
Supplement: Bayesian Nonparametric Estimation for Dynamic Treatment

Regimes with Sequential Transition Times

A: Details of MCMC for Fitting DDP-GP Model

Summary of Model

p(yki | xki , F k) = F k(yki | xki )

F k ∼ DDP-GP
{
{µkh}, Ck;αk, {βkh}, σk

}
(1)

F k(y | xk) =
∞∑
h=0

wkhN(y; θkh(x
k), σk). (2)

{θkh(xk)} ∼ GP (µkh(x
k), Ck(xk)). h = 1, 2, ...

µkh(x
k
i ) = xkiβ

k
h.

k = 1, . . . , ntrans. We complete the model construction by assuming βkh ∼ N(βk0 ,Σ
k
0),

(σk)−2
i.i.d.∼ Ga(λ1, λ2) and αk

i.i.d.∼ Ga(λ3, λ4).

Posterior Computation

To evaluate the posterior in a DDP-GP model, we first marginalize (1) analytically with

respect to the random probability measures F k(·|xk). The form is not obvious from the earlier

definition. Temporarily suppress the superscripted transition index k. Consider generating

a sample (Y1,x1), · · · , (Yn,xn) by first sampling from a covariate distribution, p(x), and

then from a conditional transition time distribution, F (·|x). We rewrite (2) as a hierarchical

model with a new latent indicator variable γi for the normal mixture summand index h,

(Yi | γi = h, xi) ∼ N(θh(xi), σ
2) and p(γi = h) = wh, (3)

for i = 1, · · · , n. Let θ̃i(·) = θγi(·) denote a realization of the stochastic process selected

by γi. Next, we re-index the θh(·) such that
∑n

i=1 I(γi = h) ≥ 1 for h = 1, . . . , H. That

is, we let h = 1, . . . , H index the realizations θh(·) that are selected by some of the γi’s, so
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that {θ1, · · · , θH} are the unique values of the n realizations {θ̃i, i = 1, . . . , n}. If clusters

of patients are defined as Sh = {i : θ̃i = θh}, then the γi’s are interpreted as cluster

membership indicators. Posterior simulation makes use of these indicators and the vectors

θh = (θh(x1), . . . , θh(xn)). After marginalization with respect to Fx, we are left with the

marginal model for {γi, θh(xi); i = 1, . . . , n, h = 1, . . . , H}.
For each transition k, we update parameters using finite DP algorithm as follows. Denote

#{i : γki = h} = nkh.

• Update σk

(σk)2 | · ∼ Inverse Gamma(λ1 +
nk

2
, λ2 +

∑H
h=1

∑
γki =h

(yki − θkh(xi))2

2
) (4)

• Update θkh

p(θkh | ·) ∝ p(θkh)
∏
i:γki =h

p(yki | θkh(xki ))

∝ exp{−1

2
(θkh −Xkβkh)′(Ck)−1(θh −Xkβkh)} × exp{−

∑
i:γki =h

(yki − θkh(xi))2

2(σk)2
}

∼ N(((Ck)−1 +
U ′U

(σk)2
I)−1(U ′

ykh
(σk)2

+ (Ck)−1Xkβkh), ((Ck)−1 +
U ′U

(σk)2
Ink×nk)−1),

where ykh = {yki , γki = h}, Ink×nk is an nk × nk identity matrix, Xk is an nk ×Mk

matrix with the covariates xki of the i-th patient in row i. U is a nkh × nk matrix: if

patient i is the j-th element of γki = r, then Uji = 1. All other elements are 0.

• Update βkh

p(βkh | ·) ∝ p(βkh) exp{−1

2
(θkh −Xkβkh)′(Ck)−1(θkh −Xkβkh)}

∼ N(Σk
h[((X

k)′(Ck)−1θkh + Σk
0β

k
0 ],Σk

h),

where Σk
h = ((Xk)′(Ck)−1Xk + (Σk

0)−1)−1.
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• Update wkh

vkh ∼ Beta(1 + nkh, α
k +

∑
j>h

nkj ),

where nkh =
∑nk

i=1 I(γki = h) is the number of observations such that γki = h. Then

wkh = vkh
∏

j>h(1− vkj ).

• Update γki

– If yki is not censored,

Pr(γki = h | ·) ∝ wkh

∫
p(yki | θkh(xi))p(θkh(xki ) | θkh(xk−i))d(θkh(x

k
i )),

where xk−i = {xkj : γkj = h, j 6= i}.

– If yki is censored, Let

pkh(t) =

∫
p(yki | θkh(xi))p(θkh(xki ) | θkh(xk−i))d(θkh(x

k
i )).

