SUPPLEMENTARY DATA

Supplementary Figure 1

Figure S1: The function of AATF in ribosome synthesis is independent of p53.

AATF and FBL RNAi was performed in HCT116 wt and $p53^{-/-}$ cell lines for 72 h. Localization of ENP1 was visualized by IF after LMB treatment (2 h, 20 nM). Scale bar, 20 μ m.

Hs AATF Mm TRB Xt AATF Dr AATF Ce AATF Dm AATF At AATF Sc Bfr2	1 1 1 1 1 1	MAGPQPLALQLEQLLNPRPSE.ADPEADPEEATAARVIDRFDEGEDGEGDFLVVGSIRKLAS MAAPQPLALQLEQLLNPRPRE.ADPEADPEEATAARVIDRFDEGEEEKDD.LAVSSIRKLAP MAASLSQELANLLNPQPKF.RDPEDDQDEATVARVIDRFEEGDNEDDVPMV.SQLRRTS MAASISQLEDLLNPLPHF.VDPEDDQDEDTKAKVIEKFDEGGDENDEELLPG.HLRKRSG MAGLLDDISKLTTPATEL.PDLEDDNFEDSQSALKSLKSTGNRQKAA MLRKSKKQPQTVAEKVSKLLAHPNESDSAEDSDFDVATGPRLVDFEE.EEYDLPDARST.DFRKRNV MAGGSKRSKRARLDSESEDISDQENLKAESDNEDDQLP MEKSLADQISDIAIKPVNKDFDIEDEENASLFQHNEKNGESDLSDYGN.SNTEETKKAHYLEVE.KSKLRAE
Hs AATF Mm TRB Xt AATF Dr AATF Ce AATF Dm AATF At AATF Sc Bfr2	62 61 58 60 46 66 39 71	ASLLDTDKRYCGKTTSRKAWNEDHWEQTLPGSSDEEISDEEG.SGDEDSEGLGLEEYDED.DLGAAEEQECGD.HRE VSLLDTDKRYSGKTTSRKAWKEDHWEQALPSSSDNEASDEGG.SEDGDSEGLGLEEISED.VDEDLEDNKISD.EGG ATLVDTDKRYLGKATSRKDLQADFEGELSDEDS.DGDEASLDEELESAGESDD.SEE AILADGDQRYRGKATSRKDLQKDLDGSADEDDDDDDDQVDEDES.GMLEKYMECMDDD.DDNDDDDDDD.DDD QNFNFEEGKYAGSAVSRKELFGDISEISGLQGNFDKSESEEDEDE.EEKIDNFDESEPEIED.EEE KLLSEQSDRYKGKISSRKELDDDEDKDDEQEVSYES.DEDDENLTNFKQKLNAGGAEDSEEETAAGH DGTEDDEVDSMEDDEGESEEDDE.GDTEEDDEGS.SEEDEDEGENKEDEDGE KGLELNDPKYTGVKGSRQALYEEVSENED.EEEEEEEEEKEED.ALSFRTDSEDEE
Hs AATF 1 Mm TRB 1 Xt AATF 1 Dr AATF 1 Dm AATF 1 At AATF Sc Bfr2 1	.36 .35 .13 .33 .10 .33 .88 .26	SKKSR.SHSAKTPGFSVQSISDF.EKFTKGMDDLGSSEEEEDEESGMEEGDDAEDSQGESEEDRA.G SEDVEFDLEGEDEEDRA.G SEDVEFDLEGEDEEDRE.E SCDVEFDLEGEDEEDRE.E SCDVEFDLEGEDEEDRE. SCDVEFDLEGEDEEDRE. SCDVEFDLEGEDEEDRE.E SCDVEFDLEGEDEEDRE.E SCDVEFDLEGEDEEDRE.E SGEESEEIESNLTDFKKKFEAGDFKVDDEEDDDSEEEDHSQESEGDDDSEDDEAED SEDFSGEESEIESNLTDFKKKFEAGDFKVDDEEDDSEEEDHSQESEGDDDSEDDEAED SESDADGGETEEAQQKRHALSK
Hs AATF 2 Mm TRB 1 Xt AATF 1 Dr AATF 2 Ce AATF 1 Dm AATF 1 At AATF 1 Sc Bfr2 1	200 .67 .52 201 .28 .94 .23 .53	AATFO-N (N-terminal subdomain of AATF/Chel/Traude-superiamily domain) DRNSEDDGVVMTFSSVKVSEEVEKGRAVKNOIALWDOLLEGRIKLQKALLITINOLEQ.PDVFPLF.KDKGGPEFSSALKN DRNSEDDGVVAAFSSVKVSEEVEKGRAVKNOIALWDQLLEGRIKLQKALLIANOLEQ.PDVFPVF.KDKGGPEFSSALKN NSGLEDDGEVLTFSKEKVSKDFEKGQAIKNOIALWDLMLERRIKUQKALVTANOLEQ.SAFETF.KKEGGTEFFKAQKN EMEEEEESGLRTFSKEKVDEEVEKGRAVKNOLALWDLMLERRIKMQKALVTANOLEQ.PQTFSEF.KSRGGAEYADALKN MGMTTLSLKDEEDKADKAASVRNORLVWDDLLYSNIRLHALLNTANOLER.GEARKNL.LKTSEEHTQKSMES DAIKPSDVMSKTNHQAEIQKGLAVQNOLRIWERLLELRINTQKFTSKANOLEA.PETLTKL.ASESD.ELQSVLNE ELRSQEQDILKNLK.RDKGEDAVKGQAVKNOKALWDKILEFRFLLQKAFDRSNRLPQ.EPVKSLFCSEDEDVSTAYTD LIQQETKQAINKLSQ.SVQRDASKGYSILQOTKLFDNIIDLRIKLQKAVIAANKLELTTESWEEA.KMDDSEETKRLLKE
