Free Triiodothyronine Level Correlates with Myocardial Injury and Prognosis in Idiopathic Dilated Cardiomyopathy: Evidence from Cardiac MRI and SPECT/PET Imaging

Wenyao Wang¹, Haixia Guan², Wei Fang³, Kuo Zhang¹, A. Martin Gerdes⁴, Giorgio Iervasi⁵, Yi-Da Tang¹*

¹Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

²Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Shenyang, China.

³Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

⁴Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York, USA.

⁵Clinical Physiology Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy.

*Correspondence to Yi-Da Tang (Email: tangyida@fuwaihospital.org).

Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College. No.167 Beilishi Road, Beijing 100037, China.

Supplementary Methods

Cardiac MRI

Cardiac MRI was performed on a 1.5-T scanner (Magnetom Avanto, Siemens Medical Solutions, Erlangen, Germany). We acquired scout images from HASTE sequence for morphological analysis. Retrospective electrocardiogram (ECG) gating cine images were acquired by a true fast imaging with steady-state precession sequence. To cover the entire left ventricle (LV), we got views in the two-chamber long-axis, four-chamber long-axis, LV outflow tract, and six to eight sections in the short-axis with repeated breath-holds. At 10 minutes after bolus injection of 0.2mmol/kg body weight gadolinium diethylenetriamine pentaacetic acid, delayed enhancement T1-weighted images were acquired with a phase-sensitive inversion recovery sequence. Twenty-five phases were obtained per cardiac cycle. On the bases of vertical and horizontal long axes of LV, the true short axis was determined covering LV from base to apex.

Cardiac ^{99m}Tc-MIBI SPECT and ¹⁸F-FDG PET imaging

SPECT imaging was performed at rest 60min after injection of 740MBq ^{99m}Tc-MIBI, using a dual-head SPECT camera (e.com, Siemens Healthcare) centered on the 140 KeV energy peak with a 20% symmetrical energy window. Thirty projection images were acquired over a 180-degree arc (45-degree right anterior oblique to 45-degree left posterior oblique position) at 6-degree intervals. The acquisition time was 30s at each projection. The transaxial data were reconstructed using Butterworth-filtered back projection with a cutoff frequency of 0.45 and an order of 7. Tomographic images were displayed as short-, horizontal long-, and vertical long-axis slices.

¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) served as a tracer for assessment of viability and hibernating myocardium. After a minimum 8h overnight fast, all patients initially received 50g oral glucose load 30min before the injection of 185MBq ¹⁸F-FDG. Data were acquired 60min later by PET-CT (Truepoint Biography 64, Siemens Healthcare). The acquisition time was 10min for emission (three-dimensional mode) and cardiac cycle was divided into eight equal intervals. Attenuation-corrected data were reconstructed using an iterative algorithm (OSEM, 4 iterations, 8 subsets). The matrix was 128×128 pixels and the reconstruction zoom was 2.0. Short axis slices of 3 mm slice thickness were

obtained in PET images.

Image analysis

All data was transferred to a separate workstation and was assessed by two independent readers. A third blinded reader adjudicated in cases with disagreement. An identical 17-segment model was used to divide the LV into six basal, six mid-ventricular, four distal segments, and the apex. LGE was defined as area of signal enhancement≥2 SD of the signal of non-enhanced myocardium. Areas of LGE were classified into three categories: non-LGE, mid-wall LGE and transmural LGE. Segmental ^{99m}Tc-MIBI and ¹⁸F-FDG uptake were scored using a 4-grade system (0= normal uptake, 1= mildly reduced uptake, 2=moderately reduced uptake, 3=severely reduced uptake). The segments were divided into four groups with different patterns of perfusion/ metabolism: group 1 (normal perfusion/metabolism) consisted of segments with normal ^{99m}Tc-MIBI (score 0) and normal ¹⁸F-FDG (score 0) uptake; group 2 (perfusion/metabolism mismatch) consisted of segments with reduced ^{99m}Tc-MIBI uptake (score 1, 2 or 3) and preserved/relatively increased ¹⁸F-FDG uptake (¹⁸F-FDG score < ^{99m}Tc-MIBI score); group 3 (mild-to-moderate perfusion/metabolism match) consisted of segments with a mild/moderately reduced ^{99m}Tc-MIBI uptake (score 1 or 2) and a concordant mild/moderate reduction in ¹⁸F-FDG uptake (score 1 or 2); group 4 (severe perfusion/metabolism match) consisted of segments with a severe reduction in ^{99m}Tc-MIBI uptake (score 3) and a concordant reduction in ¹⁸F-FDG uptake (score 3).

