
1 

 
Supplementary Data 

Applications Note 

 

WALT: fast and accurate read mapping for bisulfite sequencing 

Haifeng Chen, Andrew D. Smith* and Ting Chen* 

 

1. Spaced Seeds......................................................................................................................................................... 2 

2. Algorithms of WALT ........................................................................................................................................... 4 

3. The majority of uniquely mapped reads are located in small hash buckets. ......................................................... 6 

4. Comparison of Runtime, Accuracy and Memory Usage ...................................................................................... 8 

5. Runtime on different lengths of reads ................................................................................................................. 10 

6. Uniquely mapped reads on different number of mismatches in WALT ............................................................. 11 

7. WALT Output Format ........................................................................................................................................ 12 

8. Test Environment and Command Lines .............................................................................................................. 13 

References ................................................................................................................................................................... 14 

 

 

  



2 

1. Spaced Seeds 

WALT employs periodic spaced seed (010)* originally described by Chen et al. (Chen, et al., 

2009). The star (“*”) indicates repeating of the spaced seed pattern 010 until the spaced seed 

reaches the desired weight, or the end of a sequence to which it is applied. When the spaced seed 

is applied to a sequence, the bases aligned to ones (“1”) are extracted and concatenated to form a 

subsequence. As shown in the following example, the subsequence ATTTTGTGTATTATTT is 

formed when the spaced seed is applied to the sequence. 

 
AATATAATTTTGTTAAGGGTGAGTGTTTAGTTGTTTTATTGATTGATT 

010010010010010010010010010010010010010010010010 

 A  T  T  T  T  G  T  G  T  A  T  T  A  T  T  T   

 

WALT applies three periodic spaced seed (010)*, 0(010)* and 00(010)*, each with 0, 1, and 2 shifts 

of the original spaced seed (010)*, respectively, to each read to extract three subsequences. These 

three subsequences for each read are the three seeds used for mapping, as shown in Table S1. 

 

Table S1. Three spaced seeds used in WALT 

(1) 010010010010010010010010010010010010010010010010010010010010010010… 

(2) 001001001001001001001001001001001001001001001001001001001001001001… 

(3) 000100100100100100100100100100100100100100100100100100100100100100… 
 
 
The seed weight for a read is determined by the length of the third spaced seed that reaches the 

end of the read, and the formula is shown in Equation S1, 

𝑠𝑤 = ⌊
𝑟𝑙 − 2

3
⌋                        ( S1 ) 

where 𝑠𝑤 is the seed weight and 𝑟𝑙 is the read length. Figure S1 shows an example of how WALT 

applies three spaced seeds to a read to extract three subsequences, which are three seeds used for 

mapping. 

 
Figure S1. An example to show how WALT obtains three seeds from a read. 
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WALT preprocesses a reference genome with spaced seed (010)* applied to each genomic position 

to build an index table, applies three spaced seeds, (010)*, 0(010)*, 00(010)* (each with 0, 1, and 

2 shifts to the spaced seed (010)*) to each read, respectively, and searches the index table three 

times. Therefore, the genomic positions that match the read exactly will be found by the first seed, 

the genomic positions that have one mismatch to the read will be found by the first or second seed, 

and the genomic positions that have two mismatches or more to the read will be found by the first, 

second, or third seed. Based on this observation, we design a simple strategy: once WALT finds 

an exact match using the first seed, it stops searching because the best unique solution has been 

found. Otherwise, WALT continues searching with the second seed: if it finds a genomic position 

with only one mismatch during the first two searches, it stops searching because the best unique 

solution with one mismatch has been found. Otherwise, WALT combines results from all three 

searches to find the best solution. In this case, the best solution will have at least two mismatches 

to the read. 
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2. Algorithms of WALT 

2.1 Building Index Table 

Figure S2 illustrates how WALT builds a hash table using a periodic spaced seed (010)*. For every 

genomic position in the reference genome, WALT applies the spaced seed (010)* to extract a 

subsequence starting from that position. For example, for genomic position 0, the extracted 

subsequence is TAGATTTTATTAA…, and for genomic position 4, it is AATTTGATATAT…. In this 

illustration, the first 𝑘 = 3 nucleotides of the subsequences are used as the hash key to index the 

genomic position in the corresponding hash bucket, but in practice, WALT uses 𝑘 = 12. 

