
Supplementary Information: Super-Spreader

Identification Using Meta-Centrality

Andrea Madotto and Jiming Liu

Department of Computer Science, Hong Kong Baptist University, Kowloon Tong,
Hong Kong

jiming@comp.hkbu.edu.hk

Contents

1 Terminologies and definitions 2
1.1 Centrality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Spearman correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Simulation ranking details . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 SI evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 SIR evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Computational tools 8

3 Detailed results 8



1 Terminologies and definitions

In what follows, G(V,E) denotes an undirected, connected weighted network, where
V represents the set of nodes, and E = V × V the set of edges, and wij represents the
weight of the edge e(vi, vj). Let us denote with A and W the adjacency matrices of
the network G, where Aij = 1 represents the edge e(vi, vj) and Wij = wij represents
the weight of the connection.

1.1 Centrality measures

Degree and Strength The Degree centrality is defined as the number of incident

neighbors of a node, thus CD(i) =
∑|V |
j=1 aij represents the degree of a node i. A

straightforward extension to the weighted case, also called strength [1], is given by

CS(i) =
∑|V |
j=1 aijwij , that is the weighted sum of the edge labels. 78

Betweenness and Closeness Betweenness and Closeness centralities make use of
the shortest path. The first one calculates the information flow, as the shortest path
between each pair, that passes through a node. Thus, the betweenness of node i is
defined as CB(i) =

∑
s6=t σst(i)/σst where σst(i) is the number of the shortest paths

between s and t that pass through i, and σst is the total number of the shortest paths
between s and t. The closeness of node i is defined as the reciprocal sum of the dis-
tance between i and all the nodes in the network. Formally, CC(i) = [

∑
z d(i, z)]−1

where d(i, z) represents the shortest path distance between i and z. A natural repre-
sentation of both measures in their weighted versions is obtained using the weighted
shortest paths, therefore CwB and CwC denote the weighted betweenness and closeness,
respectively.

Eigenvector and PageRank Eigenvector centrality and PageRank use the neigh-
bour scores to calculate the importance of a node. The first one for each node i is
defined as CE(i) = λ−1

∑
j AijCE(j). In a more formal way, the eigenvector centrality

is the solution of the equation Ae = λe, where e is an eigenvector of the adjacency
matrix A, and λ is a positive eigenvalue (the existence is guaranteed by the Per-
ronFrobenius theorem[2]). PageRank centrality has been used by Google to rank web
pages in its search engine. The original design was for a direct graph. The PageRank

of node i is defined as CP (i) = 1−d
|V | + d

∑
j
aijCP (j)
deg(j) , where d is a damping factor (con-

ventionally fixed to 0.85) and deg(j) is the degree of node j. In both measures, the
weighted versions, CwE and CwP , are obtained by using the adjacency matrix Aw. For
completeness, the two centralities are calculated using the power iteration method[3].

K-shell K-shell method is based on recursive pruning. The algorithm starts with the
pruning of all the nodes with degree k = 1. After this first pruning, if there could be
some nodes that still have a degree equal to one, then the pruning process continues
until there are no nodes with degree one. All the removed nodes are considered as
1− shell and labeled as Ks = 1. This pruning and labelling procedure is repeated for
the nodes with degree K ≥ 2 until all the nodes are assigned to the respective shell.
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The weighted version[4] does not only consider the degree as pruning rules but also for
each node i assign the value of the connections strength between its neighbours. For

instance, k′i =
√
ki

∑
j wij , where ki is the degree of i and

∑
j wij is the sum of all its

incident links. To follow the previous notation, CK represents the convention K-shell
and CKW its weighted version.

1.2 Spearman correlation

Spearman rank-order correlation is a non-parametric measure to quantify the correla-
tion between two rankings. Let τk and τt be two rankings of a set C with |C| = n,

and τ
(i)
k the position of the item i in the rank τk (the same for τt). The Spearman

correlation ρ is defined as:

ρτk,τt = 1−
6
∑n
i=1 d

2
i

n(n2 − 1)

where di = τ
(i)
k − τ

(i)
t . The correlation value is equal to 1 indicating that the two

rankings have a perfect monotonic relation. The value equal to 0 implies no correlation.
Note that when there are rankings with ties, as it sometimes happens in our case, this
formula is valid with an average of the tie values[5].

