Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity

SUPPLEMENTARY FIGURES

Supplementary Figure S1: B16-F10 cell survival was assessed with an MTS assay at 24 A. and 48 B. hours after treatment with various levels of HVJ-E, poly I:C or HVJ-E+poly I:C (H+P).

Cytokine array

Supplementary Figure S2: Cytokine and chemokine array of B16-F10 melanoma tissues that were treated with PBS, poly I:C (25 µg), HVJ-E (2500 HAU) or HVJ-E+poly I:C (H+P) (25 µg+2500 HAU). Black and white arrows indicate CXCL1 and CXCL2, respectively.

Supplementary Figure S3: VEGF and MMP9 expression levels were analyzed by qPCR in CD11b+Ly6G+ neutrophils that were isolated from tumor tissues treated with PBS, HVJ-E, poly I:C or HVJ-E+poly I:C. NS: not significant, *: p<0.05, **: p<0.01.

Supplementary Figure S4: The analysis of neutrophil character in B16-F10 melanoma treated with PBS, poly I:C (25 μ g), HVJ-E (2500 HAU) or HVJ-E+poly I:C (H+P) (25 μ g+2500 HAU). After three injections of each reagent, the ratio of FAS⁺CD11b⁺Ly6G⁺ cells A. and ICAM-1⁺CD11b⁺Ly6G⁺ cells B. to CD11b⁺Ly6G⁺ cells in tumor tissues was examined by flow cytometry (n=4). **; p<0.01.

Supplementary Figure S5: The effects of neutrophils on tumor suppression with HVJ-E+poly I:C (H+P) (25 μ g+2500 HAU) were evaluated by the intraperitoneal administration of an anti-neutrophil antibody (100 μ g/mouse) 24 hours before the combination treatment.

Supplementary Figure S6: B16-F10 cell survival was assessed using the MTS assay at 24 A. and 48 B. hours after treatment with various levels of recombinant mouse CXCL2 protein.

CXCL2 expression by ELISA assay

Supplementary Figure S7: CXCL2 expression in tumor tissue after one MPL (10 μ g) or three poly I:C (25 μ g) treatments was assessed by ELISA, (n=6) *: p<0.05.

Supplementary Figure S8: FACS analysis of infiltrated neutrophils (CD11b+Ly6G+) in CD45+ cell population in tumors after one MPL (10 µg) or three poly I:C (25 µg) treatments, (n=6). ** Indicates p<0.001.

Supplementary Figure S9: Analysis of neutrophil (CD11b+Ly6G+) infiltration after chemokine depletion using A. anti-CXCL1 (5 µg/mouse) or B. anti-CXCL2 (50 µg/mouse) antibodies with HVJ-E+poly I:C (H+P) (25 µg+2500 HAU) treatment in melanoma-bearing mice (n=6) by FACS. As a negative control, an isogenic antibody (Iso) was used. Antibodies were administered intratumorally three times 24 hours before HVJ-E+poly I:C injection and once 24 hours after the treatment (a total of four times). NS: not significant; * Indicates p<0.05 (n=7).

Supplementary Figure S10: Effects of neutrophils on tumor suppression using poly I:C treatment (25 µg) were negligible with and without depletion of neutrophils using the anti-Ly6G antibody (100 µg/mouse) or the isogenic antibody (100 µg/mouse) administered intraperitoneally. NS: not significant.