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Abstract

Feature selection on high-dimensional networks plays an important role in under-
standing of biological mechanisms and disease pathologies. It has a broad range of appli-
cations. Recently, a Bayesian nonparametric mixture model (Zhao, Kang, and Yu 2014)
has been successfully applied for selecting gene and gene sub-networks. We extend this
method to a unified approach for feature selection on general high-dimensional networks;
and we develop a powerful R package, the Bayesian network feature finder (BANFF),
providing a full package of posterior inference, model comparison, and graphical illus-
tration of model fitting. In BANFF, we develop a parallel computing algorithm for
the Markov chain Monte Carlo (MCMC) based posterior inference and an Expectation-
Maximization (EM) based algorithm for posterior approximation, both of which greatly
reduce the computational time for model inference. In this work, we provide detailed
instruction on how to use the R functions in BANFF along with several tutorial exam-
ples on analysis of simulated datasets and real datasets. Particularly, we demonstrate
the use of BANFF on selecting features from a protein-protein interaction network and
perform brain image segmentations.

Keywords: Bayesian, network feature, Markov chain Monte Carlo .

1. Introduction

Feature selection over high-dimensional networks has become a very important research
question motivated by the needs of analyzing big data in a broad range of biological and
biomedical applications.

One important area is omics research, which includes genomics, transcriptomics, proteomics
and metabolomics. Preexisting biological knowledge on the relationships between biological
entities (genes, proteins etc.) is usually coded using the network data structure, with each
node representing a biological entity and each edge representing a relationship. Commonly
used genome-scale networks include protein-protein interaction network (Rual, Venkatesan,
Hao, Hirozane-Kishikawa, Dricot, Li, Berriz, Gibbons, Dreze, Ayivi-Guedehoussou et al.
2005), transcriptional regulatory network (Licatalosi and Darnell 2010), signal transduction
network (Janes and Yaffe 2006), metabolomic network (Duarte, Becker, Jamshidi, Thiele,
Mo, Vo, Srivas, and Palsson 2007), etc. They play important roles in the analyses and
interpretation of high-throughput data. Jointly analyzing high-throughput data with the
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networks can incorporate existing biological knowledge to help achieve better feature se-
lection, more robust predictive models, and more interpretable biological results (Barabási
2007; Barabási, Gulbahce, and Loscalzo 2011; Chan and Loscalzo 2012).

Another important application is neuroimaging, which includes the use of various techniques
to either directly or indirectly measure the brain structure and function. The commonly
used functional neuroimaging techniques, such as functional magnitude resonance imag-
ing (fMRI) and Positron emission tomography (PET), detect neural activities at a set of
locations in the brain, to which we refer as voxels/regions. The brain activities at each vox-
el/region are considered as biomarkers or features that are potentially associated with brain
functions and neurological disorders. The spatial neighborhoods of voxels/regions consti-
tute a spatial network. Also, the functional/structure connectivities that characterize the
coherence of the brain activities can make up another level of network in the brain imaging
studies. It has been shown that the brain signals over those two types of networks can be
highly dependent. Thus, incorporating the networks information would be more efficient
and powerful to perform selections from important imaging biomarkers that are associated
with the neurological or psychiatric disorders.

Recently, many statistical methods have been proposed to perform feature selection incor-
porating network information (Li and Li 2008; Pan, Xie, and Shen 2010; Stingo, Chen,
Tadesse, and Vannucci 2011; Ma, Shi, Li, Yi, and Shia 2010; Qu, Nettleton, and Dekkers
2012). Among those, a Bayesian nonparametric mixture model (Zhao et al. 2014) has been
successfully applied to select genes and gene sub-networks under the large-scale simultane-
ous hypothesis testing framework (Efron 2004). This method provides a general framework
and can be applied to a wide range of aforementioned biomedical applications. Under
Bayesian modeling framework, this method can provide good feature selection accuracy
compared to other existing methods and produce reliable uncertainty estimates. Also, tak-
ing advantages of nonparametric Bayesian modeling, this method is not sensitive to model
assumptions and can make more robust posterior inference. The fast posterior approxima-
tion algorithms developed by Zhao et al. (2014) are much faster than the standard MCMC
algorithm. Although such a valuable method has been built, the efficient implementation
is currently not available, which becomes the main barrier to the use of this method.

To this end, we develop an R package: BAyes Network Feature Finder (BANFF) in CRAN,
which is a user-friendly, computational efficient, publicly available and well-maintained soft-
ware package. The BANFF implements the standard posterior inference algorithm which
combines network based Dirichlet process mixture (DPM) model fitting and the hierarchical
ordered density clustering (HODC). It also provides option for the two fast computational
algorithms including finite Gaussian mixture (FGM) approximation. To further speed up
the MCMC posterior inference simulation, the BANFF also implements the parallel MCMC
computing algorithms. Based on our experience, this method can reduce 67% computing
time when using seven cores in a typical personal computer. In addition, the BANFF
provides a full package of functions which perform data preprocessing and transformation,
conduct Bayesian model fitting and diagnostics, compute posterior summary statistics and
generate graphical presentations of results.

In this article, we present an introduction to our R package: BANFF. In Section 2, we start
with a brief review of the Bayesian nonparametric mixture model for feature selection over
high-dimensional networks along with the posterior computation algorithms. In Section 3,
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we provide detailed usage of the package. In Section 4, we present simulation studies and
real data applications. Finally, we conclude the paper in Section 5 with a brief discussion
on the future work.

2. Model

2.1. Notations

We summarize notations and their definitions in the model in Table 1. For a large scale
hypothesis testing problem, if only p-values are observed, they can be transformed to be
testing statistics, for example, ri = −φ−1(pi), where φ−1(·) is the inverse of the cumulative
distribution function (CDF) of standard normal distribution. We assume that “important”
features are characterized by larger testing statistics compared to “unimportant” ones. In
the model, the observed data are the testing statistics r or p-values; and the adjacency
matrix C for network configurations are also assumed to be known. The latent feature
selection indicator z is of our primary interest.

Notation Definition

n an integer, total number of features

p a vector of n p-values, p = (p1, . . . , pn)′

r a vector of n transforming statistics by ri = −φ−1(pi), r = (r1, . . . , rn)′

z
a vector of n latent indicators, z = (z1, . . . , zn)′,

zi = 1 indicates “important feature”, zi = 0 otherwise

C
an n× n adjacency matrix,

cij = 1 if features i and j are connected, cij = 0 otherwise

Table 1: A summary of notations and definitions in the model.