 
Figure S2. Applying periodic spaced seed (010)* to a genome sequence. 

 

 

Figure S3 shows the hash table for the reference genome shown in Figure S2. The total number of 

hash keys is 3k. In each hash bucket, WALT sorts all candidates (extracted subsequences) in the 

dictionary order, and applies a binary search to identify exact matches. In practice, only genomic 

positions are stored in the index table, instead of the actual subsequences. As shown in Figure S3, 

there are 5 genomic positions, 29, 24, 14, 7 and 9, in the hash bucket with key ATT, and these 

positions are sorted in dictionary order, ATT, ATTAA, ATTATATT, ATTTGATATAT, 

ATTTTATTAA, respectively. 
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Figure S3. Hash table for the reference genome shown in Figure S2. 

 

 

2.2 Bisulfite Mapping 

WALT uses the first k nucleotides in the seed to locate the hash bucket and binary search is applied 

for nucleotides after the first k. As shown in Figure S4, the first seed for the read 

AATATGATTTTGTTAAATTTAATA is ATTTTATT. The first 3 nucleotides ATT is used as the hash 

key to locate the hash bucket. The nucleotides after the first 3 in the seed are TTATT. There are 5 

positions in the reference genome in the same hash bucket, and they are sorted (Figure S3). WALT 

applies a binary search to find exact matches for TTATT. As shown in Figure S3, out of 5 

positions, only the suffix of the genomic position 9 with spaced subsequence TTATTAA matches 

TTATT. Then, WALT validates position 9 by aligning the whole read (Figure S4) against the 

genome sequence (Figure S2) to count the number of mismatches. 

 
Figure S4. Spaced seed applied to a read and searching the index table. 

 

 

Since WALT applies three spaced seeds to each read, WALT searches the index table using the 

three extract subsequences of the read, and computes the number of mismatches. 
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3. The majority of uniquely mapped reads are located in small hash buckets. 

We have observed that genomic positions are not evenly distributed in the hash buckets. Some 

hash buckets are extremely large, for example, with millions of genomic positions. If a read hits a 

large bucket, validating these candidate positions takes a large amount of time. Furthermore, such 

buckets will be hit by millions of reads as each of these candidate positions can be sequenced. 

Here we discovered that by using periodic spaced seeds (010)*, 0(010)* and 00(010)*, the majority 

of uniquely mapped reads are located in small hash buckets. 

 

Tables S2 and S3 show the accumulated percentage of uniquely mapped reads located in different 

bucket sizes when considering candidates in all hash buckets. More than 87% of uniquely mapped 

reads are located in the hash buckets with only one candidate. More than 99% of uniquely mapped 

reads are located in the hash buckets with less than 5,000 candidates. If we only consider hash 

buckets with less than 5,000 candidates, we could identify about 99% of uniquely mapped reads. 

 
 
Table S2. Single-end: accumulated percentage of uniquely mapped reads in different bucket 

sizes 

 
WALT-all 

uniquely mapped reads 
1 5 10 50 100 500 1000 5000 

SRR1532534 42,259,476 0.877 0.922 0.935 0.958 0.966 0.981 0.985 0.993 

SRR948855 41,701,812 0.893 0.932 0.944 0.964 0.971 0.984 0.987 0.995 

SRR2296821 15,667,881 0.910 0.967 0.977 0.991 0.996 1.000 1.000 1.000 

* WALT-all is the program kept all hash buckets, and WALT is the program only kept the hash buckets with size less 

than 5,000. 

