## genipe: An automated genome-wide imputation pipeline with automatic reporting and statistical tools

## Supplementary Material

Lemieux Perreault, L.-P. Legault, M.-A. Asselin, G. Dubé, M.-P.

**Table S1:** Imputation steps performed by genipe. The majority of steps are parallelized per chromosome or per genomic segments.

|    | Step                          | Program                     | Parallel           |
|----|-------------------------------|-----------------------------|--------------------|
| 1  | Initial marker filtering      | PLINK                       | No                 |
| 2  | Missing rate                  | PLINK                       | No                 |
| 3  | Split by chromosome           | PLINK                       | Yes (chromosome)   |
| 4  | Check strand                  | SHAPEIT                     | Yes (chromosome)   |
| 5  | Flip                          | PLINK                       | Yes (chromosome)   |
| 6  | Final check strand            | SHAPEIT                     | Yes (chromosome)   |
| 7  | Final exclusion               | PLINK                       | Yes (chromosome)   |
| 8  | Phasing                       | SHAPEIT                     | Yes (chromosome)   |
| 9  | Imputation                    | IMPUTE2                     | Yes (5Mb segments) |
| 10 | Cross validation statistics   | genipe                      | No                 |
| 11 | Merge imputed segments        | genipe                      | Yes (chromosome)   |
| 12 | Compression (optional)        | $\overline{\mathrm{BGZIP}}$ | Yes (chromosome)   |
| 13 | Imputation statistics and MAF | genipe                      | No                 |



Figure S1: Execution time for typical imputation analysis. Imputation was performed on chromosome 2 for 5,045 samples using genipe. A total of 1,170,797 loci were imputed, where 961,019 (82.1%) had sufficient imputation quality. Statistics were computed on loci with minor allele frequency higher than 1% (a total of 528,932 loci). The black dashed line is the execution time for Plink (logistic regression on a single process). The four models (linear, logistic, Cox's proportional hazard and mixed linear model [ten repeated measurements]) were executed using 2, 4, 8, 16, 32 and 48 processes. Cox's proportional hazard analysis was not performed on 2 and 4 processes to save time. An optimization was made so that the linear mixed model could perform as well as a linear or logistic regression. This optimization is the two-step linear mixed model [1]. If the estimated p-value is lower than a user-specified threshold, the standard linear mixed model is used to gather all the required statistics. Figure S2 and S3 show the correlation between the estimated p-value and the real one.



Figure S2: Correlation of the p-values between the standard and the two-step linear mixed models. The standard and two-step linear mixed models were used on the same dataset (i.e. 5,045 samples (ten repeated measurements) imputed on chromosome 2, where 528,932 loci had sufficient imputation quality and a minor allele frequency higher than 1%). Each dot represents a p-value. The light-gray bar is the identity line (y = x). The red dashed line is the estimated slope of the linear regression (equation at the top-left). The Pearson correlation ( $r^2$ ) was 0.999967.



Figure S3: Correlation of the p-values ( $< 1 \times 10^{-3}$ ) between the standard and the two-step linear mixed models. The standard and two-step linear mixed models were used on the same dataset (i.e. 5,045 samples (ten repeated measurements) imputed on chromosome 2, where 528,932 loci had sufficient imputation quality and a minor allele frequency higher than 1%). A total of 237 loci had a p-value lower than  $1 \times 10^{-3}$ . Each dot represents a p-value. The light-gray bar is the identity line (y = x). The red dashed line is the estimated slope of the linear regression (equation at the top-left). The Pearson correlation ( $r^2$ ) was 0.999434.

## References

[1] Sikorska K, Montazeri NM, Uitterlinden A, Rivadeneira F, Eilers PH, Lesaffre E: **GWAS with longitudinal phenotypes: performance of approximate procedures**. European Journal of Human Genetics 2015, **23**(10):1384–1391.