Gas entrapment and microbial N₂O reduction reduce N₂O emissions from a biochar-amended sandy clay loam soil

Johannes Harter ^a, Ivan Guzman-Bustamante ^b, Stefanie Kuehfuss ^c, Reiner Ruser ^b, Reinhard Well ^d, Oliver Spott ^e, Andreas Kappler ^a and Sebastian Behrens ^{a,f,g*}

Supplementary Information

^a Geomicrobiology & Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany

^b Fertilization and Soil Matter Dynamics, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany

^c Plant Ecology and Ecotoxicology, Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany

^d Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen-Institut, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany

^e Department of Soil Physics, Helmholtz Centre for Environmental Research – UFZ, Halle/Saale, Germany

^f Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA

^g BioTechnology Institute, University of Minnesota, St. Paul, MN, USA

^{*} Corresponding author. Tel.: +1-612-626-8225 and +1-612-624-8454.

E-mail address: sbehrens@umn.edu (S. Behrens).

1. Material and Methods

1.1 Soil characterization methods

Soil pH was determined in a 1:5 water suspension according to ISO 10390. Soil particle size distribution was determined according to ISO 11277 by sieving and sedimentation using different sieves and a Sedigraph III (Micromeritics, Norcross, GA, USA). CaCO₃ content was determined using a Calcimeter (Eijkelkamp, Giesbeek, The Netherlands) according to ISO 10693. Carbon and nitrogen were quantified according to ISO 10694 and 13878 using a Vario EL elemental analyser (Elementar, Hanau, Germany). For the quantification of the other elements listed in table 1 soil samples were digested prior to analysis. Samples were acid digested by microwave pressure digestion using a MLS Start 1500 microwave (MLS, Leutkirch, Germany) according to the manufacturer recommendations for soil. The resulting solution was analysed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) with an Optima 5300 DV (PerkinElmer, Waltham, MA, USA).

1.2 Gross nitrification and NO₃⁻ consumption rates

Gross nitrification and NO₃⁻ consumption rates were determined using the equations (1 - 2) provided by Davidson et al. 1991.

$$N = \frac{M_o - M_1}{t} \times \frac{\log(H_o M_1 / H_1 M_o)}{\log(M_o / M_1)}$$
(1)

$$C = \frac{M_o - M_1}{t} \times \frac{\log(H_o / H_1)}{\log(M_o / M_1)}$$
(2)

- N : nitrification rate (mg N kg⁻¹ dry soil d⁻¹)
- $C : NO_3^{-1}$ consumption rate (mg N kg⁻¹ dry soil d⁻¹)
- M_{o} : ¹⁴⁺¹⁵NO₃ pool at first time point (mg NO₃ -N kg⁻¹ dry soil)
- M_1 : ¹⁴⁺¹⁵NO₃ pool at second time point (mg NO₃ N kg⁻¹ dry soil)
- H_0 : ¹⁵NO₃ pool at first time point (mg NO₃ N kg⁻¹ dry soil)
- H_1 : ¹⁵NO₃ pool at second time point (mg NO₃ N kg⁻¹ dry soil)
- t: time between first and second time point (days)

1.3 Quantitative polymerase chain reaction (qPCR) analyses

1.3.1 Nucleic acid extraction efficiencies

Nucleic acid extraction efficiencies were calculated based on the internal RNA and DNA standards using equation (3).

$$Extraction efficiency = \frac{internal \ standard \ copies \ quantified \ in \ the \ final \ DNA \ or \ cDNA \ extract}{DNA \ or \ RNA \ internal \ standard \ copies \ added \ prior \ to \ extraction}$$
(3)

1.3.2 Quantitative polymerase chain reaction (qPCR)

Details about the used primers, reactions mixtures, thermal profiles and qPCR efficiencies are listed in table S1 and S2.

target gene	primer name	primer sequence (5' - 3')	fragment size (bp)	reference	
napA	V17m	TGGACVATGGGYTTYAAYC	150	Bru et al. (2007)	
	napA4r	ACYTCRCGHGCVGTRCCRCA	152		
narG	narG-f	TCGCCSATYCCGGCSATGTC	173	Bru et al. (2007)	
	narG-r	GAGTTGTACCAGTCRGCSGAYTCSG	175		
nirK	nirK876c	ATYGGCGGVCAYGGCGA	164	Henry et al. (2004) (modified)	
	nirK1040	GCCTCGATCAGRTTRTGGTT	104		
nirS	nirSCd3aF	AACGYSAAGGARACSGG	407	Kandeler et al. (2006)	
	nirSR3cd	GASTTCGGRTGSGTCTTSAYGAA	407		
typical nosZ	nosZ2F	CGCRACGGCAASAAGGTSMSSGT	267	Henry et al. (2006)	
	nosZ2R	CAKRTGCAKSGCRTGGCAGAA	207		
atypical nosZ	nosZ-II-F	CTNGGNCCNYTKCAYAC	608	Jones et al. (2013)	
	nosZ-II-R	GCNGARCARAANTCBGTRC	090		
Internal standard	APA9F	CGAACCTGGACTGTTATGATG	07	Thonar et al. (2012)	
	APA9R	AATAAACAATCCCCTGTATTTCAC	07		

