038 (0.001)	0.039 (0.001)	0.016
Callosal Fibres	Forceps Major	$\mathbf{F}\mathbf{A}^{\dagger}$	-0.061 (< 0.001)	-0.041 (0.013)	0.027 (0.109)	-	0.012 (0.488)	0.004
		MD	0.059 (< 0.001)		0.025 (0.132)	-	-0.017 (0.323)	0.004
	Forceps Minor	FA	-0.275 (< 0.001)		0.083 (< 0.001)	-	0.019 (0.239)	0.078
		MD^{\dagger}	0.199 (< 0.001)	0.041 (0.012)	-0.001 (0.932)	-	-0.001 (0.975)	0.036

Supplementary Table 4. Regression models of age and sex on tract-averaged white matter FA and MD.

Note. Standardised β s (*p* values) and adjusted R^2 reported. [†]quadratic model significantly better fit (p < 0.05). Bold type indicates significant effect (p < 0.001). AR: acoustic radiation, ATR: anterior thalamic radiation, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus, MCP: middle cerebellar peduncle, PH: parahippocampal portion, PTR: posterior thalamic radiation, SLF: superior longitudinal fasciculus, STR: superior thalamic radiation, FA: fractional anisotropy, MD: mean diffusivity. Female and left hemisphere coded as 0.

	Tract		Age	Age ²	Sex	Hemisphere	Sex*Age	R^2
Association Fibres	IFOF	ICVF [†]	-0.251 (< 0.001)	-0.047 (< 0.001)	-0.039 (< 0.001)	0.032 (0.005)	0.020 (0.081)	0.063
		$ISOVF^{\dagger}$	0.205 (< 0.001)	0.046 (< 0.001)	-0.014 (0.206)	0.326 (< 0.001)	0.023 (0.043)	0.145
		OD^{\dagger}	-0.062 (< 0.001)	-0.036 (0.002)	-0.080 (< 0.001)	0.247 (< 0.001)	0.010 (0.372)	0.071
	ILF	ICVF [†]	-0.021 (< 0.001)	-0.044 (<0.001)	-0.060 (< 0.001)	-0.007 (0.564)	0.022 (0.067)	0.045
		ISOVF [†]	0.241 (< 0.001)	0.0346 (0.002)	-0.020 (0.072)	0.287 (< 0.001)	0.017 (0.122)	0.137
		OD^{\dagger}	0.009 (0.453)	-0.034 (0.003)	-0.111 (< 0.001)	0.225 (<0.001)	0.017 (0.154)	0.064
	SLF	ICVF [†]	-0.227 (< 0.001)	-0.058 (< 0.001)	-0.016 (0.181)	-0.090 (< 0.001)	0.036 (0.002)	0.057
		ISOVF	0.256 (< 0.001)		-0.021 (0.061)	0.237 (< 0.001)	-0.014 (0.198)	0.121
		OD^{\dagger}	-0.050 (< 0.001)	-0.034 (0.002)	102 (< 0.001)	0.361 (< 0.001)	0.014 (0.201)	0.144
	Uncinate	ICVF [†]	-0.282 (< 0.001)	-0.067 (< 0.001)	0.074 (< 0.001)	0.019 (0.091)	0.003 (0.778)	0.077
		ISOVF	0.200 (< 0.001)		0.062 (< 0.001)	0.020 (0.084)	0.018 (0.117)	0.046
		OD^{\dagger}	0.022 (0.072)	-0.025 (0.030)	-0.137 (< 0.001)	-0.169 (< 0.001)	0.002 (0.861)	0.047
	Cingulum (Gyrus)	ICVF [†]	-0.212 (< 0.001)	-0.050 (< 0.001)	0.140 (< 0.001)	-0.344 (< 0.001)	0.010 (0.378)	0.175
		ISOVF [†]	-0.058 (< 0.001)	-0.035 (0.001)	0.089 (< 0.001)	-0.319 (< 0.001)	-0.041 (< 0.001)	0.114
		OD	0.083 (< 0.001)		-0.069 (< 0.001)	0.358 (< 0.001)	0.023 (0.037)	0.139
	Cingulum (PH)	ICVF [†]	-0.047 (< 0.001)	-0.051 (< 0.001)	0.191 (< 0.001)	0.034 (<0.003)	-0.011 (0.365)	0.040
		ISOVF [†]	0.160 (< 0.001)	0.045 (< 0.001)	0.117 (< 0.001)	0.089 (< 0.001)	0.029 (0.014)	0.049
		OD	0.024 (0.040)		-0.157 (< 0.001)	-0.029 (0.015)	0.039 (< 0.001)	0.026
Thalamic Projections	ATR	ICVF [†]	-0.382 (< 0.001)	-0.070 (< 0.001)	0.027 (0.015)	-0.017 (0.124)	0.001 (0.908)	0.136
		ISOVF [†]	0.343 (< 0.001)	0.089 (< 0.001)	0.135 (< 0.001)	-0.061 (< 0.001)	0.009 (0.428)	0.139
		OD^{\dagger}	-0.197 (< 0.001)	-0.077 (< 0.001)	-0.125 (< 0.001)	0.215 (< 0.001)	-0.011 (0.346)	0.103
	PTR	ICVF [†]	-0.220 (< 0.001)	-0.033 (0.004)	-0.108 (< 0.001)	0.083 (< 0.001)	-0.004 (0.714)	0.068
		ISOVF [†]	0.285 (< 0.001)	0.093 (< 0.001)	0.019 (0.091)	0.175 (< 0.001)	0.042 (< 0.001)	0.111
		OD^{\dagger}	-0.103 (< 0.001)	-0.029 (0.010)	-0.163 (< 0.001)	0.119 (< 0.001)	0.007 (0.524)	0.053
	STR	ICVF [†]	-0.260 (< 0.001)	-0.048 (< 0.001)	-0.012 (0.282)	0.056 (< 0.001)	0.012 (0.301)	0.067
		ISOVF [†]	0.295 (< 0.001)	0.032 (0.005)	-0.065 (< 0.001)	-0.027 (0.017)	0.008 (0.467)	0.085
		OD^{\dagger}	-0.277 (< 0.001)	-0.069 (< 0.001)	-0.255 (< 0.001)	-0.038 (< 0.001)	-0.044 (< 0.001)	0.151
Motor & Sensory	AR	ICVF [†]	-0.161 (< 0.001)	-0.048 (< 0.001)	0.084 (< 0.001)	-0.019 (0.103)	0.018 (0.126)	0.029
Projections		ISOVF [†]	-0.031 (0.011)	-0.029 (0.012)	-0.064 (< 0.001)	0.072 (< 0.001)	0.021 (0.084)	0.011
		OD^{\dagger}	-0.107 (< 0.001)	-0.047 (< 0.001)	-0.096 (< 0.001)	0.270 (< 0.001)	0.006 (0.628)	0.095
	Corticospinal Tract	ICVF [†]	-0.102 (< 0.001)	-0.045 (< 0.001)	0.107 (< 0.001)	-0.161 (< 0.001)	0.009 (0.454)	0.045
	*	ISOVF	0.153 (< 0.001)	· · · ·	0.006 (0.583)	-0.019 (0.111)	0.048 (< 0.001)	0.026
		OD^{\dagger}	-0.060 (< 0.001)	-0.036 (0.001)	-0.261 (< 0.001)	0.013 (0.241)	-0.050 (< 0.001)	0.077
	МСР	ICVF [†]	-0.057 (< 0.001)	-0.057 (0.004)	0.196 (< 0.001)	-	-0.002 (0.925)	0.040
		ISOVF	0.146 (< 0.001)		0.016 (0.330)	-	0.069 (< 0.001)	0.049
		OD	-0.003 (0.047)		-0.184 (< 0.001)	-	-0.012 (0.483)	0.035
	Medial Lemniscus	ICVF	0.016 (0.165)		0.242 (< 0.001)	-0.053 (< 0.001)	-0.001 (0.916)	0.061
		ISOVF	0.037 (0.002)		-0.030 (0.013)	-0.003 (0.828)	0.037 (0.002)	0.003
		OD	0.023 (0.048)		-0.156 (< 0.001)	-0.008 (0.503)	-0.031 (0.009)	0.025
Callosal Fibres	Forceps Major	ICVF [†]	-0.100 (< 0.001)	-0.042 (0.011)	-0.076 (< 0.001)	-	0.021 (0.223)	0.016
		ISOVF	0.029 (0.089)	× /	-0.024 (0.164)	-	-0.016 (0.333)	0.001
		OD	-0.049 (0.003)		-0.200 (< 0.001)	-	0.020 (0.221)	0.044
	Forceps Minor	ICVF [†]	-0.281 (< 0.001)	-0.032 (0.044)	-0.004 (0.817)	-	0.024 (0.136)	0.075
	1	ISOVF	-0.050 (0.003)	、 /	-0.009 (0.603)	-	0.030 (0.079)	0.003
		OD	0.042 (0.013)		-0.140 (< 0.001)	-	0.008 (0.621)	0.020

Supplementary Table 5. Regression models of age and sex on tract-averaged white matter ICVF, ISOVF and OD.

