

Figure S1. Location of genetic aberrations for Japanese and US patients, and TCGA samples. Mutations in (**A**) APC (**B**) ERBB2 (**C**) TP53 (**D**) NRAS (**E**) KRAS for Japanese patients (n = 201), US patients (n = 108) and TCGA samples (n = 224) were aligned to protein domains. The number of mutations at each given amino acid were plotted in corresponding pie

graphs. As shown, KRAS G12 were the highest frequency mutations. Patient samples were further plotted by mutation status (**F**) KRAS-hypermutated, (**G**) KRAS-non-hypermutated.

Figure S2. Correlation of RNF43 mutations with MMR. (**A**) The frequencies of APC and RNF43 mutations were determined by MMR phenotype. Statistical significance was determined by Fisher's exact test. (**B**) Mutation mapper analysis identified G659 as most frequently altered in MMR-D cases.

Figure S3

Figure S3. Gene-based statistical analysis for clinical information. Genes were filtered based on Fisher exact test (P < 0.05). Cell values are log odds ratios colored from blue to red. Dendrograms were created by Euclidean distance and Ward's method. Less (blue) or more (red) aggressive factors of seven clinical variables are shown: lymphatic invasion (ly), vascular invasion (v), histopathological grade (G), TNM classifications (T, N, and M), and tumor stage.

Figure S4. Cluster of 61-gene co-mutation patterns. (**A**) Cluster analysis was performed on non-hypermutated Japanese CRC samples (n = 184 tumors) by using Euclidean distance and Ward's clustering method (closest distance to common mutated-genes are colored yellow to blue). (**B**) Co-mutated gene patterns of 61-gene set with statistical analysis. Mutation rate in each group is shown as a bar graph in the middle panel. Group-based mean values for age and tumor diameter are shown (left) with cluster colors and fraction for clinical information (right). Dark bars indicate significant difference (P < 0.05, two-tailed Fisher's exact test) to the distribution of all other non-hypermutated donors, light bars are non-significant (**P < 0.01, *P < 0.05).

Figure S5

Figure S5. Data Complementary to Figure 3. (A) Cluster analysis was performed on nonhypermutated Japanese CRC samples (n = 184 tumors) by using Euclidean distance and Ward's clustering method (closest distance to common mutated-genes are colored yellow to blue). (B) Kaplan-Meier survival estimates according to genomic subgroups. Overall survival was analyzed in 102 patients with Stage IV CRC treated with anti-EGFR therapies. The patients were divided to "All WT (wild type)" (cluster 1; n = 25) or "Mutated" (cluster 2-8; n = 77) based on the cluster analysis with targeted therapy-related 26 genes.