Table S1: Primers us	ed for qPCRs.
----------------------	---------------

nirK876c was modified from nirK876 (Henry et al., 2004) to increase binding specificity

target gene	origin of standard	reaction mixture	volume (µl)	thermal profile	Efficiency [%]
napA	Pseudomonas aeruginosa PAO1	SsoAdvanced Universal SYBR V17m (5 μM) napA4r (5 μM) PCR water Template	5 0.5 0.5 3 1	98°C – 15 s 55°C – 15 s 72°C – 15 s X 45 cycles	74
narG	Pseudomonas aeruginosa PAO1	SsoAdvanced Universal SYBR narG-f (5 μ M) narG-r (5 μ M) PCR water Template	5 0.5 0.5 3 1	98°C – 10 s 62°C – 20 s X 40 cycles	84
nirK	Ensifer meliloti 1021	SsoAdvanced Universal SYBR nirK876c (5 μM) nirK1040 (5 μM) PCR water Template	5 0.5 0.5 3 1	98°C – 10 s 58°C – 20 s X 40 cycles	92
nirS	Ralstonia eutropha H16	SsoAdvanced Universal SYBR nirSCd3aF (5 μM) nirSRcd (5 μM) PCR water Template	5 1 1 2 1	98°C – 30 s 57°C – 30 s 72°C - 30 s X 40 cycles	89
typical nosZ	Ensifer meliloti 1021	SsoAdvanced Universal SYBR nosZ2F (5 μM) nosZ2R (5 μM) PCR water Template	5 0.5 0.5 3 1	98°C – 15 s 60°C – 25 s X 40 cycles	74
atypical nosZ	Gemmatimonas aurantiaca T-27	IQ SYBR nosZ-II-F (5 μM) nosZ-II-R (5 μM) PCR water Template	5 2 2 0 1	98°C - 30 s 54°C - 30 s 72°C - 45 s 80°C - 30 s X 40 cycles	86
Internal standard	African cassava mosaic virus- [Nigeria-Ogo]	SsoAdvanced Universal SYBR APA9F (5 μM) APA9R (5 μM) PCR water Template	5 0.5 0.5 3 1	98°C – 10 s 50°C – 15 s X 35 cycles	89

Table S2: Details about the qPCR assays performed with DNA and cDNA extracts.

1.4 N₂O source partitioning and rates of NO₃⁻-derived N₂O and N₂

1.4.1 Fractions of NO₃⁻derived N₂O and N₂

For each gas sample collected in experiment 1, 2, and 3, the fraction of N₂ and/or N₂O evolving from the ¹⁵N-labeled NO₃⁻ pool (f_{o}), was calculated using the equations provided by (Spott et al., 2006).

$$f_{p} = \frac{a_{m} - a_{bgd}}{a_{p} - a_{bgd}} \tag{4}$$

 a_{had} : ¹⁵N abundance of atmospheric background

 a_m : measured ¹⁵N abundance of N₂ and N₂O

$$a_{m} = \frac{{}^{29}R + 2 \times {}^{30}R}{2\left(1 + {}^{29}R + {}^{30}R\right)}$$
(5)

a,: calculated ¹⁵N abundance of active ¹⁵N-labeled NO₃⁻ pool

$$a_{\rho} = \frac{{}^{30}X_m - a_{bgd} \times a_m}{a_m - a_{bgd}}$$
(6)

 $^{30}x_{m}$: measured fraction of *m*/z 30 in N₂ and converted N₂O

$${}^{30}X_m = \frac{{}^{30}R}{1 + {}^{29}R + {}^{30}R}$$
(7)

In experiment 1, nitrogen isotope ratios of N₂O were determined by analysis of intact N₂O molecules $({}^{45}R = ({}^{14}N{}^{15}N{}^{16}O + {}^{15}N{}^{16}O + {}^{14}N{}^{16}O) / {}^{14}N{}^{16}O) / {}^{14}N{}^{16}O; {}^{46}R = ({}^{15}N{}^{15}N{}^{16}O + {}^{14}N{}^{14}N{}^{16}O) / {}^{14}N{}^{16}O).$ To use the previous equations, isotope ratios (${}^{45}R$ and ${}^{46}R$) were oxygen-corrected according to (Bergsma et al., 2001) using equations (8) and (9).

