
S1. Supplemental Results 

S.1 Results among Individuals with Normal Cognition 

Among individuals with normal cognition, higher cognitive resilience (Hazard 

Ratio [95% confidence interval]=0.60 [0.39-0.93], p=0.024) and global resilience 

(HR=0.56 [0.34-0.90], p=0.016) predicted a decreased risk of diagnostic conversion. 

Similarly, higher brain resilience (β=0.03, t(986)=2.47, p=0.014) predicted better 

trajectories of memory performance. Conversely, higher cognitive resilience predicted 

worse trajectories of memory (β=-0.03, t(986)=-2.82, p=0.005) and executive function 

(β=-0.03, t(986)=-2.36, p=0.019) performance likely reflecting a regression to the mean 

artifact (cognitive resilience strongly predicts baseline cognition, and baseline cognitive 

scores show a comparable inverse association with longitudinal change in this cohort 

consistent with previous regression to the mean artifacts reported in cognitively normal 

older adults).1 Cognitive reserve and brain reserve did not predict a decreased risk of 

diagnostic conversion or slower trajectories of cognitive performance among NC 

participants (p-values>0.28). Additionally, none of the latent variables of resilience or 

reserve predicted slower rates of left or right ventricular dilation (p-values>0.12). 

S.2 Results when Controlling for Baseline Biomarker Levels, Baseline 

Hippocampal Volume, and Baseline Cognitive Performance 

In analyses adjusting for baseline hippocampal volume, baseline CSF biomarker 

levels, and baseline cognitive performance, higher levels of brain resilience (HR=0.45 

[0.29-0.68], p=1.5x10-4), cognitive resilience (HR=0.48 [0.34-0.67], p=2.7x10-5), and 
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global resilience (HR=0.47 [0.34-0.67], p=1.8x10-5) continued to predict a decreased 

risk of diagnostic conversion. Similarly, brain resilience, cognitive resilience, and global 

resilience predicted better trajectories of performance in both memory and executive 

function (p-values<0.001) and inferior lateral ventricle volume (p-values<0.02). Brain 

reserve and cognitive reserve did not predict slower rates of diagnostic conversion 

(p-values>0.42), and brain reserve again predicted worse trajectories of memory and 

executive function performance (p-values<0.003) and faster rates of ventricular dilation 

(p-values<3.0x10-7), suggesting brain reserve had particularly poor predictive value after 

adjusting for strong predictors of cognitive decline.  

It should also be noted that we did observe the expected evidence of collinearity 

among brain resilience (variance inflation factor (VIF)=8.6 for memory, VIF=8.5 for 

executive function) and hippocampal volume (VIF=10.2 for memory, VIF=10.2 for 

executive function), cognitive resilience (VIF=4.3 for memory, VIF=5.5 for executive 

function) and baseline cognitive performance (VIF=5.7 for memory, VIF=5.1 for 

executive function), and global resilience (VIF=5.6 for memory, VIF=6.7 for executive 

function) and both hippocampal volume (VIF=3.7 for memory, VIF=4.5 for executive 

function) and baseline cognitive performance (VIF=3.9 for memory, VIF=3.2 for 

executive function). 

S.3 Results when Restricting to 3T or 1.5T Data Points 

When restricting the sample to individuals who were scanned on a 3T scanner, 

we observed a comparable fit for the PLS model with a goodness of fit of 0.75. Brain 

resilience, cognitive resilience, and global resilience continued to predict diagnostic 

conversion (HRs<0.51, p-values<2x10-9), longitudinal change in memory 



(p-values<0.004), and ventricle dilation (p-values<1.4x10-6). Only brain resilience 

predicted longitudinal change in executive function (β=0.03, t(1395), p=0.03), perhaps 

due to the restricted follow-up period in ADNI-2/GO. Similarly, among individuals who 

were scanned on a 1.5T scanner (excluding all individuals with 3T scans), we observed 

a comparable overall fit for the PLS model with a goodness of fit of 0.76. Brain 

resilience, cognitive resilience, and global resilience all predicted diagnostic conversion 

(HRs<0.57, p-values<2x10-5), longitudinal change in memory (p-values<0.04), 

longitudinal change in executive function (p-values<7x10-8), and ventricle dilation 

(p values<4.3x10-8).  