Note. Standardised β s (*p* values) and adjusted R^2 reported. [†]quadratic model significantly better fit (*p* < 0.05). Bold type indicates significant (*p* < 0.001). AR: acoustic radiation, ATR: anterior thalamic radiation, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus, MCP: middle cerebellar peduncle, PH: parahippocampal portion, PTR: posterior thalamic radiation, SLF: superior longitudinal fasciculus, STR: superior thalamic radiation, FA: fractional anisotropy, MD: mean diffusivity. Female and left hemisphere coded as 0.

Association Fibres IFOP $\lambda nd'$ 0.268 (< 0.001)		Tract		Age	Age ²	Sex	Hemisphere	Sex*Age	R^2
Image: state in the s	Association Fibres	IFOF	$\lambda a x^{\dagger}$	0.268 (< 0.001)	0.070 (< 0.001)	0.059 (< 0.001)	-0.019 (0.096)	-0.010 (0.407)	0.073
Image: set of the set			λrad^{\dagger}	0.331 (< 0.001)	0.062 (< 0.001)	0.011 (0.340)	0.183 (< 0.001)	-0.008 (0.448)	0.136
LLF ind" 0.235 (< 0.000)			MO	-0.078 (< 0.001)		0.072 (< 0.001)	-0.075 (< 0.001)	-0.028 (0.020)	0.016
Image: state is a state state is state is a		ILF	$\lambda a x^{\dagger}$	0.235 (< 0.001)	0.058 (< 0.001)	0.077 (< 0.001)	0.008 (0.505)	-0.012 (0.291)	0.060
Nor-0.05 (-0.00)0.027 (0.00)0.027 (0.00)0.027 (0.00)0.027 (0.00)0.027 (0.00)0.007 (0.00)0.016 (-0.00)0.016 (-0.00)0.016 (-0.00)0.016 (-0.00)0.016 (-0.00)0.016 (-0.00)0.016 (-0.00)0.016 (-0.00)0.016 (-0.00)0.007 (0.01)0.005 (0.01)<			λrad^{\dagger}	0.314 (< 0.001)	0.054 (< 0.001)	0.026 (0.022)	0.195 (< 0.001)	-0.008 (0.463)	0.132
SLFixa'0.277 (< 0.00)0.0030.029 (0.01)0.023 (0.023)0.023 (0.0530.073ixa'0.000 (0.013)0.0055 (< 0.001)			MO^{\dagger}	-0.105 (< 0.001)	-0.027 (0.015)	0.170 (< 0.001)	-0.251 (< 0.001)	-0.020 (0.082)	0.099
NomeNo		SLF	$\lambda a x^{\dagger}$	0.277 (< 0.001)	0.063 (< 0.001)	0.029 (0.011)	-0.013 (0.254)	-0.023 (0.045)	0.074
No0.001 (096)0.015 (< 0.001)0.016 (< 0.001)0.016 (< 0.001)0.003 (0.81)0.006had0.320 (< 0.001)			λrad^{\dagger}	0.299 (< 0.001)	0.055 (< 0.001)	-0.041 (< 0.001)	0.224 (< 0.001)	-0.041 (< 0.001)	0.135
IncinateIncinateIncinateIncinateIncinateIncinateIncinateIncinateMO-0.032 (< 0.001)			MO	-0.001 (0.916)		0.215 (< 0.001)	0.116 (< 0.001)	0.002 (0.167)	0.060
Image Image Mode <		Uncinate	$\lambda a x^{\dagger}$	0.266 (< 0.001)	0.059 (< 0.001)	0.066 (< 0.001)	0.113 (< 0.001)	0.003 (0.819)	0.086
MO-0.047 (< 0.001)0.056 (< 0.001)0.072 (< 0.001)0.002 (0.836)0.089And"0.022 (< 0.001)			λrad^{\dagger}	0.320 (< 0.001)	0.050 (< 0.001)	-0.048 (< 0.001)	0.009 (0.441)	-0.002 (0.882)	0.096
Image: binometry in the section of			MO	-0.047 (< 0.001)		0.056 (< 0.001)	0.274 (< 0.001)	0.002 (0.836)	0.080
Image: section of the section of th		Cingulum (Gyrus)	λαχ	-0.027 (0.011)		0.049 (< 0.001)	-0.429 (<0.001)	-0.042 (< 0.001)	0.189
Not•0.235 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.005 (< 0.001)0.001 (< 0.17 (< 0.001)0.007 (< 0.001)0.009 (< 0.01 (< 0.17 (< 0.001)0.007 (< 0.01 (< 0.001)0.009 (< 0.01 (< 0.17 (< 0.001)0.007 (< 0.01 (< 0.001)0.009 (< 0.01 (< 0.17 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.007 (< 0.01 (< 0.001)0.017 (< 0.01 (< 0.001)0.017 (< 0.01 (< 0.001)0.017 (< 0.01 (< 0.001)0.017 (< 0.01 (< 0.001)0.017 (< 0.01 (< 0.001)0.017 (< 0.01 (< 0.001)0.017 (< 0.01 (< 0.001)0.017 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (<			λrad^{\dagger}	0.202 (< 0.001)	0.031 (0.002)	-0.127 (< 0.001)	0.450 (< 0.001)	-0.026 (0.012)	0.253
Cingulum (PH) inda'Aat'0.168 (<0.001)0.065 (<0.001)0.010 (<0.001)0.098 (<0.001)0.003 (<0.002)Thalamic ProjectionsMO-0.018 (0.115)0.011 (<0.001)			MO^\dagger	-0.235 (< 0.001)	-0.056 (< 0.001)	0.054 (< 0.001)	-0.496 (< 0.001)	-0.020 (0.052)	0.299
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cingulum (PH)	$\lambda a x^{\dagger}$	0.168 (<0.001)	0.065 (< 0.001)	0.169 (< 0.001)	0.098 (< 0.001)	0.008 (0.496)	0.070
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			λrad^{\dagger}	0.153 (< 0.001)	0.054 (< 0.001)	0.011 (0.371)	0.067 (< 0.001)	0.032 (0.007)	0.028
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MO	-0.018 (0.115)		0.157 (< 0.001)	0.131 (< 0.001)	-0.009 (0.434)	0.041
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Thalamic Projections	ATR	$\lambda a x^{\dagger}$	0.478 (< 0.001)	0.115 (< 0.001)	0.126 (< 0.001)	-0.076 (< 0.001)	0.007 (0.532)	0.246
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			λrad^{\dagger}	0.468 (< 0.001)	0.090 (< 0.001)	0.016 (0.125)	0.030 (0.005)	-0.009 (0.419)	0.208
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			MO	-0.001 (0.924)	. ,	0.085 (< 0.001)	0.029 (0.014)	-0.029 (0.016)	0.008
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		PTR	$\lambda a x^{\dagger}$	0.300 (< 0.001)	0.093 (< 0.001)	0.139 (< 0.001)	-0.032 (0.004)	0.028 (0.014)	0.113
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			λrad^{\dagger}	0.371 (< 0.001)	0.092 (< 0.001)	0.066 (<0.001)	0.087 (<0.001)	0.043 (< 0.001)	0.147
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			MO^{\dagger}	-0.129 (< 0.001)	-0.028 (0.016)	0.150 (< 0.001)	-0.060 (< 0.001)	-0.055 (< 0.001)	0.041
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		STR	$\lambda a x^{\dagger}$	0.388 (< 0.001)	0.075 (< 0.001)	0.087 (0.001)	-0.061 (<0.001)	0.038 (<0.001)	0.160
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			λrad^{\dagger}	0.274 (< 0.001)	0.035 (0.002)	-0.121 (< 0.001)	-0.068 (< 0.001)	-0.017 (0.144)	0.085
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MO^{\dagger}	0.212 (< 0.001)	0.032 (< 0.003)	0.240 (< 0.001)	0.166 (< 0.001)	0.038 (< 0.001)	0.137
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Motor & Sensory	AR	λαχ	0.036 (0.002)	. ,	-0.047 (< 0.001)	-0.103 (< 0.001)	0.011 (0.335)	0.013
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Projections		λrad	0.043 (< 0.001)		-0.135 (< 0.001)	0.147 (< 0.001)	-0.002 (0.873)	0.040
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MO	-0.015 (0.202)		-0.006 (0.588)	-0.301 (< 0.001)	0.024 (0.036)	0.091
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Corticospinal Tract	$\lambda a x^{\dagger}$	0.099 (< 0.001)	0.048 (< 0.001)	0.048 (< 0.001)	0.138 (< 0.001)	-0.024 (0.037)	0.041
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			λrad	0.130 (<0.001)	()	-0.148 (< 0.001)	0.013 (< 0.001)	0.003 (0.779)	0.051
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MO	0.014 (0.243)		0.140 (< 0.001)	0.046 (0.001)	0.067 (< 0.001)	0.026
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		MCP	λαχ	0.134 (< 0.001)		0.152 (< 0.001)	-	0.064 (< 0.001)	0.048
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			λrad	0.150 (< 0.001)		0.054 (0.001)	-	0.071 (< 0.001)	0.031
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MO	0.012 (0.483)		0.174 (< 0.001)	-	0.045 (0.007)	0.032
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Medial Lemniscus	λαχ	0.060 (< 0.001)		0.034 (0.005)	0.020 (0.089)	0.047 (< 0.001)	0.007
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			λrad	0.035 (0.003)		-0.185 (< 0.001)	0.038 (0.001)	0.024 (0.044)	0.036
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MO [†]	-0.027 (0.026)	-0.030 (0.009)	0.153 (< 0.001)	0.047 (< 0.001)	0.022 (0.069)	0.026
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Callosal Fibres	Forceps Major	λαχ	0.064 (< 0.001)		0.056 (< 0.001)	-	-0.021 (0.218)	0.007
MO ⁺ -0.100 (<0.001) -0.059 (<0.001) 0.073 (<0.001) - -0.032 (0.059) 0.015 Forceps Minor λax^{\dagger} 0.094 (<0.001)			λrad [†]	0.057 (0.001)	0.035 (0.035)	0.002 (0.926)	-	-0.015 (0.384)	0.003
Forceps Minor λax^{\dagger} 0.094 (<0.001) 0.046 (0.004) 0.074 (<0.001) - 0.009 (0.585) 0.015 λrad^{\dagger} 0.226 (<0.001)			MO†	-0.100 (< 0.001)	-0.059 (< 0.001)	0.073 (< 0.001)	-	-0.032 (0.059)	0.015
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Forceps Minor	λax [†]	0.094 (< 0.001)	0.046 (0.004)	0.072 (< 0.001)	-	0.009 (0.585)	0.015
		r orceps winor	λrad†	0.226 (< 0.001)	0.036 (0.027)	-0.044 (0.008)	_	-0.006 (0.735)	0.048
			MO	-0 203 (< 0.001)	0.050 (0.027)	-0.020 (0.228)	_	-0.005 (0.772)	0.041