Supplementary Figure

Figure S1. Study diagram showing number of patients available for baseline thyroid function test and final analysis.

	TSH level (IU/L)				
	< 0.55 (No. of segments: 136)	0.55-2.50 (No. of segments: 714)	2.51 – 4.78 (No. of segments: 238)	> 4.78 (No. of segments: 119)	<i>P</i> for trend ^a
Cardiac MRI measurements (N	o. of segments, %)				
Total segments with LGE	129 (94.85%)	631 (88.38%)	191 (80.25%)	106 (89.08%)	0.008
Mid-wall	5 (3.68%)	51 (7.14%)	25 (10.50%)	11 (9.24%)	0.027
Trans-mural	2 (1.47%)	32 (4.48%)	22 (9.24%)	2 (1.68%)	0.192
99mTc-MIBI SPECT/18F-FDG F	PET imaging (No. of seg	ments, %)			
Segments with perfusion abnormalities	7 (5.15%)	121 (16.95%)	39 (16.39%)	20 (16.81%)	0.052
Segments with metabolism abnormalities	1 (0.74%)	45 (6.30%)	19 (7.98%)	4 (3.36%)	0.303
Perfusion /metabolism match					
pattern					
Normal	129 (94.85%)	594 (83.19%)	199 (83.61%)	99 (83.19%)	0.048
Mismatch	6 (4.41%)	76 (10.64%)	20 (8.40%)	16 (13.45%)	0.118
Mild-moderate match	0 (0.00%)	28 (3.92%)	12 (5.04%)	3 (2.52%)	0.248
Severe match	1 (0.74%)	17 (2.38%)	7 (2.94%)	1 (0.84%)	0.865

Table S1. Segments Analysis of LGE and Myocardial Perfusion /Metabolism Patterns according to TSH level.

^a P value for trend estimated by using Cochran-Armitage trend test between TSH level and percentage of LGE.

	HR	95%CI	P value			
Age (per 5 years)	0.978	0.957-0.991	0.048			
Gender (male)	1.646	0.287-2.755	0.501			
BMI (per 1 kg/m ²)	1.009	0.908-1.122	0.865			
NT pro-BNP (per 100 pg/mL)	1.061	1.027-1.097	< 0.001			
Atrial fibrillation	0.630	0.261-1.519	0.303			
Diabetes mellitus	1.238	0.032-1.763	0.160			
Anemia	3.488	1.004-12.116	0.049			
Renal dysfunction	2.668	1.228-4.956	0.032			
Thyroid hormone levels						
FT3 (per 1 pg/mL)	0.244	0.110-0.539	< 0.001			
FT4 (per 1 ng/dL)	0.560	0.097-3.221	0.516			
TT3 (per 1 ng/mL)	0.501	0.101-2.491	0.634			
TT4 (per 1 ug/dL)	1.038	0.816-1.321	0.759			
TSH (per 1 mIU/L)	0.813	0.562-1.178	0.275			
Cardiac MRI measurements						
LGE-positive	4.840	1.912-12.248	0.001			
LVEF (per 5%)	0.824	0.698-0.972	0.021			
EDV (per 10 mL)	1.013	1.000-1.046	0.078			
ESV (per 10 mL)	1.026	1.000-1.097	0.092			
^{99m} Tc-MIBI SPECT/ ¹⁸ F-FDG PET imaging						
Perfusion abnormalities	1.246	0.545-2.848	0.602			
Metabolism abnormalities	2.043	0.915-4.563	0.081			

Table S2. Univariate Cox Survival Analysis of Risk Factors for All-cause Mortality.