## Drosophila microRNA-34 Impairs Axon Pruning of Mushroom Body γ Neurons by Downregulating the Expression of Ecdysone Receptor

Yen-Wei Lai<sup>1,2,3</sup>, Sao-Yu Chu<sup>1</sup>, Jia-Yi Wei<sup>1</sup>, Chu-Ya Cheng<sup>2</sup>, Jian-Chiuan Li<sup>2</sup>, Chun-Hong Chen<sup>2,3</sup>\*

and Hung-Hsiang Yu<sup>1</sup>\*



Supplemental Figure 1. Ectopic miR-34 overexpression in olfactory sensory neurons (OSNs) did not prevent axotomy-induced axon degeneration. Confocal images show the axon degeneration phenotype of Or88a-expressing OSNs in wild-type flies (a, c, e, and g) and flies with ectopic miR-34 overexpression (b, d, f, and h) before axotomy (a [n=8] and b [n=9]) and at 1 day (c [n=16] and d [n=14], 3 days (e [n=8] and f [n=8]), and 5 days (g [n=8] and h [n=8]) after axotomy. Bruchpilot staining (Brp; magenta, a and b) reveals the structure of the antennal lobes, and Or88a-GAL4-driven mCD8::GFP (green in a and b, or white in c-h) reveals the axonal nerves (arrows) and axonal terminals (arrowheads; innervating the VA1d glomerulus) of Or88a-expressing OSNs. (a-h) Ectopic miR-34 overexpression in Or88a-expressing OSNs did not inhibit axotomy-induced axon degeneration, as evidenced by the similarity in clearance of the axonal nerves and terminals observed in Or88a-expressing OSNs in both wild-type flies and flies with ectopic miR-34 overexpression. Fly genotypes are listed in Supplemental Table 2. Scale bar: 10 µm for all panels.



Supplemental Figure 2. Ectopic miR-34 overexpression in neural progenitor cells and young neurons did not cause defective  $\gamma$  lobe pruning in mushroom body (MB) neurons. Confocal images show the lobe pruning phenotype of MB neurons in wild-type flies (a) and flies with MB neurons descended from lineages in which GAL4-OK107-driven ectopic overexpression of miR-34 was restricted to neural progenitor cells and young neurons using Asense-GAL4 (b). Fasciculin II (FasII) staining (magenta) reveals the dorsal  $\alpha$  and medial  $\beta$  lobes (arrows, strong magenta staining) and the medial  $\gamma$  lobes (arrowheads, faint magenta staining) of MB neurons. In the lower panels, mCD8::GFP (GFP) expression (green) in core  $\alpha$  and  $\beta$  lobes suggest the persistence of late-stage MB  $\alpha/\beta$  neurons. (a and b) Similar to the MB neurons of wild-type flies, ectopic miR-34 overexpression restricted to neural progenitor cells and young neurons did not disrupt  $\gamma$  lobe pruning in MB neurons. Fly genotypes are listed in Supplemental Table 2. Scale bar: 10 µm for all panels.



Supplemental Figure 3. Ectopic miR-34 overexpression in differentiated MB neurons caused defective  $\gamma$  lobe pruning. Confocal images show the lobe pruning phenotype of MB neurons in wild-type flies (a) and flies in which miR-34 was ectopically overexpressed in differentiated neurons by using GAL4-OK107 and Asense-GAL80 (b). FasII staining (magenta) reveals the dorsal  $\alpha$  and medial  $\beta$  lobes (arrows, strong magenta staining) and the medial  $\gamma$  lobes (arrowheads, faint magenta staining) of MB neurons. In the lower panels, GAL4-OK107-driven mCD8::GFP (GFP) expression (green) reveals the morphology of  $\alpha$  lobes (arrows),  $\alpha'$  lobes (double arrows), and  $\gamma$  lobes (arrowheads). (a and b) In contrast to the MB neurons in wild-type flies (a), the differentiated MB neurons in flies with ectopic miR-34 overexpression exhibited defective  $\gamma$  lobe pruning (double arrowheads, b). Fly genotypes are listed in Supplemental Table 2. Scale bar: 10 µm for all panels.



Supplemental Figure 4. Separate knockdown of Eip74EF, Hr4 and yem expression using **RNAi did not affect**  $\gamma$  lobe pruning. (a) The Eip74EF, Hr4 and yem transcripts contain multiple miR-34 target sites. The highest-score for alignment with the miR-34 target sequence is shown. (b) A luciferase reporter gene assay was used to confirm that miR-34 silenced the expression of Eip74EF, Hr4, and yem, and miR-1 was used to normalize the relative luciferase activity for miR-34. (c-f) Confocal images show the lobe pruning phenotype of MB neurons in wild-type flies (c) and flies in which the expression of the Eip74EF, Hr4, and yem mRNA were knocked down separately using RNAi (d-f). FasII staining (magenta) reveals dorsal  $\alpha$  and medial  $\beta$  lobes (arrows, strong magenta staining) and the medial  $\gamma$  lobes (arrowheads, faint magenta staining) of MB neurons. In the lower panels, GAL4-OK107-driven mCD8::GFP (GFP) expression (green) reveals the morphology of  $\alpha$  lobe (arrows),  $\alpha'$  lobes (double arrows),  $\gamma$  lobes (arrowheads). Similar to the MB neurons in the wild-type flies (c), defective  $\gamma$  lobe pruning was not observed in MB neurons in which Eip74EF, Hr4, and yem was knocked down using RNAi. Fly genotypes are listed in Supplemental Table 2. Scale bar: 10 µm for panels c-f.