Table S1. 415 gene	list for the comprehensi	ve genomic sequenc	ing platform				
			GI	ENE LIST			- <u>1</u> 2
ABL1	CASP8	EP300 (P300)	FOXL2	KAT6B (MYST4)	MYCL1	PIM1	SOX11
ABL2 (ARG)	CBFB	EPHA3	FOX01	KDM5A (JARID1A)	MYCN	PKHD1	SOX2
ACVR1B	CBL	EPHA5	FOXP1	KDM5C	MYD88	PLAG1	SOX9
CVR2A	CCND1 (Cyclin D1)	EPHA7	G6PD	KDM6A	MYH11	PLCG1	SPEN
FF1	CCND2 (Cyclin D2)	EPHB1	GATA1	KDR (VEGFR2)	MYH9	PML	SPOP
KT1	CCND3 (Cyclin D3)	EPHB4	GATA2	KEAP1	NBN	PMS1	SRC
KT2	CCNE1 (Cyclin E1)	EPHB6	GATA3	KIAA1804 (MLK4)	NCOA1	POT1	STAG2
КТЗ	CD70 (TNFSF7)	ERBB2 (HER2)	GDNF	KIT	NCOA2	PPARG	STAT3
LK	CD79A	ERBB3 (HER3)	GID4	KLF5	NCOA4	PPP2R1A	STAT4
MER1 (FAM123B)	CD79B	ERBB4 (HER4)	GNA11	KLF6	NF1	PPP6C	STK11(LKB1)
PC	CDC73 (HRPT1)	ERCC1 (RAD10)	GNA13	KLHL6	NF2 (Merlin)	PRDM1 (BLIMP1)	STK36(FU)
R	CDH1 (E-Cadherin)	ERCC2 (XPD)	GNAQ	MLL (KMT2A)	NFE2L2 (NRF2)	PRKAR1A	SUFU
RAF	CDH11 (Cadherin 11)	ERCC3 (XPB)	GNAS	MLL2 (KMT2D)	NFKB1 (NFKB-p105)	PRKDC	SYK
RFRP1 (ARP1)	CDH2 (N-Cadherin)	ERCC4 (XPF)	GPC6	KRAS	NFKB1A	PSIP1	TAF1
RID1A	CDH5 (VE-Cadherin)	ERCC5	GPR124	LAMP1	NFKB2 (NFKB)	PTCH1	TAF1L
RID2	CDK12	ERG	GRIK3	LCK	NIN	PTEN	TAL1(SCL)
RNT (HIF-1β)	CDK4	ESR1	GRIN2A	LPP	NKX2-1 (TTF1)	PTGS2 (COX2)	TBX22
SCL4	CDK6	ETS1	GSK3B	LRP1B	NLRP1	PTPRD	TCF12
SXL1	CDK8	ETV1	HCAR1	LTF	Notch1	PTPRT	TCF3
тм	CDKN1A	ETV4	HCN1	MAGEA1	NOTCH2	RAC1	TCF7L1
TR	CDKN1B (p27)	EXT1	HGF	MAGI1	NOTCH4	RAF1 (CRAF)	TCF7L2
TRX	CDKN2A (INK4)	EXT2	HIF1A	MALT1	NPM1	RALGDS	TCL1A
URKA	CDKN2B (INK4B)	EZH2	HLF	MAML2	NRAS	RARA	TET1
URKB	CDKN2C (INK4C)	FAM46C	HNF1A	MAP2K1 (MEK1)	NTRK1	RASA1	TET2
URKC	CEBPA	FANCA	HNF4A	MAP2K2 (MEK2)	NTRK2	RB1	TET3
XIN2	CHEK1	FANCO	HRAS	MAP2K4 (MEK4)	NTRK3	REI	TGFBR2
	CIC	FANCE	HSP90AA1	MAP3K1 (MEKK1)	NUMA1	RET	TGM7
AP1	CREBBP	FANCE	HSP90AB1	MAP3K7 (TGE1A)	NUP214	RHOH	TIRA
	CREDU	FANCO		MARKI (ERK2)	NUID92	RICTOR	TNEAID2(A20)
	CRIE2	FANCI		MAPKE (INK1)	NUIDOR	PNASEI	TNEPSE14
CL 11A (7NE956)	CRTC1	FARCE		MRD4	DAK2	RNAJEL DNE2	TNK2(ACL4)
CLAAR	CRICI	FAS (APO-1)	IDH2	MOLA	PARS	RNF2	TODA
CLIIB	COMPA	FALL	IGF1K	MOLT	PALD2	RNF43	TDF1
	CSMD3	FBXW7 (BAF250)	IGF2	MDM2	PARPI	RUST	TP03(P03)
		FGF10		MDM4	PAAS	RPSORAZ	1963
CL2L2 (BCL-W)	CINNA1 (d1-Catenin)	FGF14	IKBKB (IKKKB)	MED12	PAXS	RPTOR (RAPTOR)	IPR
CL6	CINNA2 (a2-Catenin)	FGF19	IKBKE	MEF2B	PAX/	RRM1	TRIM33(TIF1y)
CL9	CTNNB1 (β-Catenin)	FGF23	IKZF1 (IKAROS)	MEN1	PAX8	RUNX1 (AML1)	TRIP11
COR	CUX1	FGF3	IL2	MET	PBRM1	RUNX1T1 (ETO)	TRRAP
CORL1	CYLD	FGF4	IL21R	MITF	PBX1	SAMD9	TSC1
IRC2 (IAP2)	DAXX	FGF6	IL6ST (CD130)	MLH1	PDGFRA	SDHB	TSC2
IRC3 (AIP1)	DCC	FGFR1	IL7R	MMP2	PDGFRB	SETD2	TSHR
LM	DDB2	FGFR2	INHBA	MN1	PDK1	SF3B1	TYK2
LNK	DDIT3 (GADD153)	FGFR3	IRF4	MPL	PGAP3	SGK1	UBR5
MPR1A	DDR1	FGFR4	IRS2	MRE11A	PHOX2B	SH2D1A	USP9X
RAF	DDR2	FH	ITGA10	MSH2	РІКЗС2В (РІЗК-С2β)	SLIT2	VHL
RCA1	DICER1	FLCN	ITGB2	MSH6	ΡΙΚ3CA (p110α)	SMAD2	WISP3
RCA2	DNMT3A	FLI1	ITGB3	MST1R (RON)	PIK3CB (PIK3C1)	SMAD4	WT1
RIP1 (FANCJ)	DOT1L	FLT1 (VEGFR1)	JAK1	MTOR	PIK3CD (p110δ)	SMARCA4	XPC
тк	DST	FLT3 (STK1)	JAK2	MTR	PIK3CG (p110y)	SMARCB1	XPO1(CRM1)
UB1B	EDNRB	FLT4 (VEGFR3)	JAK3	MTRR	PIK3R1 (GRB1)	SMO	ZNF384
11orf30 (EMSY)	EGFR	FN1	JUN	MUTYH	PIK3R2 (p85)	SOCS1	ZNF521(EVI3)
ARD11	EMI 4	FOXA1 (HNF3A)	KAT6A (MOZ)	MYC	PIK3R3 (p55v)	SOX10	