2.2. Network-Based DPM Model

We assume that each testing statistic ri follows a normal distribution with mean µi and
variance σ2i , denoted N(µi, σ

2
i ). The distribution of parameters (µi, σ

2
i ) given the selection

indicator zi = k is defined by random probability measure Gk, for k = 0, 1. The random
measure Gk follows a Dirichlet process with base measure G0k and scalar precision τk.
Also we specify G0k = N(γk, ε

2
k)× IG(αk, βk), where IG(αk, βk) denotes an inverse-Gamma

distribution with shape αk and rate βk. The DPM model for feature selection is given by

[ri|µi, σ2i ] ∼ N(µi, σ
2
i ),

[(µi, σ
2
i )|zi = k,Gk ] ∼ Gk,

Gk ∼ DP(G0k, τk),

G0k = N(γk, ξ
2
k)× IG(αk, βk), (1)

for i = 1, 2, ..., n and k = 0, 1. A weighted Ising prior is assigned to z to incorporate the
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network information. The probability mass function is given by

π(z|π,ρ,ω,C) ∝ exp

 n∑
i=1

(ω̃i log(πzi + ρzi
∑
i 6=j

ωjCijI[zi = zj ])

 , (2)

where parameter π = (π0, π1) with 0 < π1 = 1 − π0 < 1 controls the sparsity of z.
Parameter ρ = (ρ0, ρ1) with ρk > 0 for k=0,1 characterizes the smoothness of z over the
network. The pre-determined weights ω = (ω1, ω2, . . . , ωn)′ is used to incorporate a priori

biological knowledge to each node. And ω̃i =
n∑
j=1

cijωj/ω̃icij is introduced to balance the

contribution from π and ρ on the prior probability of z. We refer to Zhao et al. (2014) for
more details on the model constraints and model representations.

Figure 1: Graphical illustration of the hierarchical model structure. The yellow balls
represent input data; the green balls represent parameters. The red box collects the feature
specific variables/testing statistics that are all indexed by i, for i = 1, . . . , n. The blue
box collects parameters to characterize the “important” (k = 1) and “unimportant” (k = 0)
features. The arrows indicate the determination relationship between these variables.

2.3. Hyper-parameter specifications

BANFF also implements specifications of hyper-parameters π, ρ and ω in the weighted
Ising priors. Two methods have been suggested for selecting π and ρ: (a) assigning hyper-
priors on π and ρ to make inference; (b) employing the Bayesian model averaging for a set
of possible choices of π and ρ. In order to make this step more efficient and applicable,
we modify method (b) for hyper-parameter selection in the package BANFF. Specifically,
denote by {(πm,ρm)}Mm=1 all possible choices of hyper-parameters. Given each (πm,ρm), we
integrate out all the parameters in the model and compute the marginal density of testing
statistics using the Monte Carlo simulation. The optimal choice of (πm,ρm) is then selected
by maximizing the marginal density. Hyper-parameter specification is the very first step
before any posterior computational algorithms. BANFF has already embed this procedure
in the main posterior inference functions Network.STD() and Network.Fast(). Also, it
includes a separate function HyperPara.Select() for implementing the hyper-parameter
specification. We provide more details in Section 3.
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2.4. Fast computation algorithms

Since the standard posterior computation algorithm (Zhao et al. 2014) (NET-DPM-1) is
very computationally expensive when the dimension of feature space is very large, Zhao
et al. (2014) proposed two fast algorithms to fit finite Gaussian mixture models (FGM),
referred as NET-DPM-2 and NET-DPM-3. BANFF implements NET-DPM-3 in function
Networks.Fast() for fast computation. This algorithm consists of two parts: (1) the
FGM approximation and (2) applying the HODC algorithm for fitting the density function
of “important” and “unimportant” features and further perform feature selection. We will
present this algorithm by introducing the HODC algorithm first; and then discuss the details
of FGM approximation that is guided by a DPM model fitting or model-based clustering
fitting in the following section.

Hierarchical Ordered Density Clustering (HODC) Algorithm

As discussed by (Zhao et al. 2014), the marginal distribution of ri could be also approxi-
mated by an FGM model:

π(r) =
1∑

k=0

pkfk(r) =

L1∑
g=−L0+1

q̃g
σ̃g
φ(
r − µ̃g
σ̃g

),

where L0 and L1 represent the number of mixture components that contribute to the den-
sities of testing statistics of “unimportant” feature and “important” feature, respectively.
Without incorporating network information, we can have an approximation to the marginal
density of r by a DPM model fitting. Denote by ℘ = {(µ̂g, σ̂2g , p̂g)}

L0+L1
g=1 parameters of

the FGM models that are generated by a DPM model fitting. We rank these densities by
means µ̂0 < µ̂1 < . . . < µ̂L0+L1 . A distance metric of density functions are defined by
d(f, f ′) =

∫ +∞
−∞ [f(x)− f ′(x)]2dx. The pseudo code is provided as follows:

1: m← 0
2: s

(0)
l ← {l}, for l = 1, 2, ..., L0 + L1

3: while L0 + L1 −m >= 2 do
4: for l(m) ← 1 to L0 + L1 −m− 1 do
5: l

(m)
i ← d(φ̃(.; s

(m)
i , ℘), φ̃(.; s

(m)
i+1, ℘))

6: end for
7: l

(m)
min ← min(l

(m)
1 , lm2 , ..., l

(m)
L0+L1−m−1)

8: if there are more than one l
(m)
min then

9: l
(m)
min ← sample one among all l

(m)
mins

10: end if
11: for l(m) ← 1 to L0 + L1 −m− 1 do
12: if l < l(m) then
13: s

(m+1)
l ← s

(m)
l

14: end if
15: if l = l(m) then
16: s

(m)
l ∪ s(m)

l+1

17: end if
18: if l > l(m) then
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19: s
(m+1)
l ← s

(m)
l+1

20: end if
21: end for
22: m← m+ 1
23: end while
24: return {s(m)

l }
L0+L1−m
l=1 for m = 1, 2, ..., L0 + L1 − 2

After m = L0 + L1 − 2 steps, we obtain two sets of Gaussian densities which provide an
approximation to fk(r) =

∑
g∈ak

qg
σ̃g
φ(

r−µ̃g
σ̃g

).

