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S1. ALGORITHM DESCRIPTION

The algorithm for detecting the evolving timescales of time-varying data is implemented in different layers. Each
layer is reasonably independent of others, allowing them to be improved or replaced independently of each other.
This allows the method to be easily adapted and improved for new types of data. This document describes each of
the possible variations of each layer of implementation. Please note that this document is designed to explain the
algorithm components from a scientific viewpoint. It is not a usage manual of the code, which is found on the project
site.

The algorithm is designed in the following layers:

1. Data input (See user manual)

. Data representation (Sec. [S1 B 1J)
1C)

)

. Similarity measures (Sec.
. The core segmentation process (Sec. [S1 D))
. Choosing At to test at one iteration (Sec.[S1E)

6. Maximum finding (Sec. [S1F))
Code for the method is available at https://github.com/rkdarst/dynsnap.
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A. Data and timescales

Before the method is applied to data, it is important to understand the necessarily qualities of input data and how
timescales are detected. The method is by default suited to most real data in a parameter-free fashion, but there can
be non-intuitive behavior for data with long-term self similarity, such as completely periodic artificial data.

The purpose of this method is to segment events into time-intervals so that the spacing of intervals corresponds to
the similarity of events within those intervals. This is captured by looking at the similarity of events within intervals.
An interval is too short if there is not enough time to get a characteristic set of events within it. An interval is too long
if, by some definition, the start and end of the interval are different in terms of characteristic events. All else being
equal, we would rather take longer intervals. Data must have two properties in order to be sliced. First, events must
repeat on a short time scale. That is, events repeat in time, so that the same event can be captured in two adjacent
intervals, or else intervals can not be similar. This is our smallest possible slicing time. If events do not recur, then
our method can not be used. On the other hand, there must be a long time scale at which events do not recur. If
events did always recur at every time scale, then the longest time scale of self-similarity covers the entire time. In
this case, any equal-size slicing of the interval would be acceptable. There are two ways this long-term change can
be understood. One is if some events become active, turn on and off for some time, and then eventually deactivate.
That is, you can identify some time range when an event occurs, and then forever before and after that time, that
event is not seen. Alternatively, there can be a finite universe of events, and the events are extremely bursty, so that
there are very long inactive periods between phases of activity.

Our method can detect different timescales. If there are different timescales, then J(At) (Sec. for each slice
will reveal them. There is then the question of selecting which of these timescales the algorithm should return for any
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given run of the code. The algorithm described here and the code released along with this article adopts the strategy
that, by default, the longest possible timescale should be detected. There are options to find shorter timescales, and
a detailed discussion exists within the code manual at doc/Manual.rst, and in Sec. [SIF|and Sec. [STF 4]

To use this method on data which does not meet the criteria above, in particular the “long term change”, timescale
options will be needed. In particular, consider the case of periodically repeating data, especially artificial data that
has no random noise. There is a short term similarity timescale, smaller than the period of repetition. This is the most
useful timescale to detect. Detecting this timescale would allow one to detect the components within the repeating
pattern. However, there is also a similarity at a long term timescale. Detecting this timescale would override and
hide all internal similarity. Since this similarity extends to all time and our method by default tries to find the longest
possible timescale, we would find the (less interesting) result that all time is similar. Another way to see this is that
there is as much, if not more, similarity between the first 1/3rd and last 1/3rd of data as there is within each period.
(Note that this can be used as a test for data where time scale adjustment is needed). Thus, our method correctly
detects the longest timescale as covering all time. However, note that any small amount of non-repeating random
noise will destroy this long-term similarity, and the method then detects some shorter time scale. This is why we say
that our method works well and without parameters on real data - random noise destroys long-term similarity, so
detecting the longest time scale returns the expected result.

B. Preliminaries

All time ranges are considered half-open intervals [t1,t2). Within an interval, events are aggregated to produce
“sets of events” which characterize the interval. The core goal of the slicing algorithm is to produce adjacent intervals
that have different sets of events, but that are not too dissimilar.