		BF			
		Absent	Pr	P value	
			V600E	Non-V600E	
Location	Rt : Lt	40 : 137	12 : 1	3:8	< 0.001

Table S2. BRAF mutation and tumor location (J-CRC, n = 201)

Table S3. R	aw data for ger	ne-based stati	stical analysis	for clinical in	formation									
Gene/Catego	orly_logOR	ly_P	v_logOR	v_P	G_logOR	G_P	T_logOR	T_P	N_logOR	N_P	M_logOR	M_P	Stage_logOR	Stage_P
ACVR2A	-1.284605972	0.3755518	0.155294596	1	-0.507606552	1	4	1	-2.102652993	0.1184945	-1.183457306	0.392881	-2.8172955	0.0445392
AKT3	-4	0.1476004	-4	0.04632929	-4	1	-3.067989641	0.206106	-4	0.06985032	-4	0.16043	-4	0.0333215
APC	-1.295281341	0.06725693	-2.251591667	0.02947482	-0.524142289	0.3794865	-0.94670123	0.5352907	-1.064633493	0.183836	-0.108808085	1	-1.24029055	0.2098898
AR	-4	0.05595839	-4	0.009673149	-4	0.5685854	-2.073359256	0.2933471	-2.494977387	0.1734744	-4	0.06346683	-3.192881205	0.0882469
ASXL1	-4	0.1476004	-4	0.04632929	-4	1	-3.067989641	0.206106	-4	0.06985032	-0.575097255	1	-2.158068734	0.3362438
CIC	-0.689931225	0.6776591	0.485955375	1	0.517781619	0.6519424	-0.738161603	0.5036991	0.880398721	1	-2.967014481	0.03942998	0.185437795	1
CREBBP	-4	0.05595839	-0.858887698	0.5228592	0.508501673	1	-4.13054535	0.03162376	-2.494977387	0.1734744	-4	0.06346683	-3.192881205	0.0882469
CTNNA2	-4	0.1476004	-1.861391009	0.3884533	-4	1	-3.067989641	0.206106	-4	0.06985032	-4	0.16043	-4	0.0333215
DICER1	-4	0.1476004	-4	0.04632929	-4	1	-3.067989641	0.206106	-1.471616719	0.4627584	-4	0.16043	-2.158068734	0.3362438
EP300	-1.718624356	0.2072926	-0.875775107	0.6123848	-0.839164466	1	-2.132899965	0.1291324	-2.546382759	0.04407598	-1.616609672	0.2215466	-2.228140107	0.0777698
EPHB6	-4	0.007825243	-2.506705186	0.06944359	-4	0.3286899	4	1	-0.899239748	0.6102924	0.013347912	1	-0.144645866	1
ERBB2	-1.547734362	0.03030159	-0.598267096	0.4085125	0.569845889	0.4343159	-0.514269208	0.7068149	-0.523499272	0.4429833	-0.799511968	0.2449152	-0.941590953	0.2322211
FOXO1	-1.689344383	0.5601184	-2.890523361	0.1196416	-4	0.5685854	4	1	-4	0.01803827	-4	0.06346683	-4	0.0058587
GNA11	-4	0.05595839	-4	0.009673149	-4	0.5685854	-4.13054535	0.03162376	-0.46758329	1	-1.589458734	0.565658	-1.157180105	0.4602422
GRIN2A	-2.29240312	0.3000779	-1.888440865	0.2065227	-4	0.5741469	-1.486263082	0.3714303	-4	0.004584312	-4	0.02489583	-4	0.0010034
HIF1A	-4	0.02102304	-0.267667232	1	-4	0.5741469	4	1	-3.106993866	0.05840014	-2.19169173	0.3040929	-2.192437345	0.1560693
KDR	-1.284605972	0.3755518	-1.297958493	0.2979088	-0.507606552	1	-1.066379323	0.4412713	-2.102652993	0.1184945	-2.625350198	0.1593122	-2.8172955	0.0445392
KIAA1804	-0.36480729	0.7355785	-0.042518163	1	-0.318018823	1	4	0.6003606	-0.484832559	0.7019028	-2.482898902	0.03149532	-1.207531084	0.3705754
MSH2	-3.168830988	0.001479283	0.501234287	1	-0.864102434	0.7343846	-0.769894646	0.623339	-2.657669185	0.003152127	-0.6095117	0.5484971	-1.80321219	0.0480152
MST1R	-1.689344383	0.5601184	-0.858887698	0.5228592	-4	0.5685854	4	1	-4	0.01803827	-1.589458734	0.565658	-3.192881205	0.0882469
NOTCH2	-0.681973376	0.6403178	-0.267667232	1	-0.083811082	1	-1.486263082	0.3714303	-1.4910469	0.2885487	-4	0.02489583	-2.192437345	0.1560693