Two Fast algorithms

DPM model fitting: By DPM model fitting, we obtain V posterior samples of the pa-
rameters of the marginal density of r, ℘v = {(µ̂vg, σ̂2vg, p̂vg)}

Lv0+Lv1
g=1 for v = 1, 2, ...V and for

each ℘v, we applied the HODC algorithm to obtain two sets of mixture Gaussian densities,
denoted av,0 and av,1. Thus, the marginal posterior distribution of z is approximated by

1

V

V∑
v=1

π(z|r, {φ̃(r;av,0, ℘v), φ̃(r;av,1, ℘v)}),

where for each v, the full conditional π(z|r, {φ̃(r;av,0, ℘v), φ̃(r;av,1, ℘v)}) can be simulated
by Gibbs sampling. The BANFF implements this procedure in DPM.HODC. The BANFF
also implements parallel computing: When V posterior samples of the parameters of the
marginal density of r is obtained, we subsequently update the zi by each parameters as the
input of Ising prior. For the V outputs, we then average the z for each iteration as final
output.

EM algorithm: The parameter estimates ℘ = {(µ̂g, σ̂2g , p̂g)}
L0+L1
g=1 can also be obtained

by an EM algorithm which has developed for model-based clustering (Fraley and Raftery
2002; Reynolds 2009). We maximize BIC to determine L0 + L1. The BANFF implements
this algorithm in function EM.HODC(). Other steps such as HODC algorithm and Ising prior
is same as DPM model fitting. But the process of averaging is avoided.

Combination: The above two algorithms are combined and implemented in function
Networks.Fast() in BANFF. Figure 2 presents the flowchart of this algorithm. The red
arrows represent the route of generating inputs by DPM model fitting and the blue ones
represent the route of generating inputs by an EM algorithm. The common routes are using
black arrows. for the details of the implementation, please refer to Section 3. Specifically,
function Networks.Fast() will call DPM.HODC() or EM.HODC() when the corresponding op-
tion algorithms="DPM" or algorithms="EM" is chosen first, and subsequently update the
zi(v) by parameter ℘(v) as the input of Ising prior.

2.5. Standard posterior computation algorithm

The standard posterior computation algorithms can be developed based on an equivalent
model representation. This has been discussed in Zhao et al. (2014) (NET-DPM-1). Please
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Start

Apply hyper-parameter selection

Set initial zi by k-
means clustering

DPM or
EM?

Data r, posterior samples
of parameters {℘v}Vv=1

by DPM fitting and
index sets {av,0,av,1}Vv=1

Data r, posterior samples
of parameters {℘} by

finite Gaussian mixture
and index sets {ao,a1}

Update zi using Gibbs sampling

Is the dis-
tribution

of zi
stable?

DPM or
EM?

posterior dis-
tribution of zi

Stop

Resample zi

DPM

EM

parallel into V jobs

DPM

EM

No

Yes

Figure 2: Fast posterior approximation algorithms
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refer Section 2.2 and Appendix B1 of Zhao et al. (2014) for details. BANFF has implemented
this algorithm in function Networks.STD(). Please see Section 3 for more details.

3. Implementation

The developed package BANFF imports or depends on the packages pscl (Jackman 2014),
tmvtnorm (Wilhelm and G 2014), DPpackage (Jara, Hanson, Quintana, Müller, and Rosner
2011; Jara 2007), coda (Plummer, Best, Cowles, and Vines 2006), mclust (Fraley, Raftery,
Murphy, and Scrucca 2012), igraph (Csardi and Nepusz 2006), network (Butts, Handcock,
and Hunter 2014), foreach (Analytics and Weston 2014b) and doParallel (Analytics and
Weston 2014a). It contains four major functions:

Networks.STD(), Networks.Fast(), EM.HODC(), and DPM.HODC()

along with a couple of additional functions for summarizing results and graphical presen-
tations. Networks.STD() implements the standard algorithm to perform feature selection
and sub-network selection; Networks.Fast() implements a hybrid fast algorithm to perform
feature selection and sub-network selection described; EM.HODC() implements the HODC
algorithm guided by the EM algorithm for the model based clustering; DPM.HODC() imple-
ments the HODC algorithm guided by a DPM model fitting. The major function usage are
summarized as follows:

Networks.STD(pvalue, net, iter = 5000, nburns = 2000,

piall = c(0.75, 0.8, 0.85, 0.9), rhoall = c(0.5, 1, 5, 10, 15),status=FALSE,

fit, show.steps=1, showlikelihood=FALSE, likelihood.frequency=100 )

Networks.Fast(pvalue, net, iter = 5000, nburns = 2000,

algorithms=c("EM","DPM") v = 20, DPparallel=FALSE, n.nodes=1,

DPM.mcmc=list(nburn=2000,nsave=1,nskip=0,ndisplay=10),

DPM.prior=list(a0=2,b0=1,m2=rep(0,1),s2=diag(100000,1),

psiinv2=solve(diag(0.5,1)), nu1=4,nu2=4,tau1=1,tau2=100),

piall = c(0.8, 0.85, 0.9, 0.95), rhoall = c(1, 2, 5, 10, 15),

show.steps=10,showlikelihood=FALSE, likelihood.frequency=100 )

EM.HODC(pvalue)

DPM.HODC(v, pvalue, DPM.mcmc=list(nburn=2000,nsave=1,nskip=0,ndisplay=10),

DPM.prior=list(a0=2,b0=1,m2=rep(0,1),s2=diag(100000,1),

psiinv2=solve(diag(0.5,1)), nu1=4,nu2=4,tau1=1,tau2=100))

3.1. Data input

There are two common arguments: pvalue and net in both functions Networks.STD() and
Networks.Fast() as the input data. The argument pvalue specifies a vector of p-values
obtained from large scale statistical hypothesis testing. The argument net specifies the
adjacency matrix C indicating the networking configuration, where cij = 1 if features i
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and j are connected over the network, cij = 0, otherwise. Of note, C is symmetric and its
diagonal elements are all zeros.

3.2. Parameter specifications

Appropriate parameter specifications are vitally important for obtaining accurate feature
selection results. Model (1) involves a set of hyper-parameters including γk, ξk, βk, τk and
αk for k = 0, 1. In Networks.STD() and Networks.Fast(), we set τ0 = 10, τ1 = 2 and
β0 = β1 = 10. The parameters {γ0, ξ0, γ1, ξ1} are specified by clustering the sample into two
clusters using k-means and computing the sample mean and variance accordingly. Also, we
set αk = βk/ξ

2
k + 1, for k = 0, 1.