$${}^{29}R = {}^{45}R - {}^{17}R \tag{8}$$

$${}^{30}R = {}^{46}R - {}^{29}R \times {}^{17}R - {}^{18}R \tag{9}$$

For ¹⁷*R* and ¹⁸*R* we used the values suggested by (Bergsma et al., 2001): ¹⁷*R* = 0.000373, ¹⁸*R* = 0.0020052

1.4.2 Rates of NO₃⁻derived N₂O and N₂

Concentrations of NO₃⁻-derived N₂O and N₂ (c_n) in ppm were calculated according to equation (10):

$$\boldsymbol{C}_{\boldsymbol{\rho}} = \boldsymbol{f}_{\boldsymbol{\rho}} \times \boldsymbol{C}_{\boldsymbol{H}} \tag{10}$$

 c_{μ} : headspace concentration (ppm) of total N₂O (GC-ECD, experiment 1) or total N₂ (N₂ concentration of artificial gas mixture = 20 000 ppm, assuming a negligible relative increase in N₂ concentration due to microbial N₂ production, experiment 2 and 3).

In experiment 2 and 3, N_2O and N_2 in the headspace was diluted during each sampling occasion due to gas exchange between the headspace and the sample vial initially filled with the artificial gas mixture. Diluted NO_3^- -derived N_2O and N_2 concentrations were corrected using equations (11), (12), and (13). No dilution correction was needed for experiment 1 due to the different sampling strategy.

$$CC_{p1} = C_{p1} \times \left(1 + \frac{V_{S1}}{V_{T1}}\right)$$
(11)

$$cc_{\rho3} = c_{\rho3} \times \left(1 + \frac{V_{S1}}{V_{T1}}\right) \times \left(1 + \frac{V_{S3}}{V_{T3}}\right)$$
(12)

$$cc_{\rho s} = c_{\rho s} \times \left(1 + \frac{V_{S1}}{V_{T1}}\right) \times \left(1 + \frac{V_{S3}}{V_{T3}}\right) \times \left(1 + \frac{V_{Ss}}{V_{Ts}}\right)$$
(13)

 $cc_{p_{1,3,s}}$: corrected NO₃⁻-derived N₂O and N₂ concentrations (ppm) in samples collected after 1 h of enrichment (cc_{p_3}), 3 h of enrichment (cc_{p_3}), and after shaking (cc_{p_s})

 $c_{p_{1,3,s}}$: NO₃-derived N₂O and N₂ concentrations (ppm) in samples collected after 1 h of enrichment (c_{p_3}), 3 h of enrichment (c_{p_3}), and after shaking (c_{p_s})

 $V_{S1,3,s}$: volume of the gas samples during sampling after 1 h of enrichment (V_{S1}), 3 h of enrichment (V_{S3}), and after shaking (V_{Ss})

 $V_{\tau_{1,3,s}}$: total volume (headspace and gas sample) during sampling after 1 h of enrichment (V_{τ_1}), 3 h of enrichment (V_{τ_3}), and after shaking (V_{τ_s})

In experiment 1, NO₃⁻-derived N₂O emission rates (ER_p) were calculated according to equation (14). As the concentration of NO₃⁻-derived N₂O after 0 h of enrichment was 0, only values determined from samples collected after 1 h (c_{p1}) were considered for emission rate calculation. For the determination of NO₃⁻-derived N₂O and N₂ emission rates in experiment 2 and 3 equation (15) was used.

$$ER_{p} = c_{p1} \times \frac{k \times V_{H}}{m}$$
(14)

$$ER_{p} = \frac{\left(cc_{p3} - cc_{p1}\right)}{t} \times \frac{k \times V_{H}}{m}$$
(15)

 ER_p : emission rates of NO₃⁻-derived N₂O and N₂ (mg N₂O-N kg⁻¹ dry soil h⁻¹) t: time (h) between first (after 1 h) and second sampling (after 3 h)

k : unit conversion factor calculated as $k = \frac{molar \ mass \ of \ N \ in \ N_2O \ and \ N_2}{molar \ volume \ of \ gas \ (20^{\circ}C)} = \frac{28.014}{24.055}$ $V_{_{_H}}$: volume of the headspace during sampling (equal after 1 h and 3 h of enrichment) *m*: mass of dry soil (g) in the gas enrichment container

The NO₃⁻-derived N₂O and N₂ soil entrapment/emission ratio (SE_p / E_p), defined as the concentration (ppm) of NO₃⁻-derived N₂O and N₂ accumulating in the headspace before and after shaking at day 2 in experiment 3 was calculated using equation (16)

$$SE_{p} / E_{p} = \frac{cc_{p_{3,d_{2}}} - cc_{p_{3,d_{2}}}}{cc_{p_{3,d_{2}}}}$$
(16)