 
 
Table S3. Paired-end: accumulated percentage of uniquely mapped reads pair in different bucket 

sizes 

 

WALT-all 

uniquely mapped 

 reads pair 

 1 5 10 50 100 500 1000 5000 

SRR1532534 39,825,389 
mate 1 0.863 0.910 0.922 0.946 0.954 0.970 0.976 0.989 

mate 2 0.861 0.909 0.921 0.945 0.953 0.970 0.976 0.988 

SRR948855 38,977,964 
mate 1 0.885 0.926 0.937 0.957 0.964 0.977 0.981 0.992 

mate 2 0.885 0.926 0.937 0.957 0.965 0.978 0.982 0.992 

SRR2296821 15,509,508 
mate 1 0.882 0.956 0.969 0.989 0.995 1.000 1.000 1.000 

mate 2 0.882 0.957 0.969 0.989 0.994 1.000 1.000 1.000 
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Table S4 and S5 show the comparison of runtime and the number of uniquely mapped reads 

between WALT-all and WALT. WALT-all keeps all candidates in hash buckets, while WALT 

filters out hash buckets with more than 5,000 candidates. WALT not only is significantly faster 

than WALT-all, but also obtains almost the same percentage of uniquely mapped reads. 

 

 

Table S4. Single-end: runtime and percentage of uniquely mapped reads in WALT-all and 

WALT (hours) 

 Runtime Uniquely mapped reads 

 WALT-all WALT WALT-all WALT 

SRR1532534 1.58 0.71 42,259,476 (84.52%) 42,276,826 (84.55%) 

SRR948855 1.24 0.85 41,701,812 (83.40%) 41,713,985 (83.43%) 

SRR2296821 0.11 0.09 15,667,881 (72.73%) 15,666,896 (72.72%) 

* For data sets SRR1532534 and SRR948855, WALT-all obtained a little less uniquely mapped reads than WALT 

since the second or the third seeds for a few reads are located in the hash bucket with more than 5,000 candidates. If 

these candidates are filtered out, these reads are uniquely mapped, but these reads maybe ambiguously mapped if 

considering more candidates. 
 
 
Table S5. Paired-end: runtime and percentage of uniquely mapped reads pair in WALT-all and 

WALT (hours) 
 Runtime Uniquely mapped reads pair 

 WALT-all WALT WALT-all WALT 

SRR1532534 6.32 2.43 39,825,389 (79.65%) 39,526,217 (79.05%) 

SRR948855 4.66 2.61 38,977,964 (77.96%) 38,790,909 (77.58%) 

SRR2296821 0.35 0.32 15,509,508 (71.99%) 15,508,389 (71.99%) 
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4. Comparison of Runtime, Accuracy and Memory Usage 

Tables S6~S11 show comparisons of runtime, accuracy and memory usage for WALT, Bismark 

(Krueger and Andrews, 2011), BSMAP (Li and Li, 2009), BS-Seeker2 (Guo, et al., 2013), 

BatMeth (Lim, et al., 2012), BWA-meth (Pedersen, et al., 2014). PASS-bis (Campagna, et al., 

2013) and segemehl (Otto, et al., 2012) were not included because they did not complete the single-

end read mapping within 100 hours for date sets SRR1532534 and SRR948855. MethylCoder 

(Pedersen, et al., 2011) was superseded by BWA-meth. BRAT-BW (Harris, et al., 2012) did not 

include read names (id) in the output file, and BRAT-nova (Harris, et al., 2016) did not complete 

building index for human genome hg19 in 100 hours, so they were not included in comparisons. 

 

As shown in Tables S6-7, for single-end read mapping, WALT is about 6 times faster than 

BSMAP, 12 times faster than BWA-meth, and more than 35 times faster than Bismark, BS-

Seeker2 and BatMeth. For pair-end read mapping, WALT is about 6 times faster than BSMAP, 10 

times faster than BWA-meth, 15 times faster than Bismark and more than 35 times faster than BS-

Seeker2. 