As discussed in Section 2.3, the parameter π = (π0, π1) with 0 < π1 = 1 − π0 < 1 which
controls the sparsity of z, the parameter ρ = (ρ0, ρ1) with ρk > 0 for k = 0, 1 characterizes
the smoothness of z over the network. The functions take arguments piall and rhoall:
collections of possible choices on π0 and ρk for k = 0, 1 where we assume that ρ0 and ρ1 take
the same set of possible values. The optimal combinations of {π0, ρ0, ρ1} are then taken by
maximizing the marginal likelihood which are computed by Monte Carlo integration. Al-
though we provide default specifications on piall and rhoall in function Networks.STD()

and Networks.Fast(), a good choice might still depend on the real data applications and
specific data sets. We provide a few examples in Section 4 where we conduct simulation
studies for different scenarios and detailed analyses of real data sets.

3.3. DPM model fitting or EM?

In Section 2.5, two fast computational algorithms are developed based on the DPM model
fitting and the EM algorithm respectively. In Networks.Fast, an argument algorithms is
introduced to specify which algorithm will be called in the programming: "DPM" or "EM".

If we set algorithm="DPM", Networks.Fast() will perform the DPM model fitting by
calling function DPdensity() in the package DPpackage (Jara et al. 2011; Jara 2007) which
generates V posterior samples of parameters {℘v}Vv=1. Arguments DPM.mcmc and DPM.prior

are provided to control the iteration information and prior information for the MCMC
chain of DPM fitting, respectively. Please refer the setting of arguments mcmc and prior

of function DPdensity() in the manual of DPpackage (Jara et al. 2011; Jara 2007) for
more details. By applying the HODC algorithm, index sets {av,0,av,1}Vv=1 which specify
the clustering results are generated for each set subsequently. To reduce the computational
time, we offer the parallel computing option in Network.Fast() which is controlled by
DPparallel; and another option n.cores is introduced to determine the number of CPU
cores to be used. The parallel computing implementation depends on packages doParallel
(Analytics and Weston 2014a) and foreach (Analytics and Weston 2014b).

If we set algorithms="EM", Network.fast() will implement the EM algorithm by calling
function Mclust() of the package mclust (Fraley et al. 2012) which produces a set parameter
estimations {℘}. Index sets {a0,a1} are generated by the HODC algorithm subsequently.

The above two approaches have their own advantages and limitations. The implementation
of the EM algorithm is straightforward and fast. However, it is less accurate to estimate
densities either when the network dimension is small or the signal of “important” features is
relatively weak. In contrast, the DPM model fitting is more accurate to estimate densities,
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however, it requires more computation and takes a longer time to run. With the parallel
computing option, the entire computation can speed it up very well.

3.4. Options for monitoring the MCMC convergence

We provide arguments showlikelihood and likelihood.frequency to compute the log-
likelihood periodically and produce a trace plot of the log-likelihood to help monitor the
convergence of the MCMC chain. BANFF also has a function Likelihood.History() that
computes the likelihood values using the output of Networks.Fast() or Networks.STD()

to generate the trace plot. In case that the simulated Markov chain is not converged, we
can continue the posterior simulation instead of starting over by setting status=TRUE and
fit=total$model, where total is the output of Networks.STD().

3.5. Other input

To control the MCMC posterior simulations, we have the arguments iter and nburns to
specify the total number of iterations and burn-in iterations, respectively; and argument v

is introduced to set the number of posterior samples produced by a DPM model fitting. To
monitor the whole computational process, we provide argument show.steps that customize
the iteration information being printed out on the console during the process. These two
settings only control the number of iterations being printed, has nothing to do with saving
the results. The default settings for these arguments are iter=5000, nburns=2000, v=20,
show.steps = 10.

3.6. Outputs

• Networks.Fast(): a list of four elements: trace, statistics, where trace includes
posterior samples of zi and statistics contains several associated summary statis-
tics including mean, median, variance and quantiles, convergence which contains
convergence diagnostic results and graph which is the igraph object of full network.

• Networks.STD(): a list of two elements: trace and model, where trace provides
posterior samples of cluster label gi, model provides a list of parameters at current
state in the Markov chain, convergence which contains convergence diagnostic results
and graph which is the igraph object of full network.

• DPM.HODC(): a list of four elements indicating density clustering results by the HODC
algorithm: mean, variance, pro and classification providing mean estimates, vari-
ance estimates, probability estimates and classifications configurations of unimportant
(a0) and important clusters (a1). The inputs of HODC algorithm (the parameter es-
timates ℘ and classification information) are obtained by DPM model fitting.

• EM.HODC(): Similar to DPM.HODC() but the inputs of HODC algorithm are obtained
by EM algorithm.

3.7. Outputs Processing

The the objects of class ”Network.Fast” and ”Network.STD” outputted by Network.Fast()
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and Network.STD(), we provide S3 methods including summary() and plot() for process-
ing the objects class ”Network.Fast” and ”Network.STD”. A summary of convergence test
conducted by the method of Heidelberger and Welch diagnostic (Heidelberger and Welch
1983), Hyper-Parameter Selection and a classification table would be shown on the Con-
sole, when applying summary() and a selected sub-network would be plotted when applying
plot(). Here is a typical example when applying summary(), showing the MCMC chain is
converged and the results of hyper-parameter selection and node-classification:

i. Convergence results:

Stationarity start p-value

test iteration

var1 passed 1 0.277

Halfwidth Mean Halfwidth

test

var1 passed 91.1 2.86

ii. Hyper-Parameter Selection:

pi0= 0.8 rho0= 0.5 rho1= 1

iii. Classification Table:

classification

0 1

74 26

We will talk about the plot outputted by processing method plot() in later sections.

4. Examples

In this section, we illustrate BANFF via several examples on analysis of simulated data and
real data. Specifically, using BANFF, we repeat one simulation study in Zhao et al. (2014) for
gene selection and perform additional simulation studies for biomedical image segmentation.
We provide detailed instructions on parameter specifications in the model, e.g. π0 and ρ.
We provide R code for all examples.

In this section, we refer to the standard posterior computation algorithm for network feature
selection as NET-STD; and refer to the two fast computation algorithms based on the EM
algorithm and the DPM model fitting as NET-EM-Fast and NET-DPM-Fast, respectively.
In contrast, without incorporating the network information in the model we also implement
the algorithm that directly perform the FGM approximations using the DPM model fitting
or the EM algorithm combined with the HODC algorithm. We refer to this algorithm as
DPM-STD or EM-STD accordingly.