Supplementary Table 6. Regression models of age and sex on tract-averaged white matter λax , λrad and MO.

Note. Standardised β s (*p* values) and adjusted R^2 reported. [†]quadratic model significantly better fit (*p* < 0.05). Bold type indicates significant (*p* < 0.001). λ ax = axial diffusivity, λ rad = radial diffusivity, MO = diffusion tensor mode, AR: acoustic radiation, ATR: anterior thalamic radiation, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus, MCP: middle cerebellar peduncle, PH: parahippocampal portion, PTR: posterior thalamic radiation, SLF: superior longitudinal fasciculus, STR: superior thalamic radiation, FA: fractional anisotropy, MD: mean diffusivity. Female and left hemisphere coded as 0.

auditional it	csidual cova	Trances	as mulcaleu	by the mout	1 mounte		-5.
Measure	χ^2	df	р	RMSEA	CFI	TLI	SRMR
FA	2719.02	174	<.001	0.065	0.964	0.943	0.031
MD	6504.57	176	<.001	0.101	0.930	0.882	0.066
ICVF	6781.80	178	<.001	0.103	0.952	0.920	0.031
ISOVF	4714.85	178	<.001	0.085	0.923	0.871	0.052
OD	3084.41	183	<.001	0.067	0.924	0.876	0.064
λαχ	6083.863	176	<.001	0.098	0.917	0.859	0.068
λrad	6001.114	182	<.001	0.095	0.931	0.887	0.053

Supplementary Table 7. Fit statistics for one-factor models for each of the five white matter measurements. All models included 22 tracts. All models were adjusted for age, age² (for all except FA), and sex, include residual covariances between the left and right tracts measured bilaterally and additional residual covariances as indicated by the model modification indices.

Note. FA: fractional anisotropy; MD: mean diffusivity; ICVF: intracellular volume fraction; ISOVF: isotropic volume fraction; OD: orientation dispersion, $\lambda ax = axial$ diffusivity, $\lambda rad = radial$ diffusivity. RMSA: Root Mean Square Error of Approximation; CFI: Comparative Fit Index; TLI: Tucker-Lewis Index; SRMR: Standardized Root Mean Square Residual.

Tract	Standardized factor loading									
	FA	MD	ICVF	ISOVF	OD	λαχ	λrad			
Left AR	0.601	0.484	0.848	0.347	0.299	0.420	0.512			
Right AR	0.600	0.550	0.841	0.423	0.305	0.499	0.550			
Left ATR	0.748	0.698	0.825	0.561	0.655	0.695	0.694			
Right ATR	0.736	0.690	0.820	0.598	0.652	0.686	0.698			
Left CingG	0.450	0.697	0.720	0.481	0.319	0.414	0.602			
Right CingG	0.416	0.694	0.724	0.558	0.296	0.429	0.590			
Left CST	0.482	0.586	0.774	0.350	0.184	0.414	0.558			
Right CST	0.472	0.606	0.754	0.431	0.210	0.429	0.564			
Forceps Major	0.555	0.431	0.792	0.287	0.325	0.392	0.476			
Forceps Minor	0.790	0.739	0.881	0.599	0.554	0.673	0.736			
Left IFOF	0.832	0.832	0.927	0.784	0.697	0.754	0.841			
Right IFOF	0.831	0.852	0.934	0.820	0.699	0.763	0.875			
Left ILF	0.782	0.785	0.920	0.748	0.643	0.709	0.812			
Right ILF	0.829	0.833	0.931	0.812	0.641	0.743	0.848			
Left PTR	0.591	0.589	0.837	0.482	0.474	0.533	0.612			
Right PTR	0.599	0.638	0.849	0.541	0.445	0.554	0.628			
Left SLF	0.805	0.853	0.906	0.738	0.469	0.745	0.837			
Right SLF	0.816	0.845	0.903	0.759	0.498	0.737	0.826			
Left STR	0.597	0.708	0.817	0.631	0.266	0.534	0.674			
Right STR	0.568	0.702	0.807	0.628	0.275	0.541	0.657			
Left Unc	0.625	0.541	0.748	0.439	0.423	0.536	0.592			
Right Unc	0.631	0.652	0.793	0.574	0.447	0.623	0.664			

Supplementary Table 8. Standardized factor loadings of each white matter tract in the one-factor models.

Note. Factor loadings are calculated after controlling for age, age^2 (for all except FA) and sex; note that for many tracts, these loadings changed with age – see the de-differentiation analyses. The models included residual covariances between the left and right tracts measured bilaterally, and additional residual covariances as indicated by the model modification indices. AR: acoustic radiation, ATR: anterior thalamic radiation, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus, MCP: middle cerebellar peduncle, PH: parahippocampal portion, PTR: posterior thalamic radiation, SLF: superior longitudinal fasciculus, STR: superior thalamic radiation, FA: fractional anisotropy, MD: mean diffusivity, ICVF: intra-cellular volume fraction, ISOVF: isotropic volume fraction, OD: orientation dispersion, $\lambda ax = axial diffusivity$, $\lambda rad = radial diffusivity$.