## Supplemental Table 1. Frequencies of the $\gamma$ lobe pruning phenotype of

| Manipulation (developmental stage analyzed)         | Total examined | Defective <b>y</b> lobe |            |  |
|-----------------------------------------------------|----------------|-------------------------|------------|--|
|                                                     | (n)            | pruning rate            | Figure     |  |
| GAL4-OK107>mCD8::GFP (6h AFP)                       | 10             | 0%                      | 2a         |  |
| GAL4-OK107>mCD8::GFP (18h AFP)                      | 10             | 0%                      | 2b         |  |
| GAL4-OK107>mCD8::GFP (24h AFP)                      | 10             | 0%                      | 2c         |  |
| GAL4-OK107>mCD8::GFP (36h AFP)                      | 14             | 0%                      | 2g         |  |
| GAL4-OK107>mCD8::GFP (48h AFP)                      | 16             | 0%                      | 2h         |  |
| GAL4-OK107>mCD8::GFP (adult)                        | 20             | 0%                      | 1a, S4c    |  |
| GAL4-OK107>mCD8::GFP>1x mir-34 (6h APF)             | 10             | 0%                      | 2d         |  |
| GAL4-OK107>mCD8::GFP>1x mir-34 (18h APF)            | 10             | 100%                    | 2e         |  |
| GAL4-OK107>mCD8::GFP>1x mir-34 (24h APF)            | 20             | 90%                     | 2f         |  |
| GAL4-OK107>mCD8::GFP>1x mir-34 (36h APF)            | 12             | 100%                    | 2j         |  |
| GAL4-OK107>mCD8::GFP>1x mir-34 (48h APF)            | 14             | 100%                    | 2k         |  |
| GAL4-OK107>mCD8::GFP>1x mir-34 (adult)              | 20             | 100%                    | 1b, 5b, 6b |  |
| GAL4-OK107>mCD8::GFP>usp RNAi (adult)               | 20             | 100%                    | 1c         |  |
| GAL4-OK107>mCD8::GFP>EcR-B1 (adult)                 | 14             | 0%                      | 5a         |  |
| GAL4-OK107>mCD8::GFP>1x mir-34>EcR-B1 (adult)       | 20             | 10%                     | 5c         |  |
| GAL4-OK107>mCD8::GFP>babo-a (adult)                 | 16             | 0%                      | 6a         |  |
| GAL4-OK107>mCD8::GFP>1x mir-34>EcR-B1 (adult)       | 16             | 0%                      | 6с         |  |
| GAL4-OK107>mCD8::GFP>2x Eip74EF RNAi (adult)        | 6              | 0%                      | S4d        |  |
| GAL4-OK107>mCD8::GFP>2x Hr4 RNAi (adult)            | 4              | 0%                      | S4e        |  |
| GAL4-OK107>mCD8::GFP>2x yem RNAi (adult)            | 6              | 0%                      | S4f        |  |
| GAL4-201Y>mCD8::GFP (24h APF)                       | 20             | 0%                      | 2i         |  |
| GAL4-201Y>mCD8::GFP>2x mir-34 (24h APF)             | 20             | 100%                    | 21         |  |
| GAL4-201Y>mCD8::GFP (adult; MARCM)                  | 14             | 0%                      | 3a         |  |
| GAL4-201Y>mCD8::GFP>1x mir-34 (adult; MARCM)        | 5              | 80%                     | 3b         |  |
| GAL4-201Y>mCD8::GFP>2x mir-34 (adult; MARCM)        | 13             | 100%                    | 3c         |  |
| Asense-GAL4>mCD8::GFP (adult)                       | 10             | 0%                      | S2a        |  |
| Asense-GAL4>mCD8::GFP>1x mir-34 (adult)             | 6              | 0%                      | S2b        |  |
| Asense-GAL80+GAL4-Ok107>mCD8::GFP (adult)           | 12             | 0%                      | S3a        |  |
| Asense-GAL80+GAL4-Ok107>mCD8::GFP>1x mir-34 (adult) | 20             | 100%                    | S3b        |  |