1.3 Simulation ranking details

Algorithm 1 presents the pseudo code of the procedure that assigns a spreading power
value to each node trough the Susceptible-Infected (SI) simulation. In the algorithm,
AVG(x̄) is the average value of the vector x̄, and SIM(G) represents a single SI simu-
lation run on the network G. The output of the latter is a vector containing the ratios
of infected nodes in the network at each time step of the simulation run. The length
of these vectors may vary among the 100 runs, since each simulation stops when all
the network nodes are infected. This method is chosen in view that there could exist
some variations among different simulation runs starting with the same infected node.
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Algorithm 1: SI simulation ranking

Data: G = (V,E)
Result: A list R of nodes, with the spreading value

1 Initialize R as an empty vector
2 for v ∈ V do
3 Set v as the infected seed
4 val← [ ] /* init an empty vector*/
5 for i ∈ [1, 100] do
6 sim← [ ]
7 sim← SIM(G)
8 val[i]← AVG(sim)

9 end
10 R[v]← AVG(val)
11 Set all the nodes as susceptible

12 end

1.4 SI evaluation

Instead of using the average time of infecting the whole network to measure the spread-
ing power of each node, in our current study, we have adopted a different measurement
so as to incorporate more information about the process of spreading propagation.
Specifically, we use the average number of infected nodes among the simulations to
capture the spreading dynamics. The new measurement is strongly correlated with
the average time of full network infection coverage, but at the same time, can also
reflect the speed of the infection propagation. The measurement allows for a more
even distribution of the values, and thus it is a better characterization of the spreading
power.

In the literature, various epidemic models have been used to tackle the problem of
super-spreader identification. Two of the most commonly used ones are: Susceptible-
Infected (SI) and Susceptible-Infected-Recovered (SIR). In our current study, we have
mainly focused on the SI model in our experimental studies, as we believe it allows
to adequately characterize the nature of network-based disease propagation. In order
to evaluate whether or not the proposed measurement can reflect the average time of
full network infection and improve the nodes’ spreading power representation, we use
all the networks from our data-sets. We run 100 realization of Susceptible-Infected
(SI) simulations starting from each node, and we record the average time of full net-
work infection. To simplify our notation, we call the average number of infected nodes
(i.e., our measurement) as AV GI , and the average time of full network infection as
AV GT . Moreover, we compare the results obtained from the two measurements using
Sprearman correlation coefficient. In all networks, we are able to find a very high
correlation value, except for Adolescent network where the correlation is slight lower.
The exact correlation values can be found in Figs 1-4, where we show binned scatter
plots between AV GI and AV GT . Furthermore, we also show the standard deviation
(std) values of the two measurements. We can note that the std values are high in
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all networks, and they have similar values in the Astro-ph, AS, and Metro networks.
More detailed results are given in Table 1 and Figs 5-8 of Section 3.
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Figure 1: Scatter plots between the average number of infected nodes (our measure-
ment) and the average time of full network infection. Each sub-plot shows the Spear-
man correlation and the standard deviation of the two measurements. In this figure,
we show the following data-sets: Astro-ph (a), C. Elegans (b), Rail (c), and US2013
(d).
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Figure 2: Scatter plots between the average number of infected nodes (our measure-
ment) and the average time of full network infection. Each sub-plot shows the Spear-
man correlation and the standard deviation of the two measurements. In this figure,
we show the following data-sets: Advogato (a), AS (b), Cond-mat (c), and Metro (d).
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Figure 3: Scatter plots between the average number of infected nodes (our measure-
ment) and the average time of full network infection. Each sub-plot shows the Spear-
man correlation and the standard deviation of the two measurements. In this figure,
we show the following data-sets: Coach (a), Geom (b), Nescience (c), and US2015 (d).
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Figure 4: Scatter plots between the average number of infected nodes (our measure-
ment) and the average time of full network infection. Each sub-plot shows the Spear-
man correlation and the standard deviation of the two measurements. In this figure,
we show the following data-sets: Hep-th (a), Adolescent (b), Names (c), and FB (d).



1.5 SIR evaluation

In the preceding section, we have presented the results of our evaluation based on the
SI epidemic model. Nevertheless, it is also desirable and interesting to evaluate and
show our method using the Susceptible-Infected-Recovered (SIR) model where another
state (i.e., Recovered) is added to represent nodes that will not spread the infection
anymore. In the case of the SIR model, we can characterize the spreading power of
a node by averaging the number of Recovered nodes [6] at the end of the epidemic
spreading.

In order to evaluate the generality of our method, we test it in all the networks of
our data-sets. We run 100 SIR simulations starting from each node. When a node
spreads the infection to its neighbors, it will change its state to Recovered. We record
the average number of Recovered nodes at the end of each simulation. Using this as
the ground truth ranking for the nodes in the network, we test our method. The ag-
gregated results are found to have the overall best predictions about super-spreaders
for the tested networks. More detailed results are given in Table 2 and Figs 9-12 of
Section 3.

2 Computational tools

For the centrality measures calculation and all the simulations, we used NetworkX[7],
a Python library for network manipulation, except for Expected Force where there
was an R code provided by the author. To calculate the Spearman correlation, we
used the built-in function of Scipy[8] library that handles rankings with ties. For the
calculation of the eigenvalues of the Laplace Matrix, we used the sparse matrix class
of the Scipy library[8, 9]. As for visualization, we used matplotlib[10] in combination
with the seaborn[11] library.