FA	MD	ICVF	ISOVF	OD	λax	λrad
$L \text{ ILF} \leftrightarrow L \text{ IFOF}$	$R \text{ ILF} \leftrightarrow R \text{ IFOF}$	$L \text{ ILF} \leftrightarrow L \text{ IFOF}$	$L \text{ ILF} \leftrightarrow L \text{ IFOF}$	$L STR \leftrightarrow L CST$	$L \text{ ILF} \leftrightarrow L \text{ IFOF}$	$L \text{ ILF} \leftrightarrow L \text{ IFOF}$
$R PTR \leftrightarrow R ILF$	$R PTR \leftrightarrow L ILF$	$L PTR \leftrightarrow L ILF$	$R \text{ ILF} \leftrightarrow R \text{ IFOF}$	$R \ PTR \leftrightarrow R \ ILF$	$R STR \leftrightarrow R SLF$	$R PTR \leftrightarrow L ILF$
$R STR \leftrightarrow R CST$	$R \ PTR \leftrightarrow R \ ILF$	$R \text{ ILF} \leftrightarrow R \text{ IFOF}$	$R PTR \leftrightarrow R ILF$	$L \text{ ILF} \leftrightarrow L \text{ IFOF}$	$R PTR \leftrightarrow R ILF$	$R \ PTR \leftrightarrow R \ ILF$
$L PTR \leftrightarrow L ILF$	$R STR \leftrightarrow R SLF$	L PTR \leftrightarrow L IFOF	$L PTR \leftrightarrow L IFOF$	$R STR \leftrightarrow R CST$	$R STR \leftrightarrow R CST$	$R SLF \leftrightarrow L ILF$
L PTR \leftrightarrow L IFOF	$R SLF \leftrightarrow L ILF$	$R PTR \leftrightarrow R ILF$	$L PTR \leftrightarrow L ILF$	$L STR \leftrightarrow R CST$	$L PTR \leftrightarrow L ILF$	L UNC \leftrightarrow L ILF
$R \text{ ILF} \leftrightarrow R \text{ IFOF}$	$L PTR \leftrightarrow L ILF$	$R STR \leftrightarrow RCST$	$R STR \leftrightarrow R SLF$	$R STR \leftrightarrow L CST$	$L PTR \leftrightarrow L IFOF$	$R STR \leftrightarrow R SLF$
$R PTR \leftrightarrow R IFOF$	$F MIN \leftrightarrow F MAJ$	$R STR \leftrightarrow R SLF$	$F MIN \leftrightarrow F MAJ$	$R \text{ ILF} \leftrightarrow R \text{ IFOF}$	$R \text{ ILF} \leftrightarrow R \text{ IFOF}$	$F MIN \leftrightarrow F MAJ$
$L PTR \leftrightarrow R ILF$	$R \text{ ILF} \leftrightarrow L \text{ IFOF}$	$L STR \leftrightarrow L CST$	$L \text{ STR} \leftrightarrow R \text{ SLF}$	$R \text{ STR} \leftrightarrow R \text{ SLF}$	L UNC \leftrightarrow F MIN	L UNC \leftrightarrow L IFOF
L PTR \leftrightarrow R IFOF	L PTR \leftrightarrow L IFOF	$R PTR \leftrightarrow F MIN$	$L STR \leftrightarrow L SLF$	$R PTR \leftrightarrow R IFOF$	$R \text{ UNC} \leftrightarrow F \text{ MIN}$	$R PTR \leftrightarrow L IFOF$
$R \text{ IFOF} \leftrightarrow R \text{ ATR}$	$R \text{ PTR} \leftrightarrow L \text{ IFOF}$	$R PTR \leftrightarrow R IFOF$	$R STR \leftrightarrow L SLF$	$R STR \leftrightarrow R ATR$	$R PTR \leftrightarrow R IFOF$	$R \text{ ILF} \leftrightarrow R \text{ IFOF}$
$L \text{ SLF} \leftrightarrow L \text{ ILF}$	L UNC \leftrightarrow L IFOF	$L STR \leftrightarrow R CST$	L IFOF \leftrightarrow L ATR	$R \text{ UNC} \leftrightarrow R \text{ ILF}$	$R STR \leftrightarrow R ATR$	L IFOF \leftrightarrow L ATR
L ILF \leftrightarrow R IFOF	L UNC \leftrightarrow R ILF	L PTR \leftrightarrow F MIN	R IFOF \leftrightarrow R ATR	$L STR \leftrightarrow R ATR$	$R STR \leftrightarrow L SLF$	L UNC \leftrightarrow R ILF
$R \text{ PTR} \leftrightarrow L \text{ ILF}$	$R \text{ IFOF} \leftrightarrow R \text{ ATR}$	$R STR \leftrightarrow L CST$	$R PTR \leftrightarrow R IFOF$	$F MIN \leftrightarrow L ATR$	$R \text{ ILF} \leftrightarrow L \text{ IFOF}$	$R STR \leftrightarrow R CST$
$R \text{ ILF} \leftrightarrow L \text{ IFOF}$	L PTR \leftrightarrow R ILF	$R \text{ SLF} \leftrightarrow R \text{ CST}$	$L \text{ SLF} \leftrightarrow L \text{ ILF}$	$L \text{ SLF} \leftrightarrow L \text{ CST}$	L ILF \leftrightarrow R IFOF	$L STR \leftrightarrow R SLF$
R PTR \leftrightarrow L IFOF	$\mathbb{L} \ SLF \leftrightarrow \mathbb{L} \ IFOF$	$R \text{ ILF} \leftrightarrow F \text{ MIN}$	$L STR \leftrightarrow L CST$	$F MIN \leftrightarrow R ATR$	$L \text{ STR} \leftrightarrow L \text{ SLF}$	$R \text{ ILF} \leftrightarrow L \text{ IFOF}$
$L ILF \leftrightarrow L AR$	$R STR \leftrightarrow R CST$	L ILF \leftrightarrow F MIN	$R STR \leftrightarrow R ATR$	L IFOF \leftrightarrow L ATR	$R PTR \leftrightarrow L ILF$	L UNC \leftrightarrow R PTR
$L STR \leftrightarrow R CST$	$R \text{ UNC} \leftrightarrow L \text{ IFOF}$	L PTR \leftrightarrow R ILF	L UNC \leftrightarrow R STR	-	$L \text{ UNC} \leftrightarrow L \text{ ATR}$	$L \text{ UNC} \leftrightarrow L \text{ PTR}$
$R\;SLF\leftrightarrowL\;IFOF$	$R \text{ UNC} \leftrightarrow R \text{ ILF}$	$R PTR \leftrightarrow L ILF$	$L \text{ SLF} \leftrightarrow L \text{ IFOF}$	-	L IFOF \leftrightarrow L ATR	
$L STR \leftrightarrow L CST$	$L \text{ ILF} \leftrightarrow L \text{ IFOF}$	$R \text{ IFOF} \leftrightarrow L \text{ ATR}$	$L \text{ UNC} \leftrightarrow L \text{ STR}$	-	$R \text{ IFOF} \leftrightarrow R \text{ ATR}$	
$R STR \leftrightarrow L CST$	$L SLF \leftrightarrow L PTR$	$R \text{ ILF} \leftrightarrow L \text{ IFOF}$	$L SLF \leftrightarrow L PTR$	-	$R PTR \leftrightarrow L IFOF$	
$L STR \leftrightarrow L AR$	$R STR \leftrightarrow R ATR$	R PTR \leftrightarrow L IFOF	$L \text{ UNC} \leftrightarrow L \text{ ATR}$	-	$L STR \leftrightarrow R SLF$	
$L SLF \leftrightarrow L PTR$	$R \text{ IFOF} \leftrightarrow F \text{ MAJ}$	-	-	-	$L PTR \leftrightarrow R ILF$	
$R ILF \leftrightarrow F MIN$	-	-	-	-	L PTR \leftrightarrow R IFOF	
$R \text{ IFOF} \leftrightarrow L \text{ ATR}$	-	-	-	-		
L UNC \leftrightarrow L ILF	-	-	-	-		

Supplementary Table 9. Residual covariance paths added to the one-factor models for each white matter structural measure.

Note. L = left hemisphere, R = right hemisphere. AR: acoustic radiation, ATR: anterior thalamic radiation, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus, MCP: middle cerebellar peduncle, PH: parahippocampal portion, PTR: posterior thalamic radiation, SLF: superior longitudinal fasciculus, STR: superior thalamic radiation, FA: fractional anisotropy, MD: mean diffusivity, ICVF: intra-cellular volume fraction, ISOVF: isotropic volume fraction, OD: orientation dispersion, $\lambda ax = axial diffusivity$, $\lambda rad = radial diffusivity$.

Latent	Intercept			Age			Age ²		
factor	β	SE	р	β	SE	р	β	SE	р
gFA	0.000	0.016	0.999	-0.254	0.016	< 0.001	-		-
gMD	-0.071	0.022	0.001	0.368	0.016	< 0.001	0.071	0.015	< 0.001
gICVF	0.050	0.023	0.026	-0.265	0.017	< 0.001	-0.051	0.016	0.001
gISOVF	-0.046	0.023	0.044	0.273	0.016	< 0.001	0.046	0.016	0.004
gOD	0.068	0.023	0.004	-0.120	0.017	< 0.001	-0.068	0.017	< 0.001
gλax	-0.088	0.022	<.001	0.341	0.016	< 0.001	0.088	0.016	< 0.001
gλrad	-0.065	0.015	0.003	0.363	0.016	< 0.001	0.065	0.015	< 0.001

Supplementary Table 10. Regression of the latent (general) factor from each of the five white matter microstructural measures on age and age².

Note. The values below correspond to the trajectories shown in Figure 6 (left panel). A model regressing the latent FA factor on age (Akaike Information Criterion = 9740.60; Bayesian Information Criterion = 9765.25) had fit that was not significantly different from a model that included both age and age² (AIC = 9739.86; BIC = 9758.35): F(1) = 1.26, p = 0.26. For all other models, the models including age² provided significantly better fit (all p < 0.004).