4.1. Simulation study 1: gene selection

We use BANFF to repeat the simulation study 1 conducted by Zhao et al. (2014). The goal is
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to evaluate the feature selection accuracy on a simulated scale-free network of 1,000 genes.
The network is generated based on the rich-get-rich algorithm, implementing the function
barabasi.game() in R package igraph. The “important” genes are generated from the
Ising model 2 with the sparsity parameter π0 = 0.8, smoothness parameters ρ = (ρ0, ρ1) =
(5, 10).The simulated network is shown in Figure 3.

Figure 3: Simulated scale-free network of 1,000 Genes

We generate test statistics for “important” genes and “unimportant” genes from N(0.5, 0.2)
and N(0, 0.2), respectively. The possible choices for π0 are (0.8, 0.85, 0.9, 0.95) and these
for ρk are (1, 2, 5, 10, 15) for both k = 0 and k = 1. We run 5,000 iterations with 2,000
burn-in. For this simulation study, we compare NET-EM-Fast and STD-EM to show the
power of incorporating the network information in the model. The arguments in function
Networks.Fast() are specified as follows:

R> library("BANFF")

R> total=Networks.Fast(pvalue,net,iter=5000,

+ nburns=2000, algorithms="EM",piall=c(0.8, 0.85, 0.9, 0.95),

+ rhoall=c(1, 2, 5, 10, 15))

We summarize the feature selection accuracy over the simulated gene network in Table
2, where the true positive rate (TPR) is defined as the proportion of selected features
among all “important” features. The false positive rate (FPR) refers to the proportion of
selected features among all “unimportant” features. The false discovery rate (FDR) is the
proportion of “unimportant” features among all selected features.

This simulation study reproduces the results that are reported in Zhao et al. (2014), indicat-
ing that with incorporating the network information, the NET-EM-Fast can produce much
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NET-EM-Fast STD-EM

TPR 0.925 0.573
FPR 0.016 0.014
FDR 0.035 0.016

Table 2: Summary of the gene network feature selection accuracy.

higher TPR compared to STD-EM. Also, the FPR and the FDR are comparable between
the two methods.

4.2. Simulation study 2: image segmentation

In this section, we apply BANFF to the biomedical statistic image segmentation problem.
Here, the statistic image is defined as a 2D/3D array of test statistics or p-values that can
either characterize the brain activities or show the contrasts between different brain or body
tissues. Our goal is to identify a collection of spatially contiguous “important” voxels, e.g.
regions, that show significance for the corresponding hypothesis testing problem.

To define the network on an image, the voxels are considered as nodes and each voxel
only connects with the voxels in its neighborhood. Take a 50 × 50 image for example, the
number of voxels is 2,500; and the voxel (i, j) for 1 ≤ i, j ≤ 50 is connected with voxels
(i−1, j), (i+1, j), (i, j−1) and (i, j+1). The network of a 50×50 image is shown in Figure
4.

Figure 4: Network of a 50× 50 image, where the red nodes represent “important” ones

With the assistance of the function graph.lattice() in the R package igraph, we can
quickly obtain the 2500 × 2500 adjacency matrix using the codes below (net is the adja-
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cency matrix):

R> library("igraph")

R> g <- graph.lattice(length=50,dim=2)

R> net <- as(get.adjacency(g,attr=NULL),"matrix")

50× 50 image segmentation 1

We generate test statistics of “important” voxels and the test statistics of “unimportant”
voxels from N(0.5, 0.2) and N(0, 0.2), respectively. We simulate 50 data-sets accordingly for
50 × 50 image. The histogram of input test statistics of typical 50 × 50 image with such
setting is in Figure 5.

-0.5 0.0 0.5 1.0

50

100

150

200

Figure 5: The histogram of input test statistics of typical 50×50 image data in image seg-
mentation 1. The pinks bars represent “important” and blue ones represents “unimportant”

The possible choices of π0 are (0.8, 0.85, 0.9, 0.95) and these for ρk for both k = 0 and
k = 1 are (0.25, 0.5, 1, 2, 5). For each of the fast computing algorithms: NET-DPM-Fast
and NET-EM-Fast, we run 5,000 iterations with 2,000 burn-in. By tracking the likelihood
value by the function Likelihood.History() in BANFF, the Markov chain simulated by
the NET-STD gets stable and shows mixing well within 200 iterations. Thus, we only
run STD-NET 500 iterations with 200 burn-in. The arguments setting of the functions of
Networks.STD() and Networks.Fast() can be set accordingly as

R> library("BANFF")

R> total0=Networks.STD(pvalue,net,iter=500,

+ nburns=200, piall=c(0.8, 0.85, 0.9, 0.95)

+ ,rhoall=c(0.25, 0.5, 1, 2, 5))

R> total1=Networks.Fast(pvalue,net,iter=5000,

+ nburns=2000, algorithms="DPM",DPparallel=TRUE,n.cores=8,
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+ piall=c(0.8, 0.85, 0.9, 0.95), rhoall=c(0.25, 0.5, 1, 2, 5))

R> total2=Networks.Fast(pvalue,net,iter=5000,

+ nburns=2000, algorithms="EM",

+ piall=c(0.8, 0.85, 0.9, 0.95), rhoall=c(0.25, 0.5, 1, 2, 5))

where total0, total1 and total2 return the object obtained by NET-STD, NET-DPM-
Fast and NET-EM-Fast, respectively.

STD-DPM STD-EM NET-DPM-Fast NET-EM-Fast NET-STD

TPR 0.64 0.73 0.94 0.99 0.98
FPR 0.24 0.03 0.02 0.01 0.01
FDR 0.27 0.09 0.03 0.01 <0.01

Time (hrs) 0.20 0.10 1.00 0.40 6

Table 3: 50× 50 image segmentation accuracy of node (voxel) selection 1.

The TPR, FPR and FDR of selecting each node (voxel) and typical computation time are
summarized in Table 3 to demonstrate the high selection accuracy via our method. Since
we are also interested in discovering “important” sub-network (region), it is not sufficient to
show the accuracy of “important” nodes selection. Therefore, we also present the results of
“important” sub-network (region) selection. In “important” sub-network (region) selection,
we define a correct sub-network selection if more than τ% voxels in the “important” sub-
network are selected and less than 1 − τ% voxels which are connected to the “important”
sub-network are selected. All the the other selections are considered as incorrect selection.
The τ% here is called “Tolerance”.