3 Detailed results

In what follows, we present detailed results of the proposed solutions. In Tables 1 and
2, we show the best singular centrality measures among different values of f and the
average mean improvements using the aggregated solutions, while using both SI and
SIR models, respectively.
In the figures that immediately follow each of the tables, we display different values
of f in the x-axes to show how the recognition factor (y-axes) changes; each figure
shows four networks used in our experiments. The last figure in this section shows the
reordered heat map of the spectrum pair distance matrix (i.e., spectrum plots) and
the histogram plots of the Laplacian spectrum, with eigenvalues in x-axis and their
frequencies in y-axis (i.e., cluster-map).

8



Table 1: The best singular centrality measure among different values of f and average
mean improvements using the aggregated solution, using SI as the spreading model.
The last column shows the improvements in the standard deviation; the values with
minus are the ones where the single solutions have obtained lower standard deviations.

5% 10% 15% 20% 25% 50% ∆mean ∆std

Names D EX D D D D 1.2% -35.13%
C. Elegans D KW E E E E 10.30% 34.38%
Netsience D KW KW KW E E 19.83% 111.03%

FB KW S KW S S KW 1.26% 19.11%
Advogato C C E E E E 1.97% 15.68%

Adolescent EX S S S S S 3.93% 24.66%
Geom KW KW KW EX EX EX 5.64% 17.26%

Astro-ph KW KW KW KW S E 8.19% -13.94%
Hep-th C C C C C C 3.66% -23.71%

Cond-mat C KW S KW KW E 14.95% 19.55%
US2013 KW E S EX EX EX 0.53% -14.94%
US2015 S C E S EX S 0.93% 11.03%

AS E S S S S S 1.02% 512.84%
Metro C C C C C C 3.52% 17.14%

Rail S S C EX EX E 12.18% 69.39%
Coach E E S E E E 3.90% 36.31%

Table 2: The best singular centrality measure among different values of f and average
mean improvements using the aggregated solution, using SIR as the spreading model.
The last column shows the improvements in the standard deviation; the values with
minus are the ones where the single solutions have obtained lower standard deviations.

5% 10% 15% 20% 25% 50% ∆mean ∆std

Names E KW E E E E 0.81% 3.03%
C. Elegans D KW S S E E 4.72% -63.72%
Netsience S KW KW KW KW C 5.83% -45.31%

FB KW KW S S S S 1.51% 60.56%
Advogato P S S S S S 0.12% 7.63%

Adolescent EX P S S S P 1.51% 13.22%
Geom KW E E E E EX 1.06% -4.42%

Astro-ph KW KW KW KW KW S 5.98% -11.78%
Hep-th S S KW S S S 0.64% 5.18%

Cond-mat S S S S S S 0.85% -0.16%
US2013 KW S S S S E 0.04% -23.28%
US2015 S S S S E S 1.03% -30.76%

AS S S S S S S 0.04% -14.76%
Metro S S EX S EX EX 4.39% 36.17%

Rail S C E E E KW 6.59% 126.42%
Coach S E E E E S 3.73% 46.86%
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Figure 5: Different values of f in the x-axes to show how the recognition factor (y-axes)
changes. In this figure, we show the following data-sets: Astro-ph (a), C. Elegans (b),
Rail (c), and US2013 (d).
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Figure 6: Different values of f in the x-axes to show how the recognition factor (y-
axes) changes. In this figure, we show the following data-sets: Advogato (a), AS (b),
Cond-mat (c), and Metro (d).
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Figure 7: Different values of f in the x-axes to show how the recognition factor (y-
axes) changes. In this figure, we show the following data-sets: Coach (a), Geom (b),
Nescience (c), and US2015 (d).
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Figure 8: Different values of f in the x-axes to show how the recognition factor (y-axes)
changes. In this figure, we show the following data-sets: Hep-th (a), Adolescent (b),
Names (c), and FB (d).
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Figure 9: Different values of f in the x-axes to show how the recognition factor (y-
axes) changes, using SIR as spreading model. The following data-sets are evaluated:
Astro-ph (a), C. Elegans (b), Rail (c), and US2013 (d).
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Figure 10: Different values of f in the x-axes to show how the recognition factor (y-
axes) changes, using SIR as spreading model. The following data-sets are evaluated:
Advogato (a), AS (b), Cond-mat (c), and Metro (d).
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Figure 11: Different values of f in the x-axes to show how the recognition factor (y-
axes) changes, using SIR as spreading model. The following data-sets are evaluated:
Coach (a), Geom (b), Nescience (c), and US2015 (d).
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Figure 12: Different values of f in the x-axes to show how the recognition factor (y-
axes) changes, using SIR as spreading model. The following data-sets are evaluated:
Hep-th (a), Adolescent (b), Names (c), and FB (d).
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