
S1 Appendix
Proofs and derivations

A Derivation of Stepwise MCF algorithm
Our Stepwise MCF performs a novel post-hoc analysis of the eigenconnectivity matrix BPCA obtained by
unconstrained PCA. Specifically, we seek an approximate factorization BPCA ≈ WGW> where W and G
satisfy their respective constraints introduced in Section 2.3.2. In the following, we derive the algorithm using a
spectral relaxation technique similar to the one developed in the literature of (multiclass) spectral clustering [1].

Assume for a moment that weight matrix W can be any matrix satisfying relaxed constraint W>W = I .
Then any W and G, such that WGW> = UQU>, achieves the minimum approximation error ‖BPCA −
WGW>‖2, where diagonal matrix Q contains the two largest-magnitude eigenvalues of BPCA and D × 2
matrix U has corresponding eigenvectors in its columns. The relaxed solutions are thus given by W = UV >

with arbitrary 2× 2 orthogonal matrix V .
Although these relaxed solutions do not necessarily contain any solution under the original constraints, we

might still expect to obtain a reasonable partitioning into modules (with nonnegative weights) by finding the
W that is closest to the set of relaxed solutions among those satisfying original constraints. For convenience,
we define Ω+ := Ω ∩ RD×2

+ . Then the W ∈ Ω+ closest to any relaxed solution may be found by solving the
following minimization problem:

min
W ,V

‖W −UV >‖2,

subject to W ∈ Ω+, V >V = I.
(1)

After solving this, we simply normalize every column of W to satisfy all of the original constraints, i.e.,
W ∈ Ω+ and ∀k ‖wk‖ = 1. Note that the solution is only an approximation to the exact orthogonal projection
to the set of W s satisfying both of these two constraints (see also Section 2.3.4), while it empirically works quite
well in our experiments. Finally, for the given W , we set G = W>BPCAW to obtain the best approximation
BPCA ≈WGW>.

The problem (1) is the same as a previously considered one [1], except for the explicit nonnegativity on
W . Following [1], we solve (1) using an alternating minimization between W and V . The solution for
W is obtained with Proposition 1 below; the other problem for V is the well-known orthogonal Procrustes
problem [2] for which the solution is given by V = RL>, where LΣR> is the singular value decomposition
of U>W .

Proposition 1. Let Ŵ = PΩ+
(W ) := argminW ′∈Ω+

‖W ′ −W ‖2 be the orthogonal projection of W =

(wjk) to set Ω+ defined in (8). Then it holds that the (j, k)-element of Ŵ is given by

ŵjk =

{
(wjk)+ if k = k∗j
0 otherwise

, (2)

where k∗j = argmaxk wjk for every j and (w)+ := max{w, 0}.
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Proof. Let κ : j 7→ k indicate module k to which node j belongs. Then for any given κ, we have

min
W ′
‖W ′ −W ‖2 =

∑
j

 ∑
k 6=κ(j)

w2
jk + min

w′
jκ(j)

≥0
(w′jκ(j) − wjκ(j))

2


=
∑
j

 ∑
k 6=κ(j)

w2
jk + (−wjκ(j))

2
+


= ‖W ‖2 −

∑
j

(wjκ(j))
2
+,

where w′jκ(j) = (wjκ(j))+ solves inner minimization. Further minimizing this with respect to κ, we obtain
κ(j) = argmaxk wjk for every j, which concludes the proof.

B Alternative interpretation of problem (9)

Although we have introduced the optimization problem (9) solely as a constrained form of the original PCA
optimization problem (2), one may also view the same problem from another perspective. To see this, denote by
Y := W>XW (2× 2 matrix) the module-level summary of observed connectivity matrix, where each entry,
ykl = w>k Xwl, summarizes the total (weighted) connectivity within module k (if k = l) or between module
k and module l (if k 6= l). Then, the problem (9) with respect to G reduces to the following PCA optimization
problem just like (2):

max
G

N∑
n=1

(
tr[G>Ỹn]

)2

, subject to ‖G‖ = 1,

where Ỹn := Yn − Y and Y denotes the sample mean; every Ỹn actually depends on W which is simulta-
neously optimized for the same objective. Hence, the constrained PCA problem (9) of our MCF can also be
interpreted as performing PCA eigenconnectivity analysis at the module level, simultaneously optimizing the
partitioning and weights of the modules in a unified manner.

C Derivation of gradient (13)

The gradient is calculated as

∇W ‖W>CW ‖2 =

(
tr

[
(2W>CW )>

∂

∂wkl
W>CW

])
kl

= CW (2W>CW )> + C>W (2W>CW )

= 2CWW>C>W + 2C>WW>CW ,

where we used relation ∇W tr[AW>CW ] = CWA + C>WA> for any constant matrix A. Then the
symmetricity of C implies (13).
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