1	SUPPLEMENTARY INFORMATION
2	
3	3-D Microwell Array System for Culturing Virus Infected Tumor Cells
4	
5	Rami El Assal ¹ , Umut Atakan Gurkan ^{2,3} , Pu Chen ¹ , Franceline Juillard ⁴ ,
6	Alessandro Tocchio ¹ , Thiruppathiraja Chinnasamy ¹ , Chantal Beauchemin ⁴ ,
7	Sebnem Unluisler ² , Serli Canikyan ² , Alyssa Holman ¹ , Srikar Srivatsa ¹ ,
8	Kenneth M. Kaye ⁴ *, Utkan Demirci ^{1,2,5} *
9	
10	¹ Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Canary Center
11	at Stanford for Cancer Early Detection, Department of Radiology, Stanford
12	University School of Medicine, Palo Alto, CA, 94304, USA
13	
14	² Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division for
15	Biomedical Engineering, Division of Infectious Diseases, Renal Division,
16	Department of Medicine, Brigham and Women's Hospital, Harvard Medical
17	School, Boston, MA, 02115, USA
18	3
19	^o Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace
20	Engineering Department, Biomedical Engineering Department, Department of
21	Orthopedics, Advanced Platform Technology Center, Louis Stokes Cleveland
22	Veterans Affairs Medical Center, Case Western Reserve University, Cleveland,
23	OH, 44106, USA
24 25	⁴ Division of Infontious Discosos, Dopartments of Medicine, Brigham and
25 26	Women's Hespital Harvard Medical School Reston MA 02115 USA
20 27	Women's hospital, harvaru metical School, Boston, MA, 02115, USA
27 28	⁵ Department of Electrical Engineering (by courtesy) Stanford University School
20 29	of Engineering Stanford CA 94305 USA
30	
31	* Corresponding Author's E-mail: utkan@stanford.edu; kkaye@bwh.harvard.edu

Supplementary Figure 1. Mass swelling ratio of PEG hydrogels. The mass
swelling ratio of the hydrogels (n=10) was measured for up to 24 hours. The
hydrogels reached the swelling plateau in about a 1 hour incubation period.

71	
72	
73	
74	
75	
76	
77	
78	Supplementary Figure 3. Fluorescent photomicrograph showing cell spill-
79	over from a microwell. After proliferating BJAB (infected) fill a 3-D microwell,
80	cells begin to spillover the top. This image was taken on day 14. Scale bar
81	represents 100 μm.
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	

102

103 Supplementary Figure 4. Uninfected BJAB cells maintained in 3-D 450 µm 104 microwells or 2-D suspension, both with (+) and without (-) puromycin 105 selection. a) Brightfield photomicrographs of BJAB cells grown for 15 days. 106 Images were taken at 3-day intervals, beginning with the day of seeding. Growth 107 was observed for the 3-D grown cells without puromycin selection but not with 108 puromycin. b) Fluorescent photomicrographs of BJAB cells grown for 15 days. 109 We did not observe fluorescent cells, since the cells lack infection with KSHV. 110 Scale bars represent 200 µm.

Method	Advantages	Disadvantages
Hanging Drop	 Inexpensive Simple Fast 3-D model formation 	 Scale-up is difficult Long-term culture is difficult Instability of the liquid-air interface Time-consuming Labor-intensive
Spinner Flasks	 Simple Ease to scale-up Long-term culture 	 Specialized equipment is required. Variation in size/cell number High shear stress
Rotary System	 Simple Ease to scale-up Long-term culture 	 Specialized equipment is required. Variation in size/cell number
Assembly	 Fast 3-D model formation Reconfigurable method Non-invasive method 	 Specialized equipment is required (e.g., acoustic generator or micro-robotic system) May require magnetic nanoparticles
Bioprinting	 Fast 3-D model formation. Control over spatial and temporal distribution of cell seeding 	 Specialized equipment is required (i.e., bioprinter). Specialized equipment is required for culturing (i.e., bioreactor). Thermal and mechanical stress. Ejector clogging.
Microfluidic	 Dynamic culture Resembles the physiological environment (flow condition) On-chip analysis 	 Specialized equipment is required (e.g., laser cutter). Long-term culture is difficult. Shear stress Time-consuming
Microwell	 Simple to perform Ease to scale-up Well-controlled 3-D model size Designed geometry Long-term culture 	 Required specialized facility to fabricate the mold. Long term culture ends when the cells outgrow of wells.

Supplementary Table 1. Comparison of 3-D model generation methods.

Supplementary Table 2. Determination of the microwell volume of three 117 different microwell sizes (150 μ m, 300 μ m, and 450 μ m) based on the mask 118 design used during fabrication.

Microwell Diameter & Height (μm)	Microwell Volume (μm³) (v= π r²h)
150 x 150	2.65 x 10 ⁶
300 x 300	2.12 x 10 ⁷
450 x 450	7.16 x 10 ⁷