Hs AATF 2 Mm TRB 2 Xt AATF 2 Dr AATF 2 Ce AATF 1 Dm AATF 2 At AATF 1 Sc Bfr2 2	278 245 230 279 299 267 299 231	SHKALKALLRSLVGLQEELLFQYPDTRYLVDGTKPNAGS.EEISSEDD.ELVEEKKQQRRRV SHKALKALLRSLVDLQEELLFQYPDTRHIVNGAKPNTES.EEISSEDD.ELVGE.KKK.QRKA NYKALKELMRSLVELQDELLYQFPETQYLIDGKKCKSQSEDEISS.DE.ENE.VEED.TEKLKRER SHKALKALQRSLLELQDLLHQNKETRAISQGKTWGDGSAKDDDEEINSEDDMD.ENEGDDQEVEQKAARNG AMENM.GKLRNLMKNAMELIGEGKGKAAGEDEEDDDDVEEIPS.DE.EILSD.FEDDEEEPAELEIP AQERSSKLLQQLLSLQSALHQQYSEMKKSVKRKQPTEDS. LVTSSKKTLDSLELGEALFEKNPSVDQQVNATA.SEESNKSDAEDS.D. NEKLFNNLFNREINFRIKFQLGDHITQNH
Hs AATF 3 Mm TRB 3 Xt AATF 2 Dr AATF 3 Ce AATF 2 Dm AATF 3 At AATF 2 Sc Bfr2 2	338 304 292 350 263 307 246 265	PAKRKLEMEDYPSFMAKRFADFTVYRNRTLQKWHDKTKLASGKLGKGFGAFER.SILTQIDHILMDKER PFKRKLEMEDYPSFMAKRFADFTIYRNHTLQKWHDKTKLASGKLGKGFGAFER.SILTQIDHIMMDKER APKRKLEVDEYPEFMEKRFASFRTYRNNTLQKWHDKTKLSGKIGKGFGAFER.SILTQIDHIMMDKER FPKRKLEMADYPNFMAKRFAAFQPYRDTTLQKWYDKTKLTTGKNNKGFGAFDR.NILTQVEQVLMMDKER GKSRKIGGGSTSVKSLAKNLQKIDEKMEKFFATTITKWYNRTKILNTPKSMNNTDFSVFEKGSILGQINKVLADEEK PAVKKFGSVLQSNFQQMIGYRNEVLLKWDDRTKLLTPGAGVKRKSLQE.DY.DIIKKIGSALANREA EWQRISDLQKRMSVFRNKAVDKWQRKTQVTTGAAAIKGK.LHAFNQ.NVSEQVASYMRDPSR KLSKKRSLKELYQETNSLDSELKEYRTAVLNKWSTKVSSASGNAALSSNKFKAINL.PADVQVENQLSDMSR
Hs AATF 4 Mm TRB 3 Xt AATF 3 Dr AATF 4 Ce AATF 3 Dm AATF 3 At AATF 3 Sc Bfr2 3	106 372 359 118 340 372 306 336	LLRRTQTKRSVYRVLG.KPEPAAQPVPESLPGEP.EILPQAPANAHLKDLDEEIFDDDDFYH LLRRTQTKRSAYRVLG.KPEPVPEVAETLPGEP.EILPQAPANAHLKDLDEIFDDDDFYH LLKRTQTKRSFYRILG.KPLDSPSVPETVP
Hs AATF 4 Mm TRB 4 Xt AATF 4 Dr AATF 4 Ce AATF 3 Dm AATF 3 Sc Bfr2 4	166 132 119 178 377 107 352 116	QLIRELIERKTSSLDPN. DQVAMGRQWLAIQKLRS. KIHKKVDRKASKGRKLRFHVLSKLLSFMAPIDH. TTMNDDARTE QLIRELIERKTSSLDPN. DQVAMGRQWLAIQKLRS. KIKKVDRKASKGRKLRFHVLSKLLSFMAPIDH. TAMSDDARTE QLIREVIERKTSSLDPN. DQVAMGRQWLAIQKLRS. KIKKVDTKASKGRKLRFHVHSKLVSFMAPIDH. STMNDDARTE QLIRELIERKTSATDPN. DQVAMGKQWLAIQKLRS. KIKKVDTKASKGRKLRFHVHSKLVSFMAPIDH. STMNDDARTE QLIRELIERKTSATDPN. DQVAMGKQWLAIQKLRS. KIKKVDTKASKGRKLRFHVHSKLMNFMAPMDN. SSMSDDARSE ILLKQMLEARNQMSNNSQDGADMTRSYMELQTMFSN. KKRDVSQLSSKDRLKYEPIARLINFYPSKPSVVTWSHESRNE QLIRELIEYKASTSSNMSEITKQFVELQKLRQ. KKKKVDTRASKGRKLRYVVHNKLINFMAPNES. SDWTDASKSE QLIKEFLETI DPASSEAAFYEMKKFQT. KKRVVDRRASKSRKIRYNVHEKIVNFMAPRPAKIPPNTAD VLINDLIDKKISNAHNS. ESAAITITSTNARSNNKLKKNIDTKASKGRKLNYVQDPIANYEAPITSGYKWSDDQIDE
Hs AATF 5 Mm TRB 5 Xt AATF 4 Dr AATF 5 Ce AATF 4 Dm AATF 4 At AATF 4 Sc Bfr2 4	i43 i09 i96 i55 i57 i82 i20 i93	LYRSLFGQLHPPDEGHGD. LFRSLFGQLNPPDADRGK. LYQSLFGKTKCQDEEKQV. LFRSLFANGPVTTQ. LFRSLFS. LYKSLFV. LYKSLFV. LLKNLFGLKTRNVQSEA. FFAGLLGQRVNFNENEDEEQHARIENDEELEAVKNDDIQIFG

