S1 Appendix Proofs and derivations

A Derivation of Stepwise MCF algorithm

Our Stepwise MCF performs a novel post-hoc analysis of the eigenconnectivity matrix B_{PCA} obtained by unconstrained PCA. Specifically, we seek an approximate factorization $B_{\text{PCA}} \approx W G W^{\top}$ where W and G satisfy their respective constraints introduced in Section 2.3.2. In the following, we derive the algorithm using a spectral relaxation technique similar to the one developed in the literature of (multiclass) spectral clustering [\[1\]](#page-1-0).

Assume for a moment that weight matrix W can be any matrix satisfying relaxed constraint $W^{\top}W = I$. Then any W and G, such that $\vec{W} \vec{G} \vec{W}^\top = U \vec{Q} \vec{U}^\top$, achieves the minimum approximation error $||\vec{B}_{\text{PCA}} - \vec{Q}||$ $WGW^{\top}||^2$, where diagonal matrix Q contains the two largest-magnitude eigenvalues of B_{PCA} and $D \times 2$ matrix U has corresponding eigenvectors in its columns. The relaxed solutions are thus given by $W = UV^{\top}$ with arbitrary 2×2 orthogonal matrix V .

Although these relaxed solutions do not necessarily contain any solution under the original constraints, we might still expect to obtain a reasonable partitioning into modules (with nonnegative weights) by finding the W that is closest to the set of relaxed solutions among those satisfying original constraints. For convenience, we define $\Omega_+ := \Omega \cap \mathbb{R}^{D \times 2}_+$. Then the $W \in \Omega_+$ closest to any relaxed solution may be found by solving the following minimization problem:

$$
\min_{\mathbf{W}, \mathbf{V}} \qquad \|\mathbf{W} - \mathbf{U}\mathbf{V}^{\top}\|^{2},
$$
\nsubject to $\mathbf{W} \in \Omega_{+}, \quad \mathbf{V}^{\top}\mathbf{V} = \mathbf{I}.$ (1)

After solving this, we simply normalize every column of W to satisfy all of the original constraints, i.e., $W \in \Omega_+$ and $\forall k \|\mathbf{w}_k\| = 1$. Note that the solution is only an approximation to the exact orthogonal projection to the set of W s satisfying both of these two constraints (see also Section 2.3.4), while it empirically works quite well in our experiments. Finally, for the given W, we set $G = W^\top B_{\text{PCA}} W$ to obtain the best approximation $\boldsymbol{B}_{\text{PCA}} \approx \boldsymbol{W} \boldsymbol{G} \boldsymbol{W}^\top.$

The problem [\(1\)](#page-0-0) is the same as a previously considered one [\[1\]](#page-1-0), except for the explicit nonnegativity on W. Following [\[1\]](#page-1-0), we solve [\(1\)](#page-0-0) using an alternating minimization between W and V. The solution for W is obtained with Proposition [1](#page-0-1) below; the other problem for V is the well-known orthogonal Procrustes problem [\[2\]](#page-1-1) for which the solution is given by $V = RL^{\top}$, where $L\Sigma R^{\top}$ is the singular value decomposition of $\boldsymbol{U}^\top \boldsymbol{W}$.

Proposition 1. Let $\widehat{W} = \mathcal{P}_{\Omega_+}(W) := \mathop{\rm argmin}_{W' \in \Omega_+} \|W' - W\|^2$ be the orthogonal projection of $W =$ (w_{jk}) *to set* Ω_{+} *defined in* (8). Then it holds that the (j, k) -element of \widehat{W} is given by

$$
\widehat{w}_{jk} = \begin{cases}\n(w_{jk})_{+} & \text{if } k = k_j^* \\
0 & \text{otherwise}\n\end{cases},\n\tag{2}
$$

 $where k_j^* = \text{argmax}_k w_{jk}$ *for every j* and $(w)_+ := \max\{w, 0\}.$