Measure	Model	χ^2	df	AIC	BIC	<i>p</i> diff
FA	Common	3389.12	195	-85492.07	-84863.32	
	Independent	2855.94	174	-85983.25	-85225.05	< 0.0001
	Common + Independent	2898.43	181	-85954.76	-85239.71	< 0.0001
MD	Common	9767.09	219	-36176.97	-35560.55	-
	Independent	8437.64	177	-37422.42	-36547.10	< 0.0001
	Common + Independent	8442.18	181	-37425.87	-36575.21	0.338
ICVF	Common	8385.93	220	257503.04	258113.30	-
	Independent	7205.96	178	256407.07	257276.23	< 0.0001
	Common + Independent	7219.76	186	256404.88	257224.72	0.087
ISOVF	Common	5918.98	220	222396.66	223006.92	-
	Independent	4659.73	178	221221.41	222090.57	< 0.0001
	Common + Independent	4669.02	188	221210.70	222018.21	0.505
OD	Common	3949.20	225	-137318.74	-136739.31	-
	Independent	3764.84	207	-132794.00	-131936.62	< 0.0001
	Common + Independent	3052.50	193	-138151.45	-137374.76	< 0.0001
λαχ	Common	7535.40	218	15457.67	16080.26	-
	Independent	6094.01	176	14100.28	14981.77	< 0.0001
	Common + Independent	6100.60	182	14094.87	14939.37	0.360
λrad	Common	7311.37	224	38354.49	38940.09	-
	Independent	6240.41	182	37367.53	38212.03	< 0.0001
	Common + Independent	6253.29	194	37356.41	38126.94	0.378

Supplementary Table 11. Relative model fit indices for each of the common, independent, and common + independent age pathway models.

Note. Degrees of freedom differ due to the residual paths being included in the models. These residual paths were identical to those included in the age-moderation models described above. Values for p_{diff} refer to the difference (χ^2 test) between the model and the model in the row above. AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion. -

	p	p	SE
ns			
age	-0.060	< 0.001	0.006
gICVF	0.925	< 0.001	0.006
gOD	-0.464	< 0.001	0.007
age	-0.251	< 0.001	0.016
age	-0.095	< 0.001	0.015
-			
ces			
gOD	0.239	< 0.001	0.015
-			
<u> Parameters</u>			
IDE	-0.232	< 0.001	0.015
IDE	0.044	< 0.001	0.007
IDE	-0.188	< 0.001	0.015
	-0.247	< 0.001	0.016
	ns age gICVF gOD age age gOD Parameters IDE IDE IDE IDE	p age -0.060 gICVF 0.925 gOD -0.464 age -0.251 age -0.095 ces gOD 0.239 Parameters IDE -0.232 IDE 0.044 IDE -0.188 -0.247 -0.247 -0.247	p p ns age -0.060 <0.001 gICVF 0.925 <0.001 gOD -0.464 <0.001 age -0.251 <0.001 age -0.095 <0.001 age -0.095 <0.001 ees gOD 0.239 <0.001 DE -0.232 <0.001 IDE 0.044 <0.001 IDE -0.188 <0.001 -0.247 <0.001

Supplementary Table 12. Mediation analysis of age effects on FA by ICVF and OD. β p SE

Note. Standardised betas reported, IDE = indirect effects, SE = standard error, gFA = general factor of fractional anisotropy, gICVF = general factor of intracellular volume fraction, gOD = general factor of orientation dispersion.

	Mean (SD)	Age	Age ²	Sex	Sex*Age	R^2
Total Brain Volume [†]	1174150.00 (111919.80)	-0.579 (< 0.001)	-0.031 (0.026)	-0.121 (< 0.001)	0.101 (< 0.001)	0.299
Grey Matter Volume [†]	621076.8 (55761.55)	-0.615 (< 0.001)	-0.033 (0.009)	-0.302 (< 0.001)	0.117 (< 0.001)	0.423
White Matter Volume	553073.30 (62228.07)	-0.307 (< 0.001)	-	0.135 (< 0.001)	0.040 (0.212)	0.094
Left Hippocampal V. [†]	3827.15 (467.02)	-0.223 (< 0.001)	-0.038 (0.015)	-0.249 (< 0.001)	-0.037 (0.251)	0.125
Right Hippocampal V. [†]	3937.95 (481.12)	-0.204 (< 0.001)	-0.069 (< 0.001)	-0.230 (< 0.001)	-0.063 (0.050)	0.113
Left Thalamus Volume	7824.38 (754.81)	-0.399 (<0.001)	-	-0.231 (<0.001)	-0.003 (0.834)	0.222
Right Thalamus Volume [†]	7629.53 (729.26)	-0.415 (<0.001)	-0.032 (<0.001)	-0.221 (<0.001)	0.001 (0.9402)	0.229

Supplementary Table 13. Descriptive statistics and regression models of age and sex on brain volumetric indices.

Note. Mean and SD are of raw (unscaled) volumes (mm³), regression models are corrected for head size. Standardised β s (*p* values) and adjusted R^2 reported. [†]quadratic model significantly better fit (*p* < 0.05). Bold type indicates significant effect (*p* < 0.001). Female coded as 0. All variables corrected for head size. Hippocampal volume is the average of left and right.

	gFA	gMD	gICVF	gISOVF	gOD	gλax	gλrad	TBV	GMV	WMV	IHCV	rHCV	LThalV	RThalV
gFA														
gMD	-0.782													
gICVF	0.833	-0.871												
gISOVF	-0.039 [†]	0.334	0.149											
gOD	0.158	0.386	-0.289	0.133										
gλax	-0.486	0.901	-0.715	0.402	0.682									
gλrad	-0.886	0.973	-0.889	0.276	0.205	0.800								
TBV	0.166	-0.276	0.222	-0.182	-0.083	-0.251	-0.269							
GM	0.201	-0.311	0.238	-0.229	-0.152	-0.279	-0.305	0.847						
WM	0.062	-0.128	0.117	-0.058	0.029^{\dagger}	-0.121	-0.123	0.789	0.341					
lHCV	0.022^{\dagger}	-0.169	0.106	-0.153	-0.152	-0.176	-0.145	0.374	0.410	0.189				
rHCV	0.031^{\dagger}	-0.171	0.103	-0.161	-0.132	-0.175	-0.147	0.376	0.390	0.214	0.620			
LThalV	0.081	-0.246	0.193	-0.155	-0.154	-0.242	-0.226	0.645	0.591	0.458	0.541	0.476		
RThalV	0.091	-0.262	0.199	-0.173	-0.162	-0.259	-0.241	0.660	0.609	0.463	0.496	0.539	0.916	
Age	-0.254	0.351	-0.252	0.263	0.104	0.320	0.347	-0.531	-0.573	-0.277	-0.250	-0.234	-0.411	-0.424

Supplementary Table 14. Correlation matrix among brain diffusion factor scores and volumetric measures.

Note. Pearson's *r* reported. [†]not significant at p < 0.001. Volumetric measures are corrected for head size.

Supplementary Table 15. Regression models in training and test halves of the full sample following elastic net regression results for MRI predictors of age variance.

	<u>Training S</u>	<u>Set (n = 1756)</u>	<u>Test Set (n = 1757)</u>				
	β	Р	β	Р			
gFA	-0.085	0.012	-0.071	0.035			
gMD	0.085	0.019	0.109	0.003			
gISOVF	0.119	< 0.001	0.124	< 0.001			
Total Brain Volume	-0.160	< 0.001	-0.171	< 0.001			
Grey Matter Volume	-0.375	< 0.001	-0.348	< 0.001			

Note. Standardised β s and p values reported. Adjusted R^2 for Training Set = 0.376 and Test Set = 0.377. Training and Test sets did not differ significantly by mean age (t (3510.8) = -0.803, p = 0.422) or age variance (F (1755) = 0.983, p = 0.723). Variance inflation factors all < 3.84.

	Loadings (%var)	gTR	Thalamus	TBV	R^2	VIF
FA	≥0.794 (67.5%)	-0.141 (< 0.001)	-0.300 (< 0.001)	-	0.129	≤1.05
		-0.120 (< 0.001)	-0.153 (< 0.001)	-0.468 (< 0.001)	0.324	≤1.16
MD	≥0.856 (78.5%)	0.403 (< 0.001)	-0.248 (< 0.001)	-	0.265	≤1.05
		0.212 (< 0.001)	-0.151 (< 0.001)	-0.378 (<0.001)	0.379	≤1.25
ICVF	≥0.907 (86.7%)	-0.258 (< 0.001)	-0.291 (< 0.001)	-	0.175	≤1.03
		-0.161 (< 0.001)	-0.165 (< 0.001)	-0.435 (< 0.001)	0.335	≤1.18
ISOVF	≥0.768 (67.0%)	0.333 (< 0.001)	-0.280 (< 0.001)	-	0.218	≤1.03
		0.229 (< 0.001)	-0.163 (< 0.001)	0.410 (< 0.001)	0.358	≤1.20
OD	≥0.666 (54.1%)	-0.342 (< 0.001)	-0.392 (< 0.001)	-	0.224	≤1.03
		-0.227 (< 0.001)	-0.242 (< 0.001)	-0.403 (< 0.001)	0.356	≤1.22

Supplementary Table 16. Regression models for thalamic radiation microstructure and thalamic volume as predictors of age variance beyond general brain atrophy.

Note. Standardised β s (*p* values) and adjusted R^2 reported. Loadings (%var) = loadings and percentage of variance explained by the first unrotated solution of a principal component analysis of the three thalamic radiations, gTR = general measure of thalamic radiation microstructure, TBV = total brain volume. Bold type indicates significant effect (p < 0.001). Volumes corrected for head size.