1. Data and interval representation

At the lowest level, all data is a multiset of (time, id, weight) tuples for each event. The variable time refers
to the time at which an event has happened, id stands for the unique ID of the event, and weight stands for the
number of occurrences of that particular event at that particular time. This conforms a multiset because duplicate
events at the same time and ID are allowed. If data is unweighted, all weights can be considered to be (and stored
as) 1.

When using data in an unweighted fashion, then the set of events is a regular (non-weighted, non-multiset) set
containing the IDs of every event present within the interval.

When using data in a weighted fashion, a set of events is a weighted set containing event IDs for every event present
within the interval, where each event has an associated (non-negative) weight. If the original data has only unit
weights (or was originally unweighted), then the event weights reduce to the counts of events within the intervals.
The weights are the sum of weights of all events of that ID within that interval.

Note that a weighted set can be converted to unweighted by dropping all weights. Conversely, if unweighted data
is made weighted, the weights count the number of events present.

C. Similarity measures

The various similarity measures are defined as a function between two (possibly weighted) sets of events as defined
above, with a resulting value in the range [0,1]. A 1 similarity defines a perfect match while 0 indicates no similarity.

In the following examples, consider two intervals A and B. Here we are loose with terminology and use the terms
A and B interchangeably to refer to the interval itself as well as to the set of events within the intervals. In the
remainder of this document, we use J to refer to a generic similarity measure, even if the symbol itself refers to the
Jaccard score.



1. Unweighted Jaccard

This measure calculates the similarity between unweighted sets of events. It makes use of the standard Jaccard
score,
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J(A,B) —_ m.

(S1)

In this formulation, the Jaccard score is 1 if two intervals have the same elements regardless of the number of
occurrences of those elements within the intervals.

2.  Weighted Jaccard

The following is the extension of the Jaccard score to the intersection and union of weighted sets. Weighted sets
are defined by real-valued indicator functions w; representing the weight of each element within the set. Element &
has a weight of w;. Any element of weight zero is considered to not be contained in the set and can be removed.
Conversely, any element not present in the set has a weight of zero. A weighted union is defined to have elements of

wy,; = max(wa,;, wa,;) (52)

over all elements in either A or B. Here, wy; is the indicator function for the union, and respectively w4 ,; and wg;
for the sets A and B. A weighted intersection is defined to have elements of

wr,; = min(wa,;, wp,;) (S3)

with components analogous to Eq. . With these definitions for the intersection and union, the weighted Jaccard
score is computed as in Eq. .

It is worth noting that the weighted Jaccard score introduces a bias towards equal-size sets with equal element
counts. Thus, there is some “inertia” in interval sizes and can not adapt to changing timescale quickly.

3. Cosine similarity

The weighted sets can be considered sparse vectors, allowing us to use the cosine similarity. Defined in terms of
sets, the cosine similarity is

4B Stwus)
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The cosine similarity of 1 indicates perfect match between events and relative event counts, but does not require
the same number of total events. Thus, the cosine similarity takes into account event counts in a more flexible way
than the weighted Jaccard score. The cosine similarity can be 1 if the sets are of unequal sizes, as long as the relative
distribution of event weights is the same.

(S4)

4. Unweighted cosine similarity

The unweighted cosine similarity is defined as

C(A,B) = 1AnB| (S5)

VIA[IB|

This is the analog of Eq. ((S4]) when applied to unweighted sets. It has many of the same advantages and disadvantages
as the unweighted Jaccard score.



D. The slicing process

The slicing of the data is the core of the algorithm. It provides an efficient, one pass, linear time method of
segmenting the groups of events in intervals where each interval ¢ comprises the time range within the half-open
interval [t;,t;4+1). The interval size is At} = t,11 —t;. Our general procedure is:

1. Begin with some initial time to. This is either the time of the very first event, or some specified time if one
wishes to segment only a portion of the time period.

2. Find the optimal At for the first interval. Various values of At are tried (see Sec. [S1E)), and the optimum is
the value which maximizes the similarity J(At) (see Sec. [S1F]). The interval is then set to [to, o + Atf).