S.4 Results when Using Dichotomized CSF Metrics 

We reran all analyses by recalculating the residuals used as indicators in our 

original analysis. Instead of a continuous measure of amyloid in the regression models, 

we used a binary variable of Amyloid Positive (Aβ-42≤192 pg/mL). Similarly, instead of 

a continuous measure of total tau, we used a binary variable of Tau Positive (total 

tau≥93 pg/mL). These cut-off definitions are more commonly applied in clinical settings 

and thus maybe more applicable to clinical care. Our results were consistent with those 

identified using continuous metrics. Higher levels of brain resilience (HR=0.54 [0.46-

0.63], p=3x10-14), cognitive resilience (HR=0.42 [0.34-0.51], p<2x10-16), and global 

resilience (HR=0.41 [0.34-0.49], p<2x10-16) continued to predict a decreased risk of 

diagnostic conversion. Similarly, brain resilience, cognitive resilience, and global 

resilience predicted better trajectories of performance in both memory and executive 

function (p-values<8.3x10-5) and inferior lateral ventricle volume (p-values<3.9x10-17). 

Brain reserve and cognitive reserve did not predict slower rates of diagnostic conversion 



(p-values>0.15), and brain reserve again predicted worse trajectories of executive 

function performance (p=0.047) and faster rates of ventricular dilation 

(p-values<4.6x10-7).  

S.5 Results to Address Potential Circularity 

We performed two additional analyses to address potential circularity. First, we 

removed the composite memory measure from the cognitive resilience calculation and 

reassessed the association between resilience and longitudinal memory performance. 

We then repeated this procedure removing executive function performance from the 

cognitive resilience calculation and reassessing the association between all resilience 

phenotypes and longitudinal change in executive function. When restricting the 

cognitive resilience calculation to only include memory performance, we observed a 

comparable goodness of fit for the latent variable model (0.78) and all three resilience 

metrics continued to successfully predict slower rates of longitudinal decline in 

executive function performance (all p-values<5x10-5). Similarly, when restricting the 

cognitive resilience calculation to only include executive function performance, we 

observed a comparable goodness of fit for the latent variable model (0.77) and all three 

resilience metrics continued to successfully predict slower rates of longitudinal decline 

in memory performance (all p-values<0.0005).  

S.6 Alternative Cognitive Resilience Calculations 

Previous work using a comparable approach has defined cognitive resilience 

based on residual variance after adjusting for MRI measures of brain volume.2 

Therefore we evaluated two additional methods of calculating residual cognitive 

variance to determine whether the simplified model leveraging CSF biomarkers 



provides any additional predictive power over leveraging of MRI measures. Both 

additional metrics were calculated in the subset of individuals included in our original 

analysis. First, we calculated the “resilience in executive function” score (as outlined 

previously2) adjusting for age, sex, education, Hachinski score, cortical volume 

adjusting for intracranial volume, hippocampal volume adjusting for intracranial volume, 

and baseline memory performance. We did not include white-matter hyperintensity 

volume or presence of lacunes as included previously2 because these metrics were not 

available at baseline for all participants evaluated. Second, we calculated cognitive 

resilience in the context of our PLS framework by calculating residuals for memory 

performance and executive performance separately (as in our original model) adjusting 

for the demographic and structural MRI variables listed above. We observed a 

comparable goodness of fit for the PLS model when leveraging these new residuals 

(goodness of fit=0.73).  