Figure S2: AATF is conserved in eukaryotes.

Alignment of AATF orthologs generated using MUSCLE (1). The two conserved subdomains as annotated in Pfam are marked by a dark and light green line, respectively. Predicted NLS sequences of each ortholog are shown in red. A predicted coiled-coil helix is highlighted with a grey line. Residues that are fully conserved are marked with dark green boxes, while residues with more than 70% similarity between orthologs are indicated with light green. Species are abbreviated as follows: *Homo sapiens (Hs), Mus musculus (Mm), Xenopus tropicalis (Xt), Danio rerio (Dr), Caenorhabditis elegans (Ce), Drosophila melanogaster (Dm), Arabidopsis thaliana (At), Saccharomyces cerevisiae (Sc).*

Figure S3: Localization and expression levels of AATF constructs.

(A) HeLa cells were transiently transfected with constructs encoding for HA-tagged full-length (fl) AATF, AATF(1-454) or AATF(455-560). After 48 h, localization of AATF-derivatives was analyzed by IF using an anti-HA antibody and compared to FBL localization. Nuclei were stained with Hoechst. Scale bar, 20 μ m.

(B) AATF constructs were expressed as in (A). Protein levels and integrity were examined by immunoblotting.

Figure S4: The ANN complex is resistant to actinomycin D and RNase A treatment.

(A) Purification of AATF from HeLa cells by IP after incubating the cells with actinomycin D (ActD, 2μ M, 37° C) for 2.5 h or (B) incubating the cell extract with RNase A (100 μ g/ml, 4°C) for 30 min. Isolated proteins were analyzed by SDS-PAGE, followed by silver staining. Members of the ANN complex are marked next to the gels. Note that the activities of ActD and of RNase A were controlled by pre-rRNA FISH and analysis of RNA digestion in the extract, respectively (data not shown).

(C) Sucrose gradient analysis performed as in Figure 3D, except that the centrifugation was done using an SW41 rotor at 32'000 rpm for 3 h 45 min. Gradients were analyzed with a Foxy Jr. gradient collector at OD_{254} . Fractions containing either free proteins/small complexes or 60S/80S particles were pooled and used as separate inputs for AATF IPs. A/G beads without antibody were used as a negative control. The indicated proteins were detected in the inputs and eluates by immunoblotting. Note that the anti-NGDN antibody recognizes an unspecific band running below the NGDN protein in the A/G beads negative control.