 $cc_{p3,d2,s,d2}$: corrected NO₃⁻-derived N₂O and N₂ concentrations (ppm) in samples collected after 3 h of enrichment ($cc_{p3,d2}$), and after shaking ($cc_{p3,d2}$) at day 2

 NO_3 -derived N_2O and N_2 soil entrapment (*SER*_p) and total production (*TPR*_p) rates were calculated from samples collected during experiment 3 after 2 days of incubation using equations (17) and (18), respectively.

$$SER_{p} = ER_{p,d2} \times SE_{p} / E_{p}$$
(17)

$$TPR_{p} = ER_{p.d2} + SER_{p} \tag{18}$$

 SER_{p} : soil entrapment rates of NO₃⁻-derived N₂O and N₂ (mg N₂O-N kg⁻¹ dry soil h⁻¹) at day 2 ER_{p,d_2} : emission rates of NO₃⁻-derived N₂O and N₂ (mg N₂O-N kg⁻¹ dry soil h⁻¹) at day 2 TPR_{p} : total production rates of NO₃⁻-derived N₂O and N₂ (mg N₂O-N kg⁻¹ dry soil h⁻¹) at day 2

1.4.3 N₂O source partitioning

The contribution of NO₃⁻-derived N₂O to total soil-derived N₂O emissions ($f_{nitrate}$) was calculated from samples collected during experiment 1 using equation (19).

$$f_{nitrate} = \frac{f_{p}}{f_{soil}}$$
(19)

f_{nitrate}: fraction of NO₃⁻derived N₂O of total soil-derived N₂O

 f_p : fraction of N₂O evolving from the ¹⁵N-labeled NO₃ pool

 f_{soil} : fraction of N₂O evolving from soil calculated as: $f_{soil} = \frac{total N_2O - background N_2O}{total N_2O}$

2. Results

Figure S1: Contribution of NO_3 -derived N_2O to total soil-derived N_2O emissions in control (open circles) and biochar (solid circles) over time.

Figure S2: Gene copy numbers of functional marker genes of denitrification in control (open circles) and biochar (solid circles) microcosms over time. The different panels show: (A) *napA* (B) *narG*, (C) *nirK*, (D) *nirS*, (E) typical *nosZ*, and (F) atypical *nosZ*. Data points and error bars represent means and standard errors (n=3), respectively.

parameter	biochar		time		biochar * time	
	F	р	F	р	F	р
napA genes	7.18	0.026	2.21	0.154	2.98	0.084
narG genes	0.82	0.387	5.49	0.065	2.06	0.256
nirK genes	0.95	0.340	0.16	0.975	2.23	0.086
nirS genes	3.02	0.096	3.36	0.020	3.73	0.013
typical nosZ genes	2.96	0.099	1.73	0.169	3.93	0.010
atypical <i>nosZ</i> genes	0.07	0.799	1.76	0.232	3.02	0.084

Table S3: Results from two-way ANOVAs for the gene data. The table shows F-statistics and p-values for the main effects "biochar" and "time" and their interaction "biochar*time".

References

- Bergsma, T.T., Ostrom, N.E., Emmons, M., and Robertson, G.P. (2001) Measuring simultaneous fluxes from soil of N₂O and N₂ in the field using the ¹⁵N-gas "nonequilibrium" technique. *Environmental Science & Technology* **35**: 4307-4312.
- Bru, D., Sarr, A., and Philippot, L. (2007) Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. *Applied and Environmental Microbiology* **73**: 5971-5974.
- Henry, S., Bru, D., Stres, B., Hallet, S., and Philippot, L. (2006) Quantitative detection of the *nosZ* gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, *narG*, *nirK*, and *nosZ* genes in soils. *Applied and Environmental Microbiology* **72**: 5181-5189.
- Henry, S., Baudoin, E., Lopez-Gutierrez, J.C., Martin-Laurent, F., Baumann, A., and Philippot, L.
 (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR.
 Journal of Microbiological Methods 59: 327-335.
- Jones, C.M., Graf, D.R., Bru, D., Philippot, L., and Hallin, S. (2013) The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. *Isme Journal* **7**: 417-426.
- Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D., and Philippot, L. (2006) Abundance of *narG*, *nirS*, *nirK*, and *nosZ* genes of denitrifying bacteria during primary successions of a glacier foreland. *Applied and Environmental Microbiology* **72**: 5957-5962.
- Spott, O., Russow, R., Apelt, B., and Stange, C.F. (2006) A ¹⁵N-aided artificial atmosphere gas flow technique for online determination of soil N₂ release using the zeolite Kostrolith SX6. *Rapid Communications in Mass Spectrometry* **20**: 3267-3274.
- Thonar, C., Erb, A., and Jansa, J. (2012) Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities--marker design, verification, calibration and field validation. *Molecular Ecology Resources* **12**: 219-232.