Then

Pr(γki = h | ·) ∝
∫ ∞
V k
i

wkhp
k
h(t)dt,

where V k
i is the observed time for patient i in transition k.

• Update αk

Using data augmentation, we first sample an m from beta distribution beta(αk+1, nk).

Then we sample the new αk value from

αk ∼ πGa(λ3 +H, λ4 − log(m)) + (1− π)Ga(λ3 +H − 1, λ4 − log(m)),

where π
1−π = λ3+H−1

nk(λ4−log(m))
.
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B: Survival Time Regression Simulation

This simulation was designed to study the DDP-GP regression model by comparing inference

for a survival function with the simulation truth. In this study, we did not evaluate a regime

effect, but rather focused on inference for the survival curve.

For each subject, we generated T = survival time, the covariates x1 = tumor size

(0=small, 1=large) and x2 = body weight, and x3 = a biomarker (0=absent, 1=present).

We assumed that small and large tumor sizes each had probability .50. Body weights were

computed by sampling from a uniform distribution, Unif(80, 150), with the covariate x2

defined by shifting and scaling to obtain mean 0 and variance 1. The biomarker was asso-

ciated with tumor size, as follows. Patients in the large tumor size group were biomarker

negative with probability 0.7 and biomarker positive with probability 0.3. Patients with

small tumor size were biomarker negative with probability 0.3 and biomarker positive with

probability 0.7. Let Y ∼ LN(m, s) denote a lognormal random variable Y = log T for

T ∼ N(m, s). By a slight abuse of notation, we also use LN(m, s) to denote the lognormal

p.d.f. Let xi = (1, xi,1, xi,2, xi,3) denote the covariates for patient i, here we include 1 in the

covariate to indicate the intercept. We simulated each sample Y1, · · · , Yn of n observations

from a mixture of lognormal distributions, Yi|xi ∼ 0.4 LN(xiβ1, σ
2) + 0.6 LN(xiβ2, σ

2),

where the true covariate parameters of the mixture components were β1 = (1, 2,−2, 1)′ and

β2 = (2,−1, 3,−3)′, with σ2 = 0.4. For comparison, we also fit an AFT regression model,

assuming

Yi = log(Ti) = x′iβ + σεi, i = 1, . . . , n

with εi following an extreme value distribution, so that Ti follows a Weibull distribution.

In this simulation, we considered four scenarios, with n = 50, 100, or 200 observations

without censoring or n = 200 with 23% censoring. For each scenario, N = 1, 000 trials were

simulated. For each simulated data set we fit a DDP-GP survival regression model F (Yi | xi).
For simulation j, let S(t | x) = p(Tn+1 ≥ t | xn+1,j = x, data) denote the posterior expected

survival function for a future patient with covariate x. Using the empirical distribution
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1
n

∑n
i=1 δxij

to marginalize w.r.t. xn+1,j and averaging across simulations, we get

S(t) =
1

N

N∑
j=1

1

n

n∑
i=1

S(t | xij).

Figure S1 compares S(·) under the DDP-GP model with the simulation truth

S0(t) =
1

N

N∑
j=1

1

n

n∑
i=1

S0(t | xij),

and maximum likelihood estimates (MLE) under Weibull AFT, Lognormal AFT, and Ex-

ponential AFT models. In each scenario, the true curve is given as a solid black solid line,

the MLE of the survival functions under the AFT regression model assuming Weibull distri-

bution, Lognormal distribution and Exponential distribution as green, blue, magenta solid

lines respectively, and the posterior mean survival function under the DDP-GP model as a

solid red line with point-wise 90% credible bands as two dotted red lines.

In all four scenarios, the DDP-GP model based estimate reliably recovered the shape of

the true survival function and avoided the excessive bias seen with the Weibull, lognormal and

exponential MLE. As expected, the three scenarios without censoring show that increasing

sample size gives more accurate estimation. With 23% censoring, the DDP-GP estimate

becomes less accurate, but it still is much closer to the simulation truth than the AFT

regression models with Weibull, lognormal and exponential distributions.
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Figure S1: Simulation 1. True mean survival functions (black color) and estimated mean survival

functions under the DDP-GP model (red color) for sample sizes n = 50, 100, 200 and n = 200

with 23% censoring for 1,000 simulations. For comparisons, we also show the MLE under an

AFT regression with Weibull distribution (green color), Lognormal distribution (blue color) and

Exponential distribution (magenta) . In all cases, the point-wise 90% credible bands are also

displayed as the region between two dotted red lines.

6


