Supplementary Information

Cryopreservation of brain endothelial cells derived from human induced

pluripotent stem cells is enhanced by ROCK inhibition

Hannah K. Wilson, Madeline G. Faubion, Michael K. Hjortness, Sean P. Palecek, Eric V. Shusta

Inventory of Supplementary Information

Table S1

Table S2

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Figure S7

Supplementary Table S1: Primer sequences for qPCR experiments.

Target	Forward sequence (5'-3')	Reverse sequence (5'-3')
AGER	GTAGATTCTGCCTCTGAACTC	CTTCACAGATACTCCCTTCTC
β-actin	CATGTACGTTGCTATCCAGGC	CTCCTTAATGTCACGCACGAT
BCRP	TCATTTAGTTTGTCAGTGGGTG	CAGGTATGTGAAAAGCAGGAAT
GLUT-1	AACTCTTCAGCCAGGGTCCAC	CACAGTGAAGATGATGAAGAC
INSR	TGTTCATCCTCTGATTCTCTG	GCTTAGATGTTCCCAAAGTC
LDLR	GCCATTGTCGTCTTTATGTC	AAACACATACCCATCAACGA
MRP-1	CTCTATCTCTCCCGACATGACC	AGCAGACGATCCACAGCAAAA
Occludin	GACTTCAGGCAGCCTCGTTAC	GCCAGTTGTGTAGTCTGTCTCA
P-glycoprotein	TTGCTGCTTACATTCAGGTTTCA	AGCCTATCTCCTGTCGCATTA
STRA6	TTTGGAATCGTGCTCTCCG	AAGGTGAGTAAGCAGGACAAG
TFRC	GCACAGCTCTCCTATTGAAAC	GGTATCCCTCTAGCCATTCAG
VE-Cad	GGTCAAACTGCCCATACTTG	CGCAATAGACAAGGACATAACAC
ZO-1	ACCAGTAAGTCGTCCTGATCC	TCGGCCAAATCTTCTCACTCC

Antibody	Vendor, clone or product number	Dilution
PECAM-1	Thermo Scientific, RB-10333	1:25
Glut-1	Thermo Scientific, SPM498	1:100
VE-cadherin	Santa Cruz, BV9	1:25
Occludin	Invitrogen, OC-3F10	1:50
Claudin-5	Invitrogen, 4C3C2	1:200
ZO-1	Invitrogen, ZO1-1A12	1:100
P-gp	Thermo Scientific, F4	1:25
BCRP	Millipore, 5D3	1:50
MRP1	Millipore, QCRL1	1:25

Supplementary Table S2: Immunocytochemistry antibodies.

Supplementary Figure S1: Cell yield of cryopreserved iPSC-BMECs as a function of time. IMR90-4 iPSC-BMECs were cryopreserved at D8 of differentiation, and cells were thawed with or without 10 μ M Y-27632. The number of attached cells was quantified at 6, 12, and 24 h post-thaw, normalized to the number of cells seeded and reported as percent attachment. Data represent the average ± standard deviation of triplicate wells from a single differentiation, and the experiment was replicated for an additional independent differentiation to confirm trends.

Supplementary Figure S2: Immunocytochemistry of cryopreserved IMR90-4 iPSC-BMECs. Immunocytochemistry of IMR90-4 iPSC-BMECs cryopreserved as a purified population. Cells were cryopreserved at D10 of differentiation, and immunocytochemistry was performed at D12 of differentiation, 2 days post-thaw. Scale bars, 50 μm.

Supplementary Figure S3: Immunocytochemistry of CS03iCTRn2 iPSC-BMECs. CS03iCTRn2 iPSC-BMECs were cryopreserved on D8 of differentiation, and immunocytochemistry was performed on D10 of differentiation, 2 days post-thaw. Scale bars, 50 µm.

Supplementary Figure S4: Quantitative PCR of endothelial and BBB genes normalized to β -actin expression. IMR90-4 iPSC-BMECs were subcultured and/or cryopreserved at D8 of differentiation and RNA was collected on D10, 2 days post-thaw. Positive $\Delta\Delta$ Ct values indicate increased expression in frozen iPSC-BMECs compared to non-frozen control. Frozen samples were paired to non-frozen samples from the same differentiation. Data represent the average ± standard deviation of three independent differentiations. Statistical significance was calculated via Student's unpaired t test (*p<0.05, **p<0.01).

Supplementary Figure S5: TEER of cryopreserved CS03iCTRn2 iPSC-BMECs. (A) Maximum TEER values of CS03iCTRn2 iPSC-BMECs cryopreserved at D8 of differentiation. Data represent the average ± standard deviation of eight independent differentiations. (B) Representative TEER profile of CS03iCTRn2 iPSC-BMECs cryopreserved at D8 of differentiation. Data represent the average ± standard deviation of triplicate Transwell filters from a single differentiation, and the experiment was replicated for three additional independent differentiations to confirm trends.

Supplementary Figure S6: TEER of profile of IMR90-4 iPSC-BMECs cryopreserved at D10. (A) Maximum TEER values of IMR90-4 iPSC-BMECs cryopreserved as a purified population at D10 of differentiation. Data represent the average ± standard deviation of three independent differentiations. (B) Representative TEER profile of IMR90-4 iPSC-BMECs cryopreserved at D10. Data represent the average ± standard deviation of triplicate Transwell filters from a single differentiation, and the experiment was replicated for two additional independent differentiations to confirm trends.

Supplementary Figure S7: Effect of filter seeding density on TEER profile of cryopreserved cells. IMR90-4 iPSC-BMECs were cryopreserved at D8 of differentiation and seeded onto Transwell filters at various densities. Data represent the average ± standard deviation of triplicate Transwell filters from a single differentiation, and experiments were replicated for an additional independent differentiation to confirm trends. The 1.5 million dataset is located under the 2.0 million dataset.