Proof. Let $\kappa : j \mapsto k$ indicate module k to which node j belongs. Then for any given κ , we have

$$
\min_{\mathbf{W}'} \|\mathbf{W}' - \mathbf{W}\|^2 = \sum_{j} \left\{ \sum_{k \neq \kappa(j)} w_{jk}^2 + \min_{w'_{j\kappa(j)} \ge 0} (w'_{j\kappa(j)} - w_{j\kappa(j)})^2 \right\}
$$

$$
= \sum_{j} \left\{ \sum_{k \neq \kappa(j)} w_{jk}^2 + (-w_{j\kappa(j)})^2 + \right\}
$$

$$
= \|\mathbf{W}\|^2 - \sum_{j} (w_{j\kappa(j)})^2 + \sum_{j} (w_{j\kappa(j)})^2
$$

where $w'_{j\kappa(j)} = (w_{j\kappa(j)})_+$ solves inner minimization. Further minimizing this with respect to κ , we obtain $\kappa(j) = \operatorname{argmax}_k w_{jk}$ for every j, which concludes the proof. \Box

B Alternative interpretation of problem [\(9\)](#page-0-2)

Although we have introduced the optimization problem [\(9\)](#page-0-2) solely as a constrained form of the original PCA optimization problem [\(2\)](#page-0-2), one may also view the same problem from another perspective. To see this, denote by $Y := W^{\top} X W$ (2 × 2 matrix) the module-level summary of observed connectivity matrix, where each entry, $y_{kl} = \bm{w}_k^{\top} \bm{X} \bm{w}_l$, summarizes the total (weighted) connectivity within module k (if $k = l$) or between module k and module l (if $k \neq l$). Then, the problem [\(9\)](#page-0-2) with respect to G reduces to the following PCA optimization problem just like [\(2\)](#page-0-2):

$$
\max_{\mathbf{G}} \sum_{n=1}^N \left(\text{tr}[\mathbf{G}^\top \widetilde{\mathbf{Y}}_n] \right)^2, \quad \text{subject to} \quad \|\mathbf{G}\| = 1,
$$

where $\widetilde{Y}_n := Y_n - \overline{Y}$ and \overline{Y} denotes the sample mean; every \widetilde{Y}_n actually depends on W which is simultaneously optimized for the same objective. Hence, the constrained PCA problem [\(9\)](#page-0-2) of our MCF can also be interpreted as performing PCA eigenconnectivity analysis at the module level, simultaneously optimizing the partitioning and weights of the modules in a unified manner.

C Derivation of gradient [\(13\)](#page-0-2)

The gradient is calculated as

$$
\nabla_{\boldsymbol{W}} \|\boldsymbol{W}^\top \boldsymbol{C} \boldsymbol{W}\|^2 = \left(\text{tr} \left[(2 \boldsymbol{W}^\top \boldsymbol{C} \boldsymbol{W})^\top \frac{\partial}{\partial w_{kl}} \boldsymbol{W}^\top \boldsymbol{C} \boldsymbol{W} \right] \right)_{kl} \\ = \boldsymbol{C} \boldsymbol{W} (2 \boldsymbol{W}^\top \boldsymbol{C} \boldsymbol{W})^\top + \boldsymbol{C}^\top \boldsymbol{W} (2 \boldsymbol{W}^\top \boldsymbol{C} \boldsymbol{W}) \\ = 2 \boldsymbol{C} \boldsymbol{W} \boldsymbol{W}^\top \boldsymbol{C}^\top \boldsymbol{W} + 2 \boldsymbol{C}^\top \boldsymbol{W} \boldsymbol{W}^\top \boldsymbol{C} \boldsymbol{W},
$$

where we used relation $\nabla_{W} \text{tr}[AW^{\top}CW] = CWA + C^{\top}WA^{\top}$ for any constant matrix A. Then the symmetricity of C implies [\(13\)](#page-0-2).

References

- [1] Yu SX, Shi J. Multiclass spectral clustering. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV2003); 2003. p. 313–319.
- [2] Schönemann PH. A generalized solution of the orthogonal Procrustes problem. Psychometrika. 1966;31:1– 10.