
S3 Appendix
Relation to Nonnegative Tensor Factorization

A MCF and Nonnegative Tucker decomposition (NTD)
We developed our MCF method as a new constrained PCA for connectivity matrix data. However, it turns
out that MCF also has a close relationship to nonnegative Tucker decomposition (NTD) [1, 2], a specific type
of nonnegative tensor factorization (see, e.g., [3]), due to the additional nonnegativity constraint as well as the
generalization to more than two modules; NTD is a generalization of a more conventional parallel factor analysis
(PARAFAC) type of method that has recently been applied to the brain’s functional network analysis [4].

To introduce the basic idea of NTD, let X ∈ RD×D×N be a three-dimensional array (i.e., third-order
tensor) that concatenates connectivity matrices Xn along the third dimension. Then NTD seeks an approximate
decomposition of tensor X such that

X ≈
K∑

k=1

L∑
l=1

M∑
m=1

gklmwk ⊗w′l ⊗ sm, (1)

where wk and w′l are D-dimensional nonnegative vectors, sm is N -dimensional nonnegative vector and ⊗
denotes an outer product of two vectors. Standard NTD sets coefficients gklm as nonnegative as well, while
a variant with real coefficients gklm is usually called semi-nonnegative Tucker decomposition (sNTD). Algo-
rithms for NTD and sNTD have been extensively studied in the literature (e.g., [3, 5]).

Now consider the case of K = L. Then it follows that sNTD approximates each connectivity matrix Xn as

sNTD: Xn ≈
M∑

m=1

smnWGm(W ′)>,

smn ≥ 0, W ,W ′ ∈ RD×K
+ ,

(2)

where smn denotes the n-th entry of sm, matrices W and W ′ consist of column vectors wk and w′l, and matrix
Gm consists of entries gklm. Due to the scaling ambiguity, we may set every column in W and W ′ to have
unit norm and matrix G to have unit Frobenius norm. Equation (2) actually exhibits many similarities with the
decomposition obtained by MCF after M -th deflation step, i.e.,

MCF: Xn ≈X +

M∑
m=1

smnWmGmW>
m ,

smn ∈ R, Wm ∈ Ω+,

(3)

where the subscript m indicates corresponding deflation steps and definition of set Ω+ is generalized to D×K
matrices.

Next, we discuss their differences in more detail. The typical sNTD decomposition (2) does not assume
W = W ′, while MCF does. However, this difference is not essential because the symmetry of connectivity
matrices Xn again implies that one may reasonably set W = W ′ and also set G as symmetric in (2) either
by additional constraints or as a consequence of optimization. Other more essential differences between the
decompositions by sNTD (2) and MCF (3) are the following:

1. Parts-based representation vs. variability around mean. sNTD directly decomposes connectivity matrices
while MCF decomposes their deviations from mean. In other words, sNTD primarily seeks parts-based
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representations of data rather than analyzing underlying factors of variability, just like what nonnegative
matrix factorization (NMF) [6, 7, 3] does as compared to PCA. Note that the nonnegative components
smn in sNTD naturally quantifies each part’s contribution while nonnegativity is hardly justified when
representing the variability around mean; subtraction of sample mean X is usually not performed in the
literature of nonnegative tensor factorization since it tends to destroy the nonnegativity of the data.

2. Disjointness among modules. In addition, MCF explicitly introduces disjointness among modules as well
as nonnegativity, so that each entry of Gm clearly corresponds to either intra-module or inter-module
variability. Although disjointness (i.e., orthogonality) of nonnegative weights has been studied exten-
sively for NMF (e.g., [8, 3]), it does not seem to be very common for nonnegative tensor factorization
(but see, e.g., [9, 10]). In particular, we are not aware of any studies using semi-nonnegative Tucker-type
decomposition with additional disjointness constraints.

3. Common modules across components. Another difference is whether module weights W are common
across components or not. MCF allows the modules to be different across components, which is more
flexible and even enables to use the computationally simple deflation scheme. On the other hand, sNTD
assumes that every component has the same collection of modules. Although being less flexible, such
an assumption possibly improves the identification of relevant modules by reducing the number of free
parameters.

Among these points, the first point is arguably the most important. The two types of decompositions by MCF
and sNTD are essentially very different in their underlying concepts and hence, sNTD is not directly applicable
to eigenconnectivity analysis. We do not claim that either of the two approaches is better than the other. They
actually focus on rather different aspects of data and can work complementary.

B Additional result by sNTD
For comparison with the multi-module generalization of MCF (K = 4), we applied sNTD to the same fcMRI
dataset (Section 2.5.1) to extract a single component (i.e., M = 1) with K = L = 4. We used a Matlab
implementation of an efficient hierarchical alternating least squares (HALS) algorithm [5] 1. To avoid local
optima, we ran the algorithm 100 times from different initial conditions to converge and selected a result that
achieved the smallest reconstruction error. In the 100 runs, the solution always approximately satisfied W =
W ′ after appropriate reordering of the columns in W ′ and rescaling all the columns in W and W ′ to have
unit norm; inner products of the corresponding unit vectors wk and w′k were 0.99 on average. The solution G
after corresponding permutation and scaling were also always approximately symmetric; the relative error by
‖G −G>‖2/‖G‖2 was 9.40 × 10−4 on average. For visualizing results, we used only W by discarding W ′

and explicitly symmetrized G by taking average with its transpose.
As is normally done (e.g., [2]), we performed sNTD on non-centered connectivity matrices Xn, for which

the decomposition with nonnegative components (2) is well-justified. For completeness, we also intentionally
performed sNTD on centered connectivity matrices X̃n, which we refer to as sNTD-c below. Note that such a
usage is not common in the literature.

The result is shown in the figure given below. In Fig. A(a), w1 and w3 clearly resemble the DMN and
the salience network which were also found by MCF, while w2 and w4 are sensorimotor and visual areas
networks which might jointly correspond to the single network w2 in Fig. 6(b) but with a more spatial extent.
Interestingly, sNTD produced no modules that resembled the TPN like w4 in Fig. 6(b). It is also seen that
G has dominant diagonal entries as indicated by the thicker self-loops, and thus did not find interesting any
inter-module relationship.

The modules were surprisingly unchanged even when the sample mean was subtracted in sNTD-c (Fig. A(b)).
sNTD-c seems to find partial eigenconnectivity patterns of MCF like those within and between the DMN w1

and the salience network w3, while one must be careful about the interpretation of G as sNTD-c does not
actually maximize the sample variability (variance) of connectivity matrices.

1Available at http://www.bsp.brain.riken.jp/˜zhougx/tensor.html
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(a) sNTD
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(b) sNTD on centered data
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Fig A. Resting-state fcMRI data: spatial patterns of weight vectors wk as well as module-level eigenconnectiv-
ity G, obtained by (a) semi-nonnegative Tucker decomposition (sNTD) and (b) sNTD performed on centered
data. Note that the latter usage is not common in the literature. See caption of Fig. 5 for visualization details.
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