3. Repeat the previous steps until all data is treated, or until we reach a specified stop time. We go through time
by setting the start of the next interval at the end of the previous, ¢; = t,_1 + At]_;.

1. Initial step: calculating the size of the first interval

We begin with an initial time ¢, which is the lower bound of the first interval. If this is not provided by the user,
it is the time of the first event. A test sequence of Ats is generated via one of the methods described in Sec For
each At generated, we compute the intervals A(At) = [tg,to + At) and A'(At) = [to + At, to + 2At). These will be
the next two intervals of width At after tg. We then compute our similarity score J (Sec. between A and A’ as
a function of At:

J(At) = J(A(A), A'(At))
= J([to, to + AL, [to + AL, to + 2AL)) . (S6)

Eq. is maximized as a function of At to produce At*, our optimal interval size (see Sec. for a detailed
explanation of this procedure). Once At* is found, the first interval A is set to [to,to + At*). This interval is now
fixed, the starting time is updated to t; = tg + Aty and we proceed to the propagation step.

Merging of the first two intervals. This method provides an option which consists in merging the initial
intervals. In this process, in the initial step, the first two intervals detected (A and A’) are merged into one double-
sized interval. Continuing from Sec. after At* is calculated, the first interval A is set to [to, to + 2At*), and
the new starting time is set to tg = tg + 2At. If this option is chosen, this process is done at the beginning of the data
slicing as well as after any critical events (which cause a restart in the slicing process as explained in Sec. . This
avoids discarding the second interval [tg + At*, tg + 2At*, but causes the combined first interval to have a different
size distribution from subsequent calculations.

In cases where the data has only sharp transitions, this merge process is advantageous, since the first two intervals
will probably be more similar than what comes after it. However, in smoothly varying data, merging should not be
done because it changes the meaning of the first interval relative to others. This is noticeable when the first interval
is twice as long as others. In the end, this decision must be made with external information, and it should be used
only if needed. Note that this decision is only relevant at the beginning of time, when the method is first learning
relevant timescales.

This is done in main text Fig. 1(a—c), where the data has sharp, clear transitions. Without this process, existing
boundaries stay the same, but each interval is divided into two. Thus, there are pairs of J = 1 intervals (self similar),
followed by pairs of J = 0 intervals (critical events, Sec. .

2. Propagation step

Given our previous interval A and starting time ¢; at the end of A, we proceed to construct the next interval in a
similar fashion to the initial step. We generate our series of Ats and construct a series of intervals B(At) = [t;, t; + At)
for each At. Analogously to the initial step, we compute the similarity score as a function of At,

J(At) = J (A, B(At))
= J(A, [t ti + AL)). (S7)
The difference to the initial step is that the first interval is fixed, and only the second is changing. We choose the At*
which maximizes J(At). The next interval is then fixed as B = [t;, ¢; + At*).

We repeat the propagation step indefinitely, until the intervals reach the end of the data and all events are included.
For each iteration, we take the A as the previous interval, and begin at the next start time t; = ¢;,_1 + At]_;.



E. At generation

There are various methods to choose the Ats to test in the optimization process of the previous section. We must
explicitly generate some values, because this is a numerical optimization. It is important to do this cleverly, or else
the method can become very inefficient. We would rather not test every possible At value, or test values too far in
the future. We would prefer to check small Ats that are close together, but they should be spaced further apart at
long At. We would rather check small At values first, since smaller intervals have fewer events to test, and thus are
faster to compute.

Also, there is a major opportunity for optimization. As long as At increases, interval sets can be generated by
simply adding (via set union) new events (between At,,_; and At,) to the previous interval set. This is a very efficient
operation, and makes each individual iteration O(Atyax), assuming that At only increases.

Since we do not have an a-priori knowledge of the minimum or maximum reasonable interval size, these are
structured as generators of At values, returning an infinite sequence. At a certain point, the algorithm detects that
we have searched enough, and that it is likely that we already obtained the peak in similarity we were looking for,
which causes the generation of At to stop (as described in Sec. [STEF).