Under the Tolerance τ%=90%, The correct selection rates of NET-DPM-Fast, NET-EM-
Fast and NET-STD are 0.66, 0.75 and 0.85, respectively. And those of STD-DPM and
STD-EM are 0.10 and 0.00, respectively.

As shown in Figure 6, we compare the true “important” sub-network and a typical selected
sub-network that include over 90% voxels in the true sub-network. This figure can be gener-
ated by using function Plot.Subnetwork() in BANFF. Such figure could also be obtained
when applying S3 method plot() when processing the object classed by ”Networks.STD”
or ”Networks.Fast”.

Figure 6: Output of Plot.Subnetwork() for a 50 × 50 image network. The left panel is
the true “important” sub-network (region) and the right panel is a selected sub-network
(region). The red area represents “important” nodes (voxels)

This simulation study indicates a substantial improvement in accuracy when applying the
Ising prior in segmentation, compared to the image segmentation without using the network
information. Our method produces much higher TPR and lower FPR and FDR both in
“important” nodes and sub-network selection. Also, NET-STD provides a much better
selection accuracy for the “important” sub-network, compared with other methods.
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50× 50 image segmentation 2

We modify the distribution of test statistics in this simulation study to demonstrate the
performance. Specifically, we generate testing statistics of “unimportant” voxels from the
standard Gaussian distribution N(0, 1). We consider two scenarios of “important” voxels:

Mixture of Gaussian Distributions: 0.4N(3, 1) + 0.6N(2, 0.5),

Mixture of Non-Gaussian Distributions: 0.4G(5, 2) + 0.6G(6, 3)

where G(α, β) denotes a gamma distribution with shape parameter α and rate parameter
β. The histogram of input testing statistics in a typical 50× 50 image is shown in Figure 7,
from which we can see that the distribution of “important” testing statistics is skewed and
non-Gaussian data has a longer tail than Gaussian data.

-2 0 2 4

50

100

150

-2 0 2 4 6

50

100

150

Figure 7: Histogram of simulated test statistics of a 50 × 50 image from different mixture
distributions. The left is the Gaussian data, and the right is the non-Gaussian data. The
pink bars represent “important” voxels and blue ones represent “unimportant” voxels

Gaussian data Non-Gaussian data
STD-
EM

STD-
DPM

NET-
EM-Fast

NET-
STD

STD-
EM

STD-
DPM

NET-
EM-Fast

NET-
STD

TPR 0.96 0.75 0.99 0.98 0.62 0.72 0.94 0.94
FPR 0.24 0.22 0.01 0.03 0.08 0.20 <0.01 0.04
FDR 0.19 0.25 0.01 0.01 0.17 0.23 0.02 0.03

Table 4: 50× 50 image segmentation accuracy of node (voxel) selection 2.

The simulation method and argument specifications are set the same as those in 50 × 50
image segmentation 1. We summarize nodes selection results of image segmentation 2 in
Table 4. For Gaussian mixture, under the Tolerance τ%=90%, the correct selection rates of
NET-DPM-Fast, NET-EM-Fast and NET-STD are 0.84 and 0.86, respectively and those of
STD-DPM and STD-EM are 0.58 and 0.00, respectively. For Non-Gaussian mixture, under
the Tolerance τ%=90%, the correct selection rates of NET-DPM-Fast, NET-EM-Fast and
NET-STD are 0.70 and 0.72, respectively and those of STD-DPM and STD-EM are 0.51 and
0.07, respectively. The results indicate that both node selection and sub-network discovery
using the Ising prior are more accurate than those without using the Ising prior. The
performance of of the NET-STD is slightly improved, however, a longer computational time
is required for this improvement. Therefore, if the NET-Fast achieves a satisfactory result
under certain requirements, the NET-Fast is recommended compared to the NET-STD.



Zhou Lan, Yize Zhao, Jian Kang, Tianwei Yu 17

4.3. Summary accuracy

We implement function SummaryAccuracy in BANFF to compute the accuracy of node or
sub-network selection.

SummaryAccuracy(Trace,No.Sets,Type.Accuracy=c("Node","Sub-network"),True.Node,

TruePositive.Net,FalsePositive.Net,

Type.Net.Accuracy=c("Marginal","Sample"),Tolerance)

In summary, this function provides three major options for computing the accuracy:

• Type.Accuracy: type of selection accuracy:
When Type.Accuracy="Node", node selection accuracy is computed.
When Type.Accuracy="Sub-network", sub-network selection accuracy is computed.

• Type.Net.Accuracy: method to compute selection accuracy:
When Type.Net.Accuracy="Marginal", the selection accuracy is computed using the
marginal distribution of selection indicators.
When Type.Net.Accuracy="Sample", the sample-specific selection accuracy is first
computed for each posterior sample of selection indicators. The selection accuracy is
then computed by taking average over all sample specific selection accuracies.

• Tolerance: percentage of voxels that are correctly selected in a true positive
sub-network:
Tolerance ranges from 0.0 to 1.0.

In simulation studies, we use the following R code to obtain the sub-network selection ac-
curacy.

R> SummaryAccuracy(Trace,No.Sets,Type.Accuracy=c("Sub-network"),

+ TruePositive.Net,FalsePositive.Net,

+ Type.Net.Accuracy=c("Iteration"),Tolerance=0.90)

4.4. Application 1: Brain Image Segmentation

Alzhelmer’s disease (AD) is a neurodegenerative disorder characterized by progressive im-
pairment of memory and other cognitive functions. An intermediate stage between the
expected cognitive decline of normal aging and the AD is referred as mild cognitive impair-
ment (MCI). One important question of interests to select the neuroimaging biomarkers in
order to measure the progression from MCI to AD. To address this question, we applied the
BANFF to analyze a longitudinal Positron emission tomography (PET) image data set in
the Alzheimer’s disease neuroimaging initiative (ADNI) study. The data set we analyzed
consists of 51 AD and 121 MCI patients at baseline and 12 months. The data has been
pre-processed and registered into a standard template consisting of 185,405 voxels in 90 au-
tomated anatomical labeling (AAL) regions (Tzourio-Mazoyer, Landeau, Papathanassiou,
Crivello, Etard, Delcroix, Mazoyer, and Joliot 2002). We obtained the large scale testing
statistical image by fitting logistic regression on the disease status (AD versus MCI) using
the PET image intensity in each voxel at each time points. We used BANFF to identify
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co-activation regions that are strongly associated with the risk of progression from MCI and
AD.