7

Figure S5: The ANN complex supports pre-18S rRNA processing.

(A) Indicated proteins were depleted by RNAi for 48 h in RPS2-YFP expressing HeLa cells as in Figure 1. Cells were analyzed by confocal microscopy. Scale bar, 20 μ m. (B) Schematic representation of major rRNA precursors in human cells, including endonucleolytic cleavage sites (dashed lines) (2). The binding sites for the 5'ETS,

5'ITS1 and ITS2 probes are indicated (red lines). Each probe recognizes a specific subset of rRNA precursors.

(C) Quantification of three independent experiments as shown in Figure 8B. Mean \pm SD (error bars).

(D) Pulse-labeling experiment performed as in Figure 8E. RNAi-induced depletion of the indicated proteins was for 48 h. Levels of newly synthesized 18S and 28S rRNA after a chase period of 4 h were quantified from three independent experiments and are depicted in Figure 8F.

REFERENCES

- 1. Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, **32**, 1792–1797.
- Henras,A.K., Plisson-Chastang,C., O'Donohue,M.-F., Chakraborty,A. and Gleizes,P.-E. (2015) An overview of pre-ribosomal RNA processing in eukaryotes. WIREs RNA, 6, 225–242.

Supplementary Table 1

Band	Gene name	Unique peptides [#]	Sequence coverage [%]	Gene ID	Molecular weight [kDa]
1	THRAP3	41	34	9967	109 kDa
	PPP1R12A	14	14	4659	115 kDa
2	MATR3	21	23	9782	95 kDa
	NAT10	18	17	55226	116 kDa
	HNRNPU	11	11	3192	89 kDa
3	PPP1R13L	29	37	10848	89 kDa
	PML	14	14	5371	98 kDa
	HNRNPUL2	13	17	221092	85 kDa
4	AATE	13	20	26574	63 kDa
5	NOL10	26	31	79954	80 kDa
•	HSPA5	18	30	3309	72 kDa
		8	12	1654	73 kDa
	SLC30A1	7	14	7779	55 kDa
6	VBY1	10	34	4004	
0		Q	18	6124	53 kDa
		3	16	0124	
7		15		909	
'		10	29	9770	
	RPL3	14	27	0122	49 KDa
	ACTB	7	30	500	41 KDa
	WDR18	1	15	5/418	49 KDa
	PAK1IP1	6	14	55003	44 KDa
8	NGDN	15	43	25983	36 kDa
	ANXA2	8	23	302	39 kDa
	RPL5	6	21	6125	34 kDa
	CENPV	6	28	201161	30 kDa
	RPLP0	5	17	6175	31 kDa
	PPP1CA	5	14	5499	39 kDa
	RPL6	4	14	6128	33 kDa
9	PGAM5	9	27	192111	32 kDa
	RPS3A	7	26	6189	30 kDa
	GNB2L1	7	17	10399	43 kDa
	HIST1H1E	2	11	3008	22 kDa
10	FHL2	15	46	2274	32 kDa
	RPL8	12	29	6132	28 kDa
	RPS3	12	43	6188	27 kDa
	RPS6	11	33	6194	29 kDa
	RPL7A	10	31	6130	30 kDa
	RPS4X	8	17	6191	43 kDa
	SLC25A5	8	24	292	33 kDa
	RPS2	7	23	6187	31 kDa
	RPI 7	6	24	6129	29 kDa
	NSA2	4	16	10412	30 kDa
	FHI 3	3	10	2275	31 kDa
		3	11	5250	26 kDa
11	DDI 13	0		6137	20 kDa
		5		6202	
		5	20	70500	
		5	10	79090	25 KDa
40		2	10	0140	
12	KPL19	9	31 00	0143	20 KDa
		8	28	5110	25 KDa
	POLR2E	4	20	5434	25 kDa
	RPL14	3	17	9045	24 kDa
	MRPS34	3	13	65993	26 kDa
13	RPL10	11	41	6134	25 kDa
	RPL13A	9	35	23521	23 kDa
	MAD2L1	5	21	4085	24 kDa
	RPL15	4	15	6138	24 kDa

14	RPS9	17	58	6203	23 kDa	
	RPS5	4	13	6193	23 kDa	
	RPL18	2	11	6141	19 kDa	
15	RPL17	10	42	6139	21 kDa	
	RPL18A	5	26	6142	21 kDa	
	MRPL47	4	16	57129	27 kDa	
	CAV1	3	15	857	20 kDa	

Supplementary Table 1

MS analysis of the AATF immunoprecipitation. All proteins that have been identified with at least 2 peptides and a sequence coverage of \geq 10% are listed. The band numbers correspond to the labeling in Figure 3A.