The methods described below are currently defined in the code. Better methods could be implemented in the future,
including an actual bisection to find the optimum. Only the logarithmic method is fully developed for actual use.

1.  Linear scan mode

In this mode, the values m + 1d, m + 2d, m + 3d, ... are iterated. The parameter d is the step size (1 by default),
and m is the minimum step size (default to the same as d). This method does not automatically adapt to the data
scale, thus reasonable values of step size and minimum step size must be provided. Further, this method is inefficient
for data with a very long timescale, or data that evolves in very different timescales.

2. Logarithmic scan mode

In this mode, we begin with a base scale of
m = 10l10810(te—ti)] (S8)

where t. — t; is the time to the next event after the interval start time ¢;. Thus, m is the greatest power of 10 less
than the time to the next event. This allows the scan mode to adapt to the actual data sizes. Then, we return the
sequence of values:

1m,2m, ...,99m, 100m, 110m, 120m, . . ., 990m, 1000m, 1100m, . . ., (S9)

which produces a logarithmic time scale with reasonable precision at all points.

3.  FEwvent-based scan mode

In this mode, for every distinct event time ¢, > t;, we return the corresponding At = t. — t;. Recall that ¢; is
the start of the interval. In this way, every time step with presence of events is tested. This mode offers the greater
precision in aligning intervals with events, but can be inefficient for very large datasets at very long times, where each
individual event is unlikely to have an effect on the Jaccard score.

4.  An ideal mode

An ideal method would combine parts of the above methods. It would begin with a logarithmic scanning, but ideally
with some fixed multiplier such as 1.01. The next time is found by Atyext = [1.1A¢]. Here, the ceiling operator [-]
means the time of the next event equal to or after the given time. This allows a logarithmic increase in time, while
always aligning with actual events and skipping non-present events. After a maximum is found, we would backfill
with a bisection algorithm to find the exact event which produces a global optimum for the similarity peak.

The downside to this method is that it requires many searches through our data to find the event-ceiling. This
is implemented as a fast database search, but still requires extra operations. Also, the bisection stage would ideally



need to be able to increment sets both forward and backwards in time. Currently, the process of set construction is
optimized to incrementally build up the sets while moving forward in At. Going backwards is possible with weighted
sets (though this procedure needs to be done with caution, watching out for floating point errors), but with unweighted
sets this operation is not possible. This biases us to do a more thorough scan going only forward in time. The current
logarithmic implementation is seen as a good trade-off between simplicity, accuracy, generality, and computational
performance.

5. Criteria for stopping the At generation

The above methods do not specify when to stop searching new At values (except when using greedy maximum
finding, as we will see in Sec. |S1F 3)). The intuition is that there will always be some maximum, independently of
the number of values of At that we choose to scan. In order to have a good chance of finding the global optimum,
we need to carefully adjust how many time steps we will search after the latest found peak. If we decide to search
in a small time window, we have great chances to get trapped in a local maxima. Instead, if we opt for scanning a
very large time window, we will certainly sacrifice the computational efficiency. As usual, a balance between these
two opposite cases is desired. We achieve this by continuing to scan until we have tested all At < 25At* and At less
than 25 times the previous round’s At*, if there is a previous interval. As mentioned, the multiplier can be adjusted
lower for better performance or higher for less risk of missing future peaks, but this is the subject of further research.

F. Maximum finding

The At values are given by one of the methods from Sec. and we wish to find the optimum value of At* such
that it maximizes J(At). The first consideration is that there will likely be many local maxima. Some will be caused
by general fluctuations in the data. However, when scanning on a larger scale, we may see different local maxima,
which can be interesting in their own right, because they may indicate different time scales of the system. These can
be seen by plotting J(At) as a function of At, primarily for the first interval. Sec. discusses some methods of
adjusting the timescale detection to find other maxima.

Then the question is under what conditions do we expect non-trivial maxima to exist. When there is a long-term
evolution of the system (events active at —oo are different from those at +00), then we will obtain a decrease in
similarity as At becomes longer. In this case, there will not be a maximum. However, if there is not a long-term
evolution (i.e. for each event ID, that event has the same probability of occurring at any point in time), then the
similarity J(At) may continually increase. In this case, the basic assumptions of our method are violated, but the
answer is correct anyway: as all times are statistically self-similar, we expect one giant interval covering all time
because there are no sub-divisions of distinct character.