36

Supplementary Table 17. Statistical significance tests for λ_1 and λ_1 ' parameters (main effects and age moderation effects of general factors) in the dedifferentiation models for FA, MD, ICVF, ISOVF and OD (Equation S2 specification).

Tract	Parameter		FA	,		MD	1	T	ICVF			ISOVF			OD	
		Est.	SE	D	Est.	SE	D	Est.	SE	n	Est.	SE	p	Est.	SE	D
Left AR	λι	1.271	0.088	<0.001	0.164	0.016	<0.001	2.152	0.092	<0.001	0.802	0.094	<0.001	0.542	0.073	<0.001
	λ.'	0.024	0.046	0.607	0.089	0.082	0.276	0.103	0.049	0.036	-0.039	0.048	0.416	-0.032	0.038	0 398
Right AR	λ_1	1.252	0.082	<0.001	0.163	0.014	< 0.001	2.024	0.090	< 0.001	0.727	0.081	< 0.001	0.685	0.068	<0.001
0	λ ₁ '	0.017	0.043	0.692	0.199	0.075	0.008	0.154	0.049	0.002	0.043	0.042	0.306	-0.122	0.036	0.001
Left ATR	λ,	1.100	0.061	<0.001	0.122	0.009	<0.001	1.944	0.086	< 0.001	0.375	0.041	< 0.001	0.730	0.043	< 0.001
	λ_1'	0.148	0.033	< 0.001	0.621	0.050	<0.001	0.257	0.047	< 0.001	0.166	0.022	< 0.001	-0.008	0.022	0.728
Right ATR	λ_1	1.041	0.060	<0.001	0.127	0.009	< 0.001	1.940	0.086	< 0.001	0.426	0.039	< 0.001	0.788	0.044	< 0.001
-	λ.'	0.143	0.032	<0.001	0.602	0.049	<0.001	0.249	0.047	<0.001	0.161	0.022	<0.001	-0.011	0.023	0.623
Left CingG	λ	1.470	0.134	< 0.001	0.186	0.010	<0.001	2.383	0.123	< 0.001	0.767	0.060	< 0.001	0.536	0.075	< 0.001
8	λ_1'	0.026	0.071	0.711	0.035	0.051	0.493	0.076	0.065	0.247	-0.023	0.032	0.467	0.015	0.041	0.715
Right CingG	λ	1.163	0.137	< 0.001	0.182	0.010	< 0.001	2.203	0.117	< 0.001	0.874	0.056	<0.001	0.504	0.086	< 0.001
0 0	λ_1'	0.112	0.072	0.118	0.057	0.051	0.262	0.092	0.062	0.139	-0.060	0.029	0.039	0.041	0.046	0.371
Left CST	λ_1	1.009	0.090	< 0.001	0.111	0.009	<0.001	1.544	0.080	< 0.001	0.390	0.057	< 0.001	0.331	0.061	< 0.001
	λ ₁ '	0.026	0.047	0.582	0.154	0.046	0.001	0.129	0.043	0.003	0.047	0.030	0.118	-0.045	0.032	0.160
Right CST	λ_1	1.067	0.092	< 0.001	0.124	0.009	<0.001	1.492	0.081	< 0.001	0.523	0.055	< 0.001	0.337	0.059	< 0.001
-	λ_1 '	-0.001	0.048	0.986	0.115	0.046	0.013	0.146	0.043	0.001	0.032	0.029	0.267	-0.031	0.031	0.308
Forceps Major	λ_1	1.195	0.103	< 0.001	0.163	0.020	<0.001	2.130	0.102	<0.001	0.440	0.111	< 0.001	0.346	0.044	< 0.001
	λι'	0.141	0.055	0.011	0.273	0.107	0.011	0.151	0.056	0.007	0.160	0.058	0.006	-0.008	0.023	0.718
Forceps Minor	λ_1	1.357	0.069	< 0.001	0.201	0.011	<0.001	2.910	0.111	<0.001	0.954	0.066	< 0.001	0.588	0.042	< 0.001
*	λ_1	0.160	0.037	< 0.001	0.310	0.061	<0.001	0.129	0.059	0.029	0.032	0.035	0.364	-0.010	0.022	0.649
Left IFOF	λ_1	1.507	0.069	< 0.001	0.171	0.009	<0.001	2.601	0.094	<0.001	0.618	0.037	< 0.001	0.698	0.040	< 0.001
	λ_1 '	0.153	0.037	< 0.001	0.435	0.049	<0.001	0.207	0.051	<0.001	0.151	0.020	< 0.001	0.005	0.021	0.826
Right IFOF	λ_1	1.366	0.066	<0.001	0.203	0.009	<0.001	2.760	0.098	<0.001	0.728	0.038	<0.001	0.681	0.038	< 0.001
	λ_1 '	0.165	0.036	< 0.001	0.327	0.049	<0.001	0.180	0.053	0.001	0.146	0.021	< 0.001	0.004	0.020	0.843
Left ILF	λ_1	1.315	0.067	<0.001	0.167	0.010	<0.001	2.452	0.092	<0.001	0.582	0.040	<0.001	0.524	0.033	<0.001
	λ_1'	0.132	0.036	< 0.001	0.416	0.054	<0.001	0.210	0.050	< 0.001	0.177	0.022	< 0.001	0.006	0.018	0.728
Right ILF	λ_1	1.317	0.062	< 0.001	0.195	0.009	< 0.001	2.556	0.093	< 0.001	0.766	0.039	< 0.001	0.458	0.032	< 0.001
I O DTD	λ_1'	0.130	0.033	< 0.001	0.319	0.051	< 0.001	0.181	0.050	< 0.001	0.140	0.022	< 0.001	0.030	0.017	0.070
Left PTR	λ_1	0.910	0.076	< 0.001	0.155	0.013	< 0.001	2.074	0.093	< 0.001	0.756	0.076	< 0.001	0.375	0.041	< 0.001
	λ1΄	0.160	0.041	< 0.001	0.475	0.0/1	< 0.001	0.221	0.050	<0.001	0.132	0.042	0.001	0.043	0.021	0.044
Right PTR	λ ₁	0.927	0.076	<0.001	0.180	0.012	<0.001	2.214	0.096	<0.001	0.800	0.073	< 0.001	0.339	0.041	<0.001
Left SI F	λ1 λ	0.142	0.041	<0.001	0.369	0.007	<0.001	2.633	0.052	<0.001	0.120	0.040	0.002 <0.001	0.039	0.022	0.007 <0.001
Left SLI	λ_1	0.168	0.071	<0.001	0.185	0.008	<0.001	0 248	0.102	<0.001	0.004	0.044	<0.001	-0.011	0.030	0.685
Dight SI E	λ.	1 242	0.050	<0.001	0.104	0.040	<0.001	0.240	0.033	<0.001	0.100	0.024	<0.001	-0.011	0.020	-0.00J
Kigin SLF	λ_1	1.545	0.007	<0.001	0.180	0.008	<0.001	2.570	0.103	<0.001	0.044	0.040	<0.001	0.024	0.051	<0.001 0.484
Left STR	λ ₁	0.100	0.050	<0.001	0.390	0.047	<0.001	0.200	0.050	<0.001	0.123	0.025	<0.001	-0.019 0.385	0.027	0.404 <0.001
Lett STR	λ.'	0.712	0.007	<0.001	0.150	0.008	<0.001	0.269	0.082	<0.001	0.393	0.044	<0.001	0.008	0.033	0 799
Right STR	λ ₁	0.700	0.050	<0.001	0.153	0.040	<0.001	1 699	0.045	<0.001	0.648	0.024	<0.001	0.423	0.063	<0.001
ingin bin	λ.'	0.189	0.038	< 0.001	0.288	0.048	< 0.001	0.244	0.046	< 0.001	0.096	0.025	< 0.001	-0.004	0.033	0.906
Left Unc	λ_1	1.456	0.090	< 0.001	0.146	0.014	< 0.001	2.027	0.101	< 0.001	0.253	0.042	< 0.001	0.677	0.069	<0.001
	λι'	0.018	0.048	0.704	0.262	0.071	<0.001	0.075	0.053	0.159	0.122	0.023	< 0.001	-0.003	0.036	0.939
Right Unc	λ.	1 166	0.076	<0.001	0 154	0.011	<0.001	1 961	0.089	<0.001	0 408	0.037	<0.001	0.628	0.063	<0.001
Tught One	2.1	0.002	0.040	0.124	0.157	0.011	-0.001	0.004	0.009	0.050	0.400	0.007	-0.001	0.020	0.003	0.525
	∧1	0.062	0.040	0.124	0.256	0.058	<0.001	0.094	0.048	0.050	0.097	0.020	<0.001	0.021	0.034	0.525

Note. All estimates are unstandardized. Parameters that were statistically significantly different from zero are in **bold**. These figures correspond to the trends shown in the leftmost panels of Figures S8-S12.