## mushroom body neurons in the flies shown in the figures

APF, after puparium formation

| Figure                   | Genotype                                                                                                                                                                                           |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1a, 2a-c, 2g, 2h, S4c    | yw;UAS-mCD8::GFP/+;+;GAL4-OK107/+                                                                                                                                                                  |  |
| 1b, 2d-f, 2j, 2k, 5b, 6b | yw;UAS-mCD8::GFP/UAS-mir-34 <sup>[1]</sup> ;+;GAL4-OK107/+                                                                                                                                         |  |
| 2i                       | <i>yw;FRT<sup>G13</sup>,UAS-mCD8::GFP,GAL4-201Y/+;+;+</i>                                                                                                                                          |  |
| 21                       | <i>yw;FRT<sup>G13</sup>,UAS-mCD8::GFP,GAL4-201Y/UAS-mir-34<sup>[1]</sup>,UAS-mir-34<sup>[2]</sup>;+;+</i>                                                                                          |  |
| 1c                       | yw;UAS-mCD8::GFP/UAS-usp RNAi;+;GAL4-OK107/+                                                                                                                                                       |  |
| 3a, 4c                   | yw,hs-FLP <sup>[122]</sup> /yw;FRT <sup>G13</sup> ,UAS-mCD8::GFP,GAL4-201Y/+;FRT <sup>82B</sup> ,                                                                                                  |  |
|                          | tubP-GAL80/FRT <sup>82B</sup>                                                                                                                                                                      |  |
| 3b                       | yw,hs-FLP <sup>[122]</sup> /yw;FRT <sup>G13</sup> ,UAS-mCD8::GFP,GAL4-201Y/UAS-mir-34 <sup>[1]</sup> ;FRT <sup>82B</sup> ,                                                                         |  |
|                          | tubP-GAL80/FRT <sup>82B</sup>                                                                                                                                                                      |  |
| 3c, 4d                   | yw,hs-FLP <sup>[122]</sup> /yw;FRT <sup>G13</sup> ,UAS-mCD8::GFP,GAL4-201Y/UAS-mir-34 <sup>[1]</sup> ,UAS-mir-3                                                                                    |  |
|                          | $4^{[2]}$ ; FRT <sup>82B</sup> ,tubP-GAL80/FRT <sup>82B</sup>                                                                                                                                      |  |
| 4a                       | <i>yw</i> , <i>hs</i> - <i>FLP</i> <sup>[1]</sup> , <i>UAS-mCD8</i> :: <i>GFP</i> / <i>yw</i> ;+; <i>FRT</i> <sup>82B</sup> , <i>tubP-GAL80</i> / <i>FRT</i> <sup>82B</sup> ; <i>GAL4-OK107</i> /+ |  |
| 4b                       | yw,hs-FLP <sup>[1]</sup> ,UAS-mCD8::GFP/yw;UAS-mir-34 <sup>[1]</sup> /+;FRT <sup>82B</sup> ,tubP-GAL80/                                                                                            |  |
|                          | FRT <sup>82B</sup> ; GAL4-OK107/+                                                                                                                                                                  |  |
| 5a                       | yw;UAS-mCD8::GFP/+;UAS-EcR-B1/+;GAL4-OK107/+                                                                                                                                                       |  |
| 5c                       | yw;UAS-mCD8::GFP/UAS-mir-34 <sup>[1]</sup> ;UAS-EcR-B1/+;GAL4-OK107/+                                                                                                                              |  |
| 6a                       | yw,UAS-baba-a /yw;UAS-mCD8::GFP/+;+;GAL4-OK107/+                                                                                                                                                   |  |
| 6c                       | yw,UAS-baba-a/yw;UAS-mCD8::GFP/UAS-mir-34 <sup>[1]</sup> ;+; GAL4-OK107/+                                                                                                                          |  |
| S1a, S1c, S1e, S1g       | yw;UAS-mCD8::GFP/+;Or88a-GAL4/+;+                                                                                                                                                                  |  |
| S1b, S1d, S1f, S1h       | <i>yw;UAS-mCD8::GFP/UAS-mir-34</i> <sup>[1]</sup> ,UAS-mir-34 <sup>[2]</sup> ;Or88a-GAL4/+;+                                                                                                       |  |
| S2a                      | yw;Asense-GAL4,UAS-mCD8::GFP/+;+;+                                                                                                                                                                 |  |
| S2b                      | yw;Asense-GAL4,UAS-mCD8::GFP/UAS-mir-34 <sup>[1]</sup> ;+;+                                                                                                                                        |  |
| S3a                      | yw;UAS-mCD8::GFP/+;Asense-GAL80/+;GAL4-OK107/+                                                                                                                                                     |  |
| S3b                      | yw;UAS-mCD8::GFP/UAS-mir-34 <sup>[1]</sup> ;Asense-GAL80/+;GAL4-OK107/+                                                                                                                            |  |
| S4d                      | yw;UAS-mCD8::GFP/+;UAS-Eip74EF RNAi/UAS-Eip74EF RNAi;GAL4-OK107/+                                                                                                                                  |  |
| S4e                      | yw;UAS-mCD8::GFP/+;UAS-yem RNAi/UAS-yem RNAi;GAL4-OK107/+                                                                                                                                          |  |
| S4f                      | yw;UAS-mCD8::GFP/+;UAS-Hr4 RNAi/UAS-Hr4 RNAi;GAL4-OK107/+                                                                                                                                          |  |

## Supplemental Table 2. Genotypes of the flies in the figures