In brief, the process of maximum finding works as follows. For each At, we calculate the similarity J(At). We
search for the maximum value of J(At) in an on-line fashion. The At iteration (see Sec. produces a continuous
stream of At values. After each At is produced, J(At) is calculated (as in Sec. [SIC]). Then, the list of all At and
J(At) are examined by the methods that we will present next in this section, which return At*, the optimum interval
size. This At* is fed back to the stop criteria in Sec. and used to decide when we should cease exploring further
At. Once the stop criteria is met, the iteration stops and the final At* is known.

1. Longest

This method is our standard approach. We search for the maximum similarity value of J(At) from all possible At
values. If there are multiple values of At with the same maximum, we pick the greatest one as At*.

2. Shortest

This is similar to “Longest”, but choosing the shortest At.



8. Greedy

In this method, as soon as J(At) decreases for the first time, we stop testing other values. This method is much
more efficient in terms of computation time. While there is usually one clear peak, there are often local fluctuations
which cause this method to give a local maximum far before the global maximum. If the number of events is large
enough to reduce the effects of fluctuations, or if the highest computational performance is needed for streaming data,
this method could be useful. If this method is used, the stop criteria of Sec. is unneeded.

4. Detecting other timescales

One of the basic assumptions of this method is that the similarity score increases, and then decreases. We would
hope that as the similarity starts going down, we can notice a peak. The peak finders, as described above, do not
find multiple local maxima. This is because choosing a peak requires some heuristic for how significant of a peak
should be detected. The two extremes are represented by the “longest” / “shortest” peak finders (scan forward in time
as much as possible, find peak as global maximum in scanned area) and “greedy” (stop at the first decrease, as soon
as any maximum is found; in other words the first local maximum). This corresponds to finding the longest similar
time scales and shortest similar time scales.

Peak factor. The “peak factor” is a way to balance these. It is implemented only for the “longest” and “shortest”
maximum finding methods. Using this option, once J(Atyax) drops to less than peak factor x J(At*), then we stop
searching any longer times and return At¢*. This provides a way to break out of the search after the first peak.

Pastpeak factor. The factor of 25 present in Sec. can be adjusted. This limits the forward search time and
provides another way to limit the timescale searched.

Pastpeak max, pastpeak min, search min. One can directly set the time scales searched. One can set a
maximum or minimum amount of time to search past At* (as in Sec.[STE5). One can also set a minimum amount of
time to search past At = 0. This may be useful to avoid the effects of extreme fluctuations in J at small At. Unlike
the other options, these require a pre-existing knowledge of likely time scales within the data. Because of this, these
options are not used in this work or enabled by default. The existing options work to achieve the goal of detecting
the longest possible timescales without needing any parameters.

5. Critical event detection

At some times (critical times), the character of the active events in the entire data changes instantly. When this
happens, comparison with the previous interval will give bad results, since similarity is by definition going to always
be low. Similarity scores could also remain zero, if there is no overlap in the set of events before and after the critical
time. Thus, the signature of critical events is low but continually increasing similarities with no peak found. At this
point, the algorithm will tend to produce longer and longer intervals, pointlessly trying to maximize similarity and
eventually return too large intervals. At this point, using the “initial step” process (see Sec. is better than
using the propagation step (see Sec. [S1D 2J).

Using the “initial step” process means that once a critical event occurs, the previous interval is forgotten and
segmentation restarts as in Sec. To decide whether an event can be considered critical, we require that i) the
similarity corresponding to the last At is greater than 0.95 of the peak similarity and ii) we have not reached the end
of the dataset.

An example of critical events can be seen in main text Fig. 1(a-c). Each interval boundary occurs at a critical
event.