Supplementary Table 18. Statistical significance tests for λ_1 and λ_1 ' parameters (main effects and age moderation effects of general factors) in the dedifferentiation models for λ_{ax} and λ_{rad} (Equation S2 specification).

Tract	Parameter	λαχ			λrad				
		Est.	SE	р	Est.	SE	р		
Left AR	λ_1	0.185	0.020	<0.001	0.269	0.023	< 0.001		
	λ1'	0.006	0.010	0.545	0.014	0.012	0.258		
Right AR	λ_1	0.186	0.017	<0.001	0.259	0.022	<0.001		
	λ1'	0.013	0.009	0.138	0.028	0.011	0.013		
Left ATR	λ_1	0.175	0.010	<0.001	0.197	0.014	<0.001		
	λ1'	0.045	0.006	<0.001	0.089	0.008	<0.001		
Right ATR	λ_1	0.172	0.010	<0.001	0.190	0.014	<0.001		
	λ1'	0.047	0.006	<0.001	0.089	0.008	<0.001		
Left CingG	λ_1	0.272	0.022	<0.001	0.272	0.018	<0.001		
	λ_1 '	-0.019	0.012	0.111	0.018	0.010	0.067		
Right	λ_1	0.254	0.021	<0.001	0.254	0.018	<0.001		
CingG	λ_1 '	-0.012	0.011	0.274	0.021	0.010	0.031		
Left CST	λ_1	0.142	0.015	<0.001	0.181	0.015	<0.001		
	λ1'	0.013	0.008	0.102	0.022	0.008	0.006		
Right CST	λ_1	0.148	0.015	<0.001	0.198	0.015	<0.001		
	λ_1 '	0.013	0.008	0.097	0.013	0.008	0.098		
Forceps	λ_1	0.221	0.024	<0.001	0.267	0.032	<0.001		
Major	λ_1 '	-0.003	0.013	0.823	0.057	0.017	0.001		
Forceps	λ_1	0.262	0.015	<0.001	0.290	0.018	<0.001		
Minor	λ_1 '	0.007	0.008	0.353	0.055	0.010	<0.001		
Left IFOF	λ_1	0.213	0.012	<0.001	0.303	0.014	<0.001		
	λ_1 '	0.030	0.006	<0.001	0.063	0.008	<0.001		
Right IFOF	λ_1	0.238	0.012	<0.001	0.324	0.014	<0.001		
	λ_1 '	0.019	0.006	0.002	0.056	0.007	<0.001		
Left ILF	λ_1	0.189	0.012	<0.001	0.299	0.016	<0.001		
	λ_1	0.032	0.007	<0.001	0.062	0.008	<0.001		
Right ILF	λ_1	0.200	0.011	<0.001	0.321	0.014	<0.001		
	λ_1 '	0.027	0.006	<0.001	0.052	0.008	<0.001		
Left PTR	λ_1	0.173	0.016	<0.001	0.230	0.020	<0.001		
	λ_1'	0.045	0.009	< 0.001	0.073	0.011	<0.001		
Right PTR	λ_1	0.188	0.015	< 0.001	0.272	0.020	<0.001		
	λ_1	0.045	0.008	< 0.001	0.057	0.011	< 0.001		
Left SLF	λ_1	0.198	0.010	< 0.001	0.283	0.014	<0.001		
	λ_1	0.033	0.005	< 0.001	0.063	0.008	< 0.001		
Right SLF	λ_1	0.207	0.010	< 0.001	0.284	0.014	< 0.001		
1 0 0 0 0 0	λ_1'	0.031	0.006	< 0.001	0.061	0.008	< 0.001		
Left STR	λ_1	0.163	0.013	< 0.001	0.174	0.013	< 0.001		
D: 1. 0000	λ_1'	0.038	0.007	< 0.001	0.058	0.007	< 0.001		
Right STR	λ_1	0.184	0.013	< 0.001	0.192	0.014	< 0.001		
	λ_1'	0.029	0.007	< 0.001	0.048	0.008	< 0.001		
Left Unc	λ_1	0.144	0.016	<0.001	0.303	0.022	<0.001		
	λ_1 '	0.021	0.008	0.009	0.029	0.012	0.011		
Right Unc	λ_1	0.160	0.013	<0.001	0.277	0.017	<0.001		
	λι'	0.020	0.007	0.003	0.034	0.009	<0.001		

Note. All estimates are unstandardized. Parameters that were statistically significantly different from zero are in bold. These figures correspond to the trends shown in the leftmost panels of Figures S8-S12.

38

Supplementary Table 19. Statistical significance tests for λ_2 and λ_2 ' parameters (main effects and age moderation effects of tract-specific uniquenesses) in the dedifferentiation models for FA, MD, ICVF, ISOVF and OD (Equation S2 specification).

