High resolution spectroscopy reveals fibrillation inhibition

pathways

T. Deckert-Gaudig, V. Deckert

Supplementary Figure S1. Four AFM topography images (of 5 areas) of insulin fibrils grown at pH 2.5 for 2.5 h in the presence of PhCN (c_{PhCN} : c_{insulin} 1:1).

Supplementary Figure S2. (a) AFM topography of insulin fibrillized at pH 2.5 at

70 °C for 2.5 h generated using PhCN (c_{PhCN} : c_{insulin} 1:3) and (b) using PhCN (c_{PhCN} :

c_{insulin} 4:1).

Supplementary Figure S3. (a) AFM topography of insulin fibrillized at pH 2.5 at 70 °C for 2.5 h generated using PhCN ($c_{PhCN} : c_{insulin} 1:1$). The selected fibril where TERS spectra were collected consecutively is marked with an arrow in the zoomed image. (b) Complete dataset of TERS measurement along the main axis of a fibril shown in (a) and **Fig. 3d** in the manuscript. Spectra were consecutively acquired with a step-size of 1 nm along the fibril main axis ($t_{acq} = 5s$).

Supplementary Figure S4. Molecular structures of benzonitrile (PhCN), β -

carotene, quercetin (Que) and DMSO.

Supplementary Figure S5. Four AFM topography images (of 5 areas) of insulin

fibrils grown at pH 2.5 for 2.5 h in the presence of Que (c_{Que} : $c_{insulin}$ 1:1).

Supplementary Figure S6. Four AFM topography images (of 5 areas) of insulin

fibrils grown at pH 2.5 for 2.5 h in the presence of β -carotene ($c_{P-carotene}$: $c_{insulin}$ 1:1).

Supplementary Figure S7. (a) AFM topography of aggregates generated via insulin fibrillation in the presence of Que ($c_{Que} : c_{insulin} 1:3$); (b) AFM topography of aggregates generated via insulin fibrillation in the presence of β -carotene (c_{ρ} - $c_{arotene} : c_{insulin} 1:4$)

Insulin fibrillation in presence of x μ L of DMSO

Re-fibrillation of aggregates after removal of 100 μ L of DMSO

Supplementary Figure S8. (a) AFM topography of species formed via insulin fibrillation in the presence of 10 μ L of DMSO and 50 μ L of DMSO (b). (c) AFM topography of insulin fibrils generated by a subsequent fibrillation after removal of 100 μ L of DMSO from the sample shown in **Fig. 4e** in the manuscript.

Supplementary Figure S9. Four AFM topography images (of 5 areas) of insulin

fibrils grown at pH 2.5 for 2.5 h in the presence of 100 μL of pure DMSO.

Supplementary Figure S10. Four AFM topography images (of 5 areas) of insulin fibrils grown at pH 2.5 for 2.5 h in the presence of 154μ L of pure DMSO.

Supplementary Figure S11. Four AFM topography images (of 5 area) of aggregates obtained from pH 2.5 insulin fibril dissection in the presence of Que (c_{Que} : c_{fib} 1:1).

Supplementary Figure S12. Four AFM topography images (of 5 area) of

aggregates obtained from pH 2.5 insulin fibril dissection in the presence of β -

carotene (c_{μ} -carotene : c_{fib} 1:1)

Supplementary Figure S13. AFM topography of insulin fibrils treated for 5 h with 154 μ L of DMSO.