S2. DATASET DESCRIPTIONS
A. Periodic toy model

This model creates data with evolving timescales while having a uniform event rate. The latter means that at
every point in time, there is the same expected value of the number of events. Our method does not group the data
in intervals using the overall event rate, it detects intervals based on the identity of events at a given time. In this
model, the characteristic active events change slowly over time, but at a varying rate. This adds the “evolutionary



Number of events 43599
Number of distinct events 1275
First event time 1999-05-11
Last event time 2002-06-21

Total count/weight of events| 43599

TABLE S1: Basic properties of Enron dataset (core network)

Number of events 802481
Number of distinct events 207071
First event time 1998-05-26
Last event time 2002-07-11

Total count/weight of events| 2933183

TABLE S2: Basic properties of Enron dataset (full data)

timescales” that our method detects. When the timescales evolve faster, intervals are shorter, and when timescales
evolve slower, intervals are longer.

In this periodic toy model, a universe of N = 1000 event IDs are created. Upon initialization, each event is
independently placed into an activated status with probability ¢q. At each timestep, each active ID emits an event
with probability p. This p produces the short-term repetition, on a timescale of 1/p. Also, at each timestep (and
before event creation), a fraction ¢(t) of event IDs are picked. Each of these IDs has its active status updated, being
made active with probability ¢ regardless of its previous state. This provides the long-term change: on average, each
active event tends to lasting on the order of 1/¢(t) time steps until it is deactivated. This preserves the mean total
number of activated IDs as ¢V at all times. At each timestep, on average pgN events are emitted.

The changeover rate ¢(t) is periodic, however, obeying

c(t)=co+c (; - %cos (2:15)) ) (S1)

with ¢y being the minimum changeover rate and, ¢ being the scale of changeover, and 7 being the period. Thus, at
some points, the IDs of the expressed events is changing more rapidly than at other times, and this is the cause of
longer and shorter intervals.

When there is a critical event at time tei, we exceptionally set ¢(terit) = 1 at that time. This produces a state of
the system decorrelated from the previous time. According to the model, this changeover occurs before the timestep,
which matches with placing a new interval at t..i in our half-open segment convention. However, the total universe
of event IDs stays the same, and there is no statically observable change in behavior.

In this work, we use N = 1000, 7 = 500, p = 0.2, ¢ = 0.2, ¢g = 0, and ¢ = 0.01.

B. Enron

The Enron Email Dataset consists of emails of approximately 150 senior managers of the Enron Corporation, which
collapsed in 2001 after market manipulation was uncovered, leading to an accounting scandal [2]. This dataset was
made public during the legal investigation concerning the Enron Corporation, which ended up with the bankruptcy
and collapse of this corporation. Here, each event is an email communication sent or received by any of the senior
managers who were subsequently investigated. During the time recorded in the dataset, there were major structural
changes in the company, executives were hired and fired and new products were launched. This exogenous information
was sometimes also reflected in the data as changes in volume and in the identities of active events.

We have all bidirectional email communication to and from each key person at a resolution of one day. An event
is the unordered pair (source, destination) of each email. Our particular input data is already aggregated by day,
therefore each event is only present once each day, with a weight of the number of mails that day. Table list
the basic properties and Table [S3|lists the major events of this dataset. In Fig. we show the full Enron data. This
includes one event for every message sent, even to other executives.
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top of the plots correspond to actual dates of major events. This is the slicing of the whole dataset, not just the links between

executives.

Date

Event

1999-11-29
2000-01-15
2000-07-01
2000-08-23
2000-10-03
2000-11-01
2000-12-15
2000-12-13
2001-01-17
2001-03-23
2001-04-17
2001-05-17
2001-07-12
2001-07-24
2001-08-22
2001-11-08
2001-11-19
2001-11-28
2001-11-28
2001-12-02
2002-01-23
2002-02-03
2002-02-07
2002-02-07
2002-03-14

Launch of enron online

Launch of EBS

EBS-blockbusters partnership

Stock all-time high

Enron attorney discusses Belden’s strategies
FERC exonerates Enron

EBS $53m ‘profit’

Skilling announced to be CEO

Blackouts in CA

Enron schedules conference call to boost stock
The ‘asshole’ call

Schwarzenegger, Lay, Milken meeting
Quarterly conference call

Skilling meets with analysists and investors in NY
Watkins raises accounting irregularities
Dynegy agrees to buy enron

Enron restates its third quarter earning
Enron shares plunge below $1

Dynergy deal collapses

Enron files for bankrupcy

Stephen Cooper takes over as Enron CEO
Lay cancels Senate committee appearance
Fastow, Kopper, Lay invoke the Fifth
Skilling and Watkins testify

Arthur Anderen LLP indicted

TABLE S3: Major events of the Enron collapse

1.