Tract	Parameter		FA	1110 4 010 1	,,	MD	1,100		ICVF		P******	ISOVF			OD	
		E-4	CE.		F 4	C.F.		F -4	CE		F -4	CE		F 4	C.F.	
Loft AD	1.	LSL. 1 740	SE 0.049	<i>p</i> <0.001	ESL. 0.245	SE 0.010	<i>p</i> <0.001	<u>ESL</u> 1 291	SE 0.036	<u>p</u>	2 000	SE 0.057	<u>p</u>	LSL. 1 552	SE 0.046	<u>p</u>
Lett AK	λ ₂	1./49	0.046	\0.001	0.343	0.010	~0.001	1.301	0.030	~0.001	2.099	0.037	-0.001	1.555	0.040	\0.001
Dialet AD	λ ₂ '	-0.014	0.024	0.565	-0.049	0.049	0.315	0.004	0.018	0.842	-0.080	0.029	0.006	-0.006	0.024	0.804
Kight AK	λ ₂	1.574	0.045	<0.001	0.310	0.009	<0.001	1.331	0.035	<0.001	1./82	0.051	<0.001	1.41/	0.042	<0.001
LAGATD	λ ₂	0.024	0.023	0.293	-0.096	0.045	0.034	0.034	0.017	0.047	-0.04/	0.026	0.076	0.000	0.021	0./94
LeitAIK	λ_2	1.070	0.026	< 0.001	0.154	0.004	< 0.001	1.180	0.026	<0.001	0.813	0.018	<0.001	0.819	0.019	<0.001
Dight	λ_2	1.023	0.012	0.407	0.095	0.010	<0.001	0.029	0.011	0.009	0.035	0.008	<0.001	-0.012	0.008	0.140
ATD	λ ₂	1.055	0.024	<0.001	0.147	0.005	<0.001	1.104	0.025	<0.001	0.742	0.010	<0.001	0.789	0.020	<0.001
	λ_2	0.035	0.011	0.002	0.128	0.015	< 0.001	0.047	0.011	<0.001	0.054	0.008	<0.001	0.020	0.009	0.031
CincC	λ_2	2.745	0.075	<0.001	0.175	0.004	<0.001	2.243	0.034	<0.001	1.200	0.034	<0.001	1.490	0.044	<0.001
Diaht	λ ₂	0.078	0.037	0.034	0.005	0.020	0.001	-0.004	0.020	0.804	0.055	0.017	0.002	0.000	0.023	<0.001
CinaC	λ_2	2.935	0.076	< 0.001	0.175	0.004	< 0.001	2.123	0.051	<0.001	1.123	0.030	<0.001	1./8/	0.049	<0.001
Laft CST	λ ₂	-0.003	0.038	0.933	0.057	0.020	0.003	-0.000	0.024	0.808	-0.001	0.014	0.924	1 3 2 2	0.023	0.190
Len CSI	λ ₂	0.012	0.030	-0.001	0.162	0.004	~0.001	1.370	0.020	<0.001 0.02(0.013	0.029	-0.001	0.012	0.023	-0.001
Dight	λ_2	1 001	0.010	0.444	0.028	0.022	0.203	0.025	0.011	0.020	1 124	0.014	0.300	-0.012	0.010	0.203
CST	λ ₂	-0.003	0.037	~0.001	0.100	0.004	0.337	-0.005	0.020	-0.001	1.124	0.027	<0.001 0.002	-0.016	0.025	0.001
Forcens	λ_2	1 967	0.063	<0.007	0.020	0.021	<0.001	1 573	0.052	<0.001	2 384	0.014	<0.002	0.010	0.010	<0.104
Major	2	0.111	0.005	-0.001	0.420	0.019	-0.001	0.121	0.032	<0.001	0.022	0.076	0.279	0.015	0.015	0.229
Eoroona	λ ₂	0.111	0.034	0.001	0.105	0.008	0.01/	0.131	0.029	<0.001	0.032	0.036	0.378	0.013	0.015	0.328
Minor	λ_2	0.002	0.040	~0.001	0.199	0.000	~0.001	1.277	0.040	-0.001	1.256	0.040	~0.001	0.019	0.020	0.182
Left IFOF	λ_2	-0.002	0.021	<0.909 <0.001	0.009	0.034	<0.009	0.055	0.021	<0.008	0.040	0.021	<0.028	0.018	0.014	<0.182
Left II Of	λ_2	0.005	0.012	0.710	0.159	0.005	<0.001	0.000	0.010	<0.001	0.050	0.013	<0.001 0.007	-0.001	0.023	0.001
Right	λ ₂	1 010	0.012	<0.001	0.035	0.010	<0.001	0.868	0.007	<0.001	0.596	0.007	<0.007	0.675	0.022	<0.000
IFOF	λ_2'	0.012	0.010	0 222	0.056	0.013	<0.001	-0.001	0.009	0.935	0.021	0.008	0.010	0.006	0.011	0.553
Left ILF	λ_2	1.133	0.022	< 0.001	0.174	0.003	< 0.001	0.970	0.018	< 0.001	0.724	0.015	< 0.001	0.616	0.018	< 0.001
	λ'	-0.009	0.008	0.310	0.022	0.009	0.015	0.012	0.006	0.047	0.013	0.006	0.038	0.010	0.009	0.268
Right ILF	$\tilde{\lambda_2}$	0.923	0.020	< 0.001	0.145	0.003	<0.001	0.904	0.016	< 0.001	0.597	0.017	< 0.001	0.600	0.015	<0.001
e	λ_2'	0.009	0.008	0.226	0.058	0.011	< 0.001	0.016	0.006	0.008	0.025	0.007	0.001	-0.001	0.008	0.922
Left PTR	λ_2	1.510	0.028	< 0.001	0.255	0.006	< 0.001	1.382	0.025	< 0.001	1.516	0.033	< 0.001	0.836	0.022	< 0.001
	λ_2'	0.027	0.012	0.022	0.130	0.025	< 0.001	0.012	0.009	0.205	0.089	0.014	<0.001	-0.007	0.011	0.537
Right	λ_2	1.500	0.029	< 0.001	0.221	0.005	< 0.001	1.377	0.025	< 0.001	1.386	0.030	< 0.001	0.835	0.022	< 0.001
PTR	λ_2	0.017	0.013	0.177	0.195	0.024	< 0.001	0.032	0.010	0.001	0.102	0.014	< 0.001	0.013	0.011	0.246
Left SLF	λ_2	1.160	0.029	<0.001	0.110	0.003	<0.001	1.120	0.026	<0.001	0.797	0.016	<0.001	1.014	0.022	<0.001
	λ_2'	-0.005	0.013	0.705	0.060	0.014	<0.001	0.037	0.012	0.002	0.019	0.006	0.002	0.003	0.010	0.769
Right	λ_2	1.105	0.029	< 0.001	0.117	0.003	< 0.001	1.269	0.028	< 0.001	0.760	0.017	< 0.001	1.032	0.022	<0.001
SLF	λ_2'	-0.015	0.014	0.267	0.064	0.015	< 0.001	-0.003	0.012	0.809	0.031	0.007	< 0.001	-0.008	0.010	0.411
Left STR	λ_2	1.349	0.024	< 0.001	0.155	0.003	< 0.001	1.310	0.025	< 0.001	0.865	0.017	< 0.001	1.279	0.021	< 0.001
	λ_2'	0.021	0.009	0.021	0.029	0.014	0.044	0.020	0.010	0.053	0.013	0.006	0.041	0.029	0.008	< 0.001
Right	λ ₂	1.457	0.025	< 0.001	0.164	0.003	< 0.001	1.397	0.024	< 0.001	0.926	0.017	< 0.001	1.337	0.021	< 0.001
SIR	λ ₂ ΄	0.004	0.009	0.687	0.031	0.014	0.020	0.008	0.009	0.407	0.010	0.007	0.140	-0.004	0.007	0.628
Left Unc	λ_2	1./09	0.048	<0.001	0.289	0.006	<0.001	1.815	0.041	<0.001	0.860	0.023	<0.001	1.402	0.039	<0.001
	λ_2 '	0.023	0.025	0.359	-0.016	0.025	0.524	-0.044	0.019	0.019	0.044	0.012	< 0.001	0.013	0.020	0.513
Right Unc	λ_2	1.438	0.043	<0.001	0.210	0.005	<0.001	1.388	0.034	<0.001	0.703	0.021	<0.001	1.229	0.036	<0.001
	λ_2 '	0.029	0.022	0.194	0.075	0.023	0.001	0.041	0.016	0.011	0.057	0.011	< 0.001	0.053	0.019	0.005

Note. All estimates unstandardized. Parameters that were statistically significantly different from zero are in **bold**. These figures correspond to the age trends shown in the centre panels of Figures S10-16.

Tract	Parameter		λax			λrad	
		Est.	SE	р	Est.	SE	р
Left	λ_2	0.447	0.013	<0.001	0.494	0.014	<0.001
AR	λ_2 '	-0.006	0.006	0.373	-0.005	0.007	0.492
Right	λ_2	0.377	0.011	<0.001	0.471	0.013	<0.001
AR	λ_2 '	-0.004	0.006	0.461	-0.012	0.007	0.064
Left	λ_2	0.183	0.004	<0.001	0.263	0.006	<0.001
ATR	λ_2 '	0.007	0.002	<0.001	0.011	0.003	<0.001
Right	λ_2	0.180	0.004	<0.001	0.237	0.006	<0.001
ATR	λ_2 '	0.011	0.002	<0.001	0.022	0.002	<0.001
Left	λ_2	0.456	0.012	<0.001	0.369	0.009	<0.001
CingG	λ_2 '	0.027	0.006	<0.001	-0.001	0.004	0.898
Right	λ_2	0.447	0.012	<0.001	0.379	0.009	<0.001
CingG	λ_2 '	0.011	0.006	0.050	-0.002	0.004	0.655
Left	λ_2	0.328	0.007	<0.001	0.303	0.007	<0.001
CST	λ_2 '	0.000	0.003	0.899	0.005	0.004	0.131
Right	λ_2	0.339	0.007	<0.001	0.296	0.007	<0.001
CST	λ_2 '	-0.006	0.003	0.061	0.005	0.003	0.126
Forcep	λ_2	0.524	0.016	<0.001	0.666	0.020	<0.001
s Major	λ_2 '	0.007	0.008	0.404	0.027	0.011	0.011
Forcep	λ_2	0.286	0.010	<0.001	0.332	0.010	<0.001
s Minor	λ_2 '	0.010	0.005	0.049	0.002	0.005	0.649
Left	λ_2	0.202	0.004	<0.001	0.207	0.005	<0.001
IFOF	λ_2 '	0.006	0.002	0.007	0.005	0.002	0.012
Right	λ_2	0.205	0.006	<0.001	0.168	0.005	<0.001
IFOF	λ_2 '	0.001	0.003	0.838	0.008	0.002	0.001
Left	λ_2	0.227	0.005	<0.001	0.256	0.006	<0.001
ILF	λ_2 '	0.003	0.002	0.095	0.000	0.002	0.928
Right	λ_2	0.180	0.004	<0.001	0.191	0.004	<0.001
ILF	λ_2 '	0.005	0.002	0.004	0.011	0.002	<0.001
Left	λ_2	0.320	0.007	<0.001	0.394	0.008	<0.001
PTR	λ_2 '	0.015	0.003	<0.001	0.026	0.003	<0.001
Right	λ_2	0.285	0.007	<0.001	0.368	0.008	<0.001
PTR	λ_2 '	0.020	0.003	<0.001	0.022	0.003	<0.001
Left	λ_2	0.170	0.005	<0.001	0.201	0.005	<0.001
SLF	λ_2 '	0.004	0.002	0.024	0.008	0.002	0.001
Right	λ_2	0.171	0.004	<0.001	0.207	0.005	<0.001
SLF	λ_2 '	0.004	0.002	0.042	0.008	0.002	0.002
Left	λ_2	0.248	0.005	<0.001	0.265	0.005	<0.001
STR	λ_2 '	0.006	0.002	0.002	0.004	0.002	0.124
Right	λ_2	0.259	0.005	<0.001	0.272	0.005	<0.001
STR	λ_2 '	-0.001	0.002	0.465	0.007	0.002	0.002
Left	λ_2	0.337	0.006	<0.001	0.416	0.010	<0.001
Unc	λ_2 '	0.000	0.003	0.994	0.018	0.005	<0.001
Right	λ_2	0.250	0.005	<0.001	0.297	0.008	< 0.001
Unc	2.	0.017	0.002	<0.001	0.027	0 004	<0.001

Supplementary Table 20. Statistical significance tests for λ_2 and λ_2 ' parameters (main effects and age moderation effects of tract-specific uniquenesses) in the dedifferentiation models for λ ax and λ rad (Equation S2 specification).

Right λ_2 0.250 0.005 <0.001 0.297 0.008 <0.001 Unc λ_2' 0.017 0.002 <0.001 0.027 0.004 <0.001 Note. All estimates are unstandardized. Parameters that were statistically significantly different from zero are in bold. These figures correspond to the age trends shown in the centre panels of Figures S10-16.