NOTCH4	-0.674200064	1	-1.861391009	0.3884533	1.512363437	0.4547398	-3.067989641	0.206106	-4	0.06985032	-4	0.16043	-4	0.0333215
PAX3	-0.674200064	1	-4	0.04632929	1.512363437	0.4547398	4	1	-4	0.06985032	-4	0.16043	-4	0.0333215
PIK3CA	0.00884827	1	-0.478026836	0.4543292	0.388588531	0.6304497	0.622586499	0.7438598	-0.925794643	0.1548468	-0.665383445	0.287826	-1.483883162	0.030135
PTEN	1.515538374	0.006140614	3.235593352	0.000202584	-0.216974899	0.8505134	3.007111521	0.01621924	0.71186049	0.2623133	1.861017605	0.000662422	1.722303384	0.0315458
RALGDS	-4	0.1476004	-4	0.04632929	-4	1	-3.067989641	0.206106	-1.471616719	0.4627584	-4	0.16043	-2.158068734	0.3362438
RET	-1.718624356	0.2072926	0.485955375	1	0.517781619	0.6519424	-0.738161603	0.5036991	-1.51104536	0.192913	-2.967014481	0.03942998	-2.228140107	0.0777698
RNF43	-1.099150113	0.1327786	-1.732161732	0.02971689	-0.890653884	0.4107714	-0.804541778	0.4210965	-0.513259682	0.5751986	-0.988777182	0.2068802	-0.856077407	0.334904
ROS1	-4	0.02102304	-0.267667232	1	-0.083811082	1	-1.486263082	0.3714303	-1.4910469	0.2885487	-4	0.02489583	-2.192437345	0.1560693
SETD2	-0.689931225	0.6776591	4	0.3424384	1.553256291	0.1838005	-0.738161603	0.5036991	-1.51104536	0.192913	-2.967014481	0.03942998	-2.228140107	0.0777698
SMAD2	1.218889637	0.1600386	4	0.00475656	-0.743048298	0.4471453	1.474560124	0.4756843	1.322558703	0.1993075	0.592643125	0.4897586	1.293901317	0.378267
SRC	1.283285898	0.2541192	4	0.04243197	0.194803177	0.7608989	4	0.3702242	1.191646026	0.3597853	4	0.000929095	4	0.0762531
STK11	-1.752870168	0.0142476	-2.143697248	0.002892355	-0.549758652	0.6003726	-1.201057302	0.2421052	-0.268643472	0.7895144	-0.640211006	0.3472434	-0.630047367	0.54
TAF1L	-4	0.1476004	-1.861391009	0.3884533	-4	1	-3.067989641	0.206106	-4	0.06985032	-4	0.16043	-4	0.0333215
TGFBR2	4	0.02408589	4	0.2039284	1.574646504	0.2088114	4	0.6017747	1.386330888	0.6836729	1.049229963	0.4780347	0.688603815	1
TLR4	-4	0.02102304	-1.888440865	0.2065227	-4	0.5741469	4	1	-3.106993866	0.05840014	-2.19169173	0.3040929	-3.818710048	0.0204246
TSC1	-2.344100875	0.05653853	-0.274080715	0.685341	-0.085694037	1	-0.237944303	1	-1.531562654	0.2120499	-2.240266692	0.06206673	-2.265268966	0.0397059
TYK2	-0.674200064	1	-4	0.04632929	-4	1	-3.067989641	0.206106	-1.471616719	0.4627584	-4	0.16043	-2.158068734	0.3362438

P-value < 0.05

Variable						
Age (years) ^a	65 (30–94)					
Sex						
Male : Female	84 : 117					
Tumor size (mm) ^a	50 (7–155)					
Location						
Colon : Rectum	120 : 81					
T category						
T1: T2 : T3 : T4a : T4b	6 : 18 : 97 : 64 : 16					
Histopathological grading						
G1 : G2 : G3	0.553402778					
Lymphatic invasion						
Absence : Presence	79 : 122					
Venous invasion						
Absence : Presence	48 : 153					
N category						
N0 : N1a : N1b : 2a : 2b	58 : 34 : 29 : 41 : 39					
M category						
M0 : M1a : M1b	88 : 63 : 50					
Stage						
I : IIA : IIB : IIC : IIIA : IIIB : IIIC : IVA : IVB	11 : 26 : 5 : 1 : 11 : 23 : 11 : 63 : 50					
^a Data are expressed as median (range)	11.20.3.1.11.23.11.03.50					

Table S4. Clinicopathological characteristics of colorectal cancer 201 patients

Data are expressed as median (range)