Comparison with the cpdetect method

The cpdetect method is run as described in Ref. [4]. A part of this process is to pre-aggregate all data into windows
of one week size, and thus any changepoints are a priori limited in their accuracy. This process is not necessary in
our work, and one possible use of our method is providing initial intervals for other methods such as cpdetect.

The output from our method and cpdetect is not directly comparable. The cpdetect method produces only sig-
nificant changepoints, while our method should produce snapshots distributed throughout the entire time period.
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Number of events 1881152
Number of distinct events 51466

First event time 2004-08-01 00:26:38
Last event time 2005-07-14 17:41:19
Total count/weight of events 1881152

TABLE S4: Basic properties of the Reality Mining dataset

Date Event

2004-09-08 | First day of classes
2004-10-18 | Sponsor week end
2004-10-25 | Sponsor week start
2004-11-08 | Exam week start
2004-11-12 | Exam week end
2004-11-25 | First day of thanksgiving
2004-12-09 | Last day of classes
2004-12-13 | Exams start (4 days)
2005-01-03 | Independent activities period start
2005-02-01 | Start of spring classes
2005-03-19 | Start of spring break
2005-03-28 | End spring break
2005-05-12 | Last day of classes
2005-05-16 | Exams start

2005-06-03 | Commencement

TABLE S5: Major events of the Enron dataset

However, we would expect that the similarity J is lower than average at each changepoint. If so, it will indicate that
our method can show at least the major underlying dynamics of the system. We show this with a hypothesis test.
To do this, calculate a test statistic which is our mean (interpolated) similarity value corresponding to each change
point found by cpdetect. We randomize the times of change points by picking times uniformly from our entire time
range of changepoints, which shuffles the change point sequence. We do this 1 x 10* times to compute a distribution
of our test statistic in the random case. We find that our actual value of X is significant at p = 0.0033. This means
that our choice of similarity does correlate with the evolutionary timescale of the system. If one looks at low values
of J, one can find changepoints, and our process of maximizing J finds self-similar intervals.

C. Reality mining dataset

The Reality Mining dataset covers a group of persons affiliated with the MIT Media Lab who were given phones
which tracked other devices in close proximity via the Bluetooth personal area network protocol [I]. We say an event is
every ordered pair of (personal_device, other_device). We only have data from the personal devices of the 91 subjects
who completed the experiment, not full ego networks. The data contains 1881152 unique readings from 2004 August
8 until 2005 July 14, being most of them centered in the middle of the academic year. Table [S4lists basic properties
and Table [SH|lists the major events of this dataset. The major events are from the MIT academic calendar or internal
Media Lab events, with which most subjects were affiliated [3].

As expected, we find many more segment intervals than major events. In the slicing, we can see that in the first
weeks, where students are still relocating and meeting new people, the change in the events’ identities is fast, thus
the intervals are shorter. On the other hand, the interactions throughout the rest of the academic year are pretty
stable, and the intervals are sized accordingly. Additionally, we see that several key events are detected. The major
Thanksgiving holiday (Nov 25) is detected a day early, as people begin traveling. There are intervals before and
after the start of the December exam week, and then a stable period after that when people are on holiday until the
university opens again (Jan 3). After that, we see segment boundaries that exactly align with the beginning of classes
(Feb 1), the beginning of spring break (Mar 19), and the last day of classes (May 12). All of this can be detected
despite the fact that many subjects are research staff, who are not bound by any academic calendar.