The code for implementing BANFF for Brain Image Segmentation is summarized below:

R> library("BANFF")

R> net<-Grid.Adjmatrix.Transfer(grid, euclidean.dist=1)

R> total=Networks.Fast(pvalue,net,iter=5000,algorithms="EM"

+ piall=c(0.8, 0.85, 0.9, 0.95),rhoall=c(0.5,1,5,10,15))

where net returns the adjacency matrix of the network of Brain Image and total returns
the Fast algorithm inference result.

Here, we also provide a function Grid.Adjmatrix.Transfer() which can fast transfer in-
formation from coordinate system into adjacency matrix in BANFF, where grid is the
argument for information from coordinate system and euclidean.dist is the maximum
node distance to be considered as connected.

Figure 8 shows the top five important regions identified by BANFF.

Figure 8: Top five important regions identified by BANFF at different time points. This
indicates that there is an increased functional co-activation between the regions in frontal
lobe and the middle temporal gyrus; and the co-activation pattern has changed over time

4.5. Application 2: Gene Network Feature Selection

To demonstrate the utility of BANFF on high-throughput biological data, we applied the
method on a human breast cancer dataset. The network we used was a protein-protein
interaction (PPI) network obtained from the HINT database. The HINT database is man-
ually curated from several databases and the connections are filtered both systematically
and manually to remove low-quality/erroneous interactions. The network contained 8,292
proteins and 27,493 high-quality binary interactions.
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The gene expression data we used was the GSE18864 dataset obtained from the Gene
Expression Omnibus (GEO) database. The dataset contains the expression profiles of two
cohorts of breast cancer patients previously reported by (Li, Zou, Li, Haibe-Kains, Tian,
Li, Desmedt, Sotiriou, Szallasi, Iglehart et al. 2010). It contains the gene expression profiles
of 24 sporadic triple negative breast cancer (TNBC) samples and 51 primary breast tumor
samples. TNBC is characterized by the lack of expression of estrogen receptor (ESR1
and ESR2) and the human epidermal growth factor receptor 2 (ERBB2, or HER2) (Gluz,
Liedtke, Gottschalk, Pusztai, Nitz, and Harbeck 2009). Therefore, we selected sub-networks
centering on each of those genes within 2 steps. The purpose of the analysis is to compare
TNBC with primary breast tumors.

The code for implementing BANFF for Gene Network Feature Selection is summarized be-
low:

R> library("BANFF")

R> results=Networks.Fast(pvalue,net,iter=500,nburns=0,algorithms="EM",

+ piall=c(0.8, 0.85, 0.9, 0.95),rhoall=c(1, 2, 5, 10, 15))

R> mynet=Subnetwork.Select(net,trace,center,infinite=FALSE,steps=2)

R> plot(g=graph.adjacency(mynet$adj,mode="undirected"),vertex.size=1)

where results returns the inference result by Fast Algorithm ,mynet returns the adja-
cency matrix of selected the sub-network. And the sub-network is plotted implemented by
R package igraph.

Here, we provide function Subnetwork.Select() for selecting sub-networks centering on
one node within certain steps, where center is an argument for providing the centered node
and steps is for the given steps. We can also set infinite=TRUE if we expand the centered
node by an infinite pattern.

We also summarized the genes involved in the sub-network centered on estrogen receptor
(ESR1 and ESR2) within 2 steps, including their Gene IDs, Symbols and degree scores in
Table 5. And the plot illustrating the selected sub-network is in Figure 9.