To evaluate these metrics, we calculated the correlation between our cognitive 

resilience metric based on residual variance after adjusting for CSF biomarker levels to 

both the resilience in executive function variable and the cognitive resilience variable 

calculated using MRI predictors instead of CSF predictors. Then we assessed the ability 

of each measure to predict diagnostic conversion using the same survival analysis 

outlined in the present manuscript. 

The three calculations of cognitive resilience were correlated, with the cognitive 

resilience metrics calculated in the PLS framework showing the strongest correlation 

(Pearson’s R=0.82, p<0.0001). The resilience in executive functioning variable showed 

a more modest correlation with cognitive resilience calculated based on CSF biomarker 



levels (Pearson’s R=0.46, p<0.0001) and cognitive resilience calculated based on MRI 

measures (Pearson’s R=0.58, p<0.0001).  

When evaluating the ability of each metric to predict diagnostic conversion, we 

observed the best performance for cognitive resilience calculated based on CSF 

biomarker levels (HR=0.42 [0.34-0.51], p<0.0001), followed by cognitive resilience 

calculated based on structural MRI variables (HR=0.61 [0.51-0.73], p<0.0001). 

Resilience in executive functioning did not successfully predict protection from 

diagnostic conversion (HR=0.84 [0.66-1.07], p=0.166).  

S.7 Additional Detail on PLS Path Model 

The PLS path model was implemented using the plspm package (https://cran.r-

project.org/web/packages/plspm/plspm.pdf) in R. Additional documentation and 

examples for the use of plspm are available online (https://cran.r-

project.org/web/packages/plspm/vignettes/plspm_introduction.pdf). For the present 

analysis, we built an outer model with four first-level and one second-level latent 

variable. Building a PLS path model requires a dataset and the following three 

variables: 1) a path variable which represents the inner model, 2) a blocks variable that 

identifies the indicator variables, and 3) a mode variable that represents the type of 

measurement to use in the outer model. We will walk through how each component of 

the model was built in the following text so that others may implement a similar 

methodology. 

The outer model was built following the specifications of the plspm 

documentation as follows: 

#Build Inner Model 
brain_resilience <- c(0,0,0,0,0) 



cognitive_resilience <- c(0,0,0,0,0) 
cognitive_reserve <- c(0,0,0,0,0) 
brain_reserve <- c(0,0,0,0,0) 
global_resilience <- c(1,1,1,1,0) 

These values were then assigned to the path variable as follows: 

#Build Path Variable 
resil_path <-
rbind(brain_resilience,cognitive_resilience,cognitive_reserve,brain_reserve, 
global_resilience) 

 

Next, we built a data frame that included the variables of interest for cognitive resilience 

(residuals from cognition regression models), brain resilience (residuals from 

hippocampal volume regression models), cognitive reserve (education, reading score), 

and brain reserve (height, ICV). The blocks were set by assigning the proper column 

numbers to the latent variable in the order specified in the path model as follows: 

#Identify indicator variables 
resil_blocks <- list(15:18,11:14,9:10,7:8,7:18) 

We then set the mode of measurement to reflective in the following way: 

#Specify the type of measurement (reflective)  
resil_modes <- c("A","A","A","A","A") 

Finally, the dataset, path, blocks, and modes were all used to build the final model using 

the following code: 

#Run plspm path model 
resil_pls <- plspm(dataset,resil_path, resil_blocks, modes=resil_modes, 
maxiter=500) 

 

The individual scores that result from this model calculation were then pulled from the 

scores table in the resil_pls output. 



S.8 References 

1. Pudas S, Persson J, Josefsson M, de Luna X, Nilsson L-G, Nyberg L. Brain 

characteristics of individuals resisting age-related cognitive decline over two 

decades. The Journal of Neuroscience 2013;33:8668-8677. 

2. Mukherjee S, Kim S, Gibbons LE, Nho K, Risacher SL, Glymour MM, et al. Genetic 

architecture of resilience of executive functioning. Brain Imaging and Behavior 

2012;6:621-633. 

 