Entire data Game 1 Game 2
Number of events 401849 87900 120123
Number of distinct events 8650 2660 3161

First event time
Last event time

2015-04-30 16:08:42
2015-05-08 01:59:45
401849

2015-05-05 19:45:00
2015-05-05 23:44:59
87900

2015-05-06 19:45:00
2015-05-06 23:44:59
120123

Total count/weight of events

TABLE S6: Basic properties of the UCL dataset. All times are in CEST, the local timezone of the matches.

Date

Event

2015-05-05 20:45
2015-05-05 20:50
2015-05-05 20:53
2015-05-05 21:12
2015-05-05 21:29
2015-05-05 21:45
2015-05-05 21:58
2015-05-05 22:33
2015-05-06 20:45
2015-05-06 21:29
2015-05-06 21:45
2015-05-06 22:17
2015-05-06 22:20

Game 1 begins

Yellow card for Bonucci (Juventus)
Goal by Morata (Juventus)
Goal by Ronaldo (Real Madrid)
First half ends

Second half begins

Goal by Tévez (Juventus)
Game 1 ends

Game 2 begins

First half ends

Second half begins

Messi (Barcelona) scores

Messi (Barcelona) scores
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2015-05-06 22:34 | Neymar (Barcelona) scores
2015-05-06 22:34 | Game 2 ends

TABLE S7: Major events of the first leg of the Champion’s League semifinals

D. UCL hashtags

In this dataset, we scrape Twitter for all hashtags containing #UCL, referring to the UEFA (European) Champions
League tournament. We scrape between the dates of 30 April 2015 and 08 May 2015, covering the first leg of the two
semifinal games of the tournament. An event is any hashtag co-occurring with #UCL, except #UCL itself. If there are
multiple hashtags in the same tweet, each counts as one event. Thus, events (hashtags) reflect what people are talking
about in conjunction with the tournament. All hashtags are interpreted as UTF-8 Unicode and case-normalized
(converted to lowercase) before turning into events. Table|S6|lists basic properties and Table [S7|lists the major events
of this dataset.

In the slicing (main text Fig. 5(a)), we see much intervals segments during the games of May 5 and May 6 than
in the rest of the dataset. This corresponds to the must faster turnover of interesting topics during the game. In
addition, we can spot the games that all four teams played in their respective national championships on the previous
weekend of May 2-3, which trigger as well some discussion on the forthcoming Champions League matches. If we focus
our attention on the first of the two games (main text Fig. 5(b)), we observe a shorter segment size at the beginning of
the game and during the three goals at times 20:53 (Juventus), 21:12 (Real Madrid), and 21:58 (Juventus), compared
to the rest of the match. In particular, we notice a more noticeable effect when the second half started with the tied
game at 21:45, and when the third goal is scored, because it was a penalty kick which took Juventus to the lead.
Game 2 was a lopsided 3-0 victory for Barcelona against Bayern Munich. Given the one-sided game, the analysis
shows a fairly uniform pattern throughout the game, until the goals are scored at 22:17, 22:20, and 22:34. The game
ends right after the last goal. In the initial part of the game, the dynamics continually slowed down as time goes on
without major events. Immediately after the game, the audience reacts much more strongly than in the last game,
probably because at that point one starts speculating about the possible finalists of the competition.

The detail of the second game is presented in Fig.[S2] There is a flurry of activity at the start, but as the game
progresses without goals dynamics slow down. At the end of the game, there are three goals (beginning at 22:17). At
this point, the system becomes extremely active with a very diverse and rapidly changing topics, and intervals are
very short for a while.
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Time

FIG. S2: Second semifinal of the UEFA Champions League 2014-2015, between Barcelona and Bayern Munich. Game times are
the same as in main text Fig. 5(b) in the main text. This game was one-sided with goals made by only one team. Consequently,
internal structure for the slicing is relatively uniform and slowing down with time, especially since all goals were scored within
the last 20 minutes of the game. Nevertheless, we can detect interval boundaries for halftime, and after the three goals are
scored (22:17, 22:20, and 22:34), we have a very high turnover rate of discussion topics.
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