5. Conclusion and Extension

In this article, we introduced an R package BANFF for BAyes Network Feature Finder.
We provided detailed discussions on models, algorithms, implementations and applications
in gene network and brain image segmentation. Specifically, we presented a Bayesian non-
parametric mixture model(Zhao et al. 2014) and discussed its generalization for the network
feature selection for other applications. In addition to the standard algorithm implementing
the fully Bayesian inference (NET-STD), we also provided the implementations of two fast
algorithms based on FGM approximation through DPM model fitting (NET-DPM) or EM
algorithm (NET-EM) respectively, leading to four main functions in BANFF. We illustrated
how to use this package via simulation studies, which also demonstrate the network feature
selection accuracy is substantially improved by using BANFF compared with other existing
methods. In the future, other supportive functions are being created for multiple demands
such as simulation studies and network visualization.
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Gene ID Symbol Degree Gene ID Symbol Degree Gene ID Symbol Degree Gene ID Symbol Degree
2 A2M 16 1912 PHC2 8 5813 PURA 2 10528 NOP56 2
25 ABL1 38 1915 EEF1A1 16 5814 PURB 2 10529 NEBL 2
27 ABL2 14 1951 CELSR3 6 5981 RFC1 6 10576 CCT2 2
58 ACTA1 8 1956 EGFR 30 5982 RFC2 2 10891 PPARGC1A 6
60 ACTB 44 2017 CTTN 6 5984 RFC4 2 10957 PNRC1 6
71 ACTG1 14 2033 EP300 14 5992 RFX4 2 11034 DSTN 4
81 ACTN4 2 2048 EPHB2 4 6129 RPL7 4 11051 NUDT21 4
87 ACTN1 8 2064 ERBB2 20 6130 RPL7A 2 11064 CNTRL 2
88 ACTN2 8 2065 ERBB3 16 6139 RPL17 2 11137 PWP1 2
90 ACVR1 4 2079 ERH 2 6146 RPL22 6 11177 BAZ1A 2
163 AP2B1 10 2099 ESR1 86 6159 RPL29 4 11187 PKP3 2
164 AP1G1 2 2100 ESR2 276 6166 RPL36AL 2 11331 PHB2 2
196 AHR 4 2101 ESRRA 20 6175 RPLP0 2 23054 NCOA6 10
207 AKT1 18 2104 ESRRG 16 6188 RPS3 2 23076 RRP1B 2
310 ANXA7 14 2130 EWSR1 8 6191 RPS4X 2 23082 PPRC1 2
324 APC 14 2137 EXTL3 8 6195 RPS6KA1 6 23223 RRP12 4
326 AIRE 12 2151 F2RL2 8 6197 RPS6KA3 2 23524 SRRM2 2
334 APLP2 2 2167 FABP4 4 6203 RPS9 2 25930 PTPN23 2
356 FASLG 6 2175 FANCA 14 6205 RPS11 2 25959 KANK2 2
357 SHROOM2 4 2185 PTK2B 4 6207 RPS13 2 26168 SENP3 2
367 AR 40 2203 FBP1 6 6217 RPS16 2 26354 GNL3 2
373 TRIM23 6 2213 FCGR2B 6 6222 RPS18 2 27043 PELP1 2
468 ATF4 12 2268 FGR 8 6230 RPS25 2 27072 VPS41 2
493 ATP2B4 2 2308 FOXO1 6 6231 RPS26 2 27332 ZNF638 2
546 ATRX 2 2316 FLNA 16 6233 RPS27A 6 29079 MED4 4
547 KIF1A 6 2332 FMR1 4 6282 S100A11 2 29855 UBN1 2
563 AZGP1 2 2335 FN1 4 6407 SEMG2 2 51065 RPS27L 2
573 BAG1 6 2353 FOS 12 6597 SMARCA4 6 51474 LIMA1 2
578 BAK1 4 2494 NR5A2 16 6667 SP1 12 51490 C9orf114 4
595 CCND1 8 2495 FTH1 8 6712 SPTBN2 6 51503 CWC15 2
598 BCL2L1 6 2516 NR5A1 6 6714 SRC 76 51663 ZFR 2
610 HCN2 6 2534 FYN 48 6780 STAU1 6 54512 EXOSC4 4
658 BMPR1B 2 2547 XRCC6 6 6829 SUPT5H 4 55037 PTCD3 4
672 BRCA1 24 2597 GAPDH 12 6838 SURF6 2 55131 RBM28 2
705 BYSL 4 2617 GARS 4 7083 TK1 10 55226 NAT10 2
708 C1QBP 2 2670 GFAP 2 7178 TPT1 2 55379 LRRC59 2
773 CACNA1A 10 2690 GHR 6 7276 TTR 10 55629 PNRC2 10
831 CAST 10 2697 GJA1 4 7323 UBE2D3 4 55729 ATF7IP 6
836 CASP3 12 2934 GSN 12 7965 AIMP2 4 55922 NKRF 2
857 CAV1 6 2959 GTF2B 2 8161 COIL 14 55971 BAIAP2L1 2
867 CBL 14 2976 GTF3C2 2 8202 NCOA3 16 56164 STK31 2
976 CD97 2 3014 H2AFX 6 8204 NRIP1 18 56829 ZC3HAV1 2
998 CDC42 8 3065 HDAC1 4 8241 RBM10 4 56945 MRPS22 2
1022 CDK7 6 3188 HNRNPH2 2 8295 TRRAP 2 57418 WDR18 6
1026 CDKN1A 10 3191 HNRNPL 2 8431 NR0B2 8 57473 ZNF512B 18
1051 CEBPB 8 3312 HSPA8 10 8467 SMARCA5 4 57530 CGN 2
1072 CFL1 14 3320 HSP90AA1 10 8568 RRP1 2 57619 SHROOM3 2
1073 CFL2 6 3480 IGF1R 2 8648 NCOA1 16 57644 MYH7B 2
1107 CHD3 12 3912 LAMB1 4 8668 EIF3I 6 58513 EPS15L1 2
1147 CHUK 10 4089 SMAD4 14 8735 MYH13 2 64425 POLR1E 2
1173 AP2M1 12 4193 MDM2 8 8805 TRIM24 6 64960 MRPS15 2
1374 CPT1A 2 4288 MKI67 6 8945 BTRC 4 65266 WNK4 2
1386 ATF2 8 4298 MLLT1 2 9221 NOLC1 4 79009 DDX50 2
1387 CREBBP 22 4331 MNAT1 6 9328 GTF3C5 2 79784 MYH14 2
1400 CRMP1 12 4622 MYH4 2 9329 GTF3C4 2 79809 TTC21B 2
1432 MAPK14 16 4625 MYH7 2 9330 GTF3C3 2 80829 ZFP91 2
1434 CSE1L 8 4637 MYL6 4 9343 EFTUD2 2 81631 MAP1LC3B 4
1445 CSK 8 4641 MYO1C 2 9349 RPL23 4 81887 LAS1L 2
1460 CSNK2B 12 4642 MYO1D 2 9440 MED17 4 83939 EIF2A 2
1487 CTBP1 6 4736 RPL10A 2 9513 FXR2 14 85366 MYLK2 2
1488 CTBP2 4 4744 NEFH 2 9611 NCOR1 8 90850 ZNF598 2
1600 DAB1 6 4878 NPPA 4 9612 NCOR2 8 91748 ELMSAN1 4
1605 DAG1 6 5216 PFN1 4 9648 GCC2 2 114294 LACTB 2
1627 DBN1 24 5295 PIK3R1 42 9699 RIMS2 4 117246 FTSJ3 2
1639 DCTN1 4 5304 PIP 4 9774 BCLAF1 2 124245 ZC3H18 2
1660 DHX9 4 5335 PLCG1 32 9883 POM121 10 130507 UBR3 2
1748 DLX4 10 5394 EXOSC10 2 10073 SNUPN 2 135112 NCOA7 2
1759 DNM1 4 5433 POLR2D 4 10095 ARPC1B 2 220164 DOK6 6
1789 DNMT3B 6 5469 MED1 6 10270 AKAP8 2
1795 DOCK3 8 5594 MAPK1 16 10432 RBM14 2
1822 ATN1 6 5597 MAPK6 10 10454 TAB1 8
1854 DUT 6 5705 PSMC5 8 10499 NCOA2 8
1857 DVL3 2 5718 PSMD12 2 10514 MYBBP1A 4

Table 5: Summary of the sub-network centered on estrogen receptor (ESR1 and ESR2)
within 2 steps.
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Figure 9: Gene sub-network centered on estrogen receptor (ESR1 and ESR2) including
neighborhood genes within two-steps

This package can be of interest to other applications with data including testing statistics
or p-values along with their network information. For example, BANFF can identify “im-
portant” social sub-network when proving testing statistics of each person and their known
social network information.

In this current version, package BANFF includes BAyesian Network Feature Finder mainly
based on Bayesian nonparametric mixture model (Zhao et al. 2014). More Bayesian in-
ference methods for network feature finding could be considered in order to extend the
package.
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