 

Table S6. Comparison of runtime on single-end reads (hours) 

 WALT Bismark BSMAP BS-Seeker2 BatMeth BWA-meth 

SRR1532534 0.71 26.85 4.14 39.59 40.87 8.36 

SRR948855 0.85 29.13 6.09 42.86 30.13 9.08 

SRR2296821 0.09 3.11 0.09 10.32 4.00 2.06 

 

Table S7. Comparison of runtime on paired-end reads (hours) 

 WALT Bismark BSMAP BS-Seeker2 BatMeth BWA-meth 

SRR1532534 2.43 38.72 12.32 102.51  22.78 

SRR948855 2.61 37.10 21.55 91.03  23.40 

SRR2296821 0.32 7.46 0.22 21.02  6.09 

* BatMath does not support pair-end bisulfite mapping. 

 

 

 

As shown in Tables S8-9, WALT, Bismark, BSMAP, BS-Seeker2 and BatMeth have very high 

recall and precision, while BWA-meth has low recall and precision in paired-end read mapping. 
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Table S8. Comparison of accuracy on single-end read mapping 

  WALT Bismark BSMAP BS-Seeker2 BatMeth BWA-meth 

SRR1532534 
Recall 0.982 0.973 0.994 0.961 0.990 0.991 

Precision 0.991 0.976 0.988 0.934 0.993 0.852 

SRR948855 
Recall 0.984 0.974 0.995 0.964 0.990 0.991 

Precision 0.993 0.969 0.991 0.927 0.995 0.839 

SRR2296821 
Recall 0.987 0.974 0.995 0.965 0.994 0.993 

Precision 0.995 0.978 0.993 0.923 1.000 0.733 

 

Table S9. Comparison of accuracy on paired-end read mapping 

  WALT Bismark BSMAP BS-Seeker2 BatMeth BWA-meth 

SRR1532534 
Recall 0.965 0.968 0.991 0.955  0.495 

Precision 0.984 0.943 0.967 0.886  0.702 

SRR948855 
Recall 0.971 0.972 0.993 0.960  0.494 

Precision 0.989 0.935 0.973 0.878  0.674 

SRR2296821 
Recall 0.986 0.959 0.994 0.946  0.489 

Precision 0.996 0.960 0.967 0.862  0.628 

 

Tables S10-11 show the memory usage for each dataset. For human genome (the first two 

datasets), WALT uses about 15 Gb memory for single-end mapping, and 17 Gb for paired-end 

mapping. 

Table S10. Comparison of memory usage on single-end reads (Gb) 

 WALT Bismark BSMAP BS-Seeker2 BatMeth BWA-meth 

SRR1532534 14.94 9.55 7.83 11.67 16.55 12.30 

SRR948855 15.05 9.58 7.84 11.71 16.55 12.33 

SRR2296821 1.02 0.53 1.02 2.52 7.77 2.07 

 

Table S11. Comparison of memory usage on paired-end read mapping (Gb) 

 WALT Bismark BSMAP BS-Seeker2 BatMeth BWA-meth 

SRR1532534 16.89 9.64 7.88 9.47  12.52 

SRR948855 16.95 9.64 7.89 9.72  12.48 

SRR2296821 2.89 0.54 1.06 3.25  2.30 
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5. Runtime on different lengths of reads 

Table S12 compares the runtime of WALT, Bismark, BSMAP, BS-Seeker2, BatMeth and BWA-

meth for datasets with different read lengths. Six datasets with read length L=50, 60, 70, 80, 90 

and 100 respectively were generated by truncating the reads from SRR948855 (Fortin, et al., 

2014). Each dataset takes the first L nucleotides from the first 10 million read pairs. WALT runs 

faster when the read length increases. It is because spaced seeds for longer reads have heavier 

weights, which help to reduce the number of random hits. 

Table S12. Runtime on different read length (hours) 

 Read Length 50 60 70 80 90 100 

Single-end 

WALT 0.71 0.27 0.21 0.19 0.18 0.18 

Bismark 1.90 2.57 2.84 3.32 4.30 5.61 

BSMAP 0.33 0.46 0.65 0.43 0.62 1.03 

BS-Seeker2 7.14 7.36 7.75 8.27 8.59 9.09 

BatMeth 46.52 21.47 15.06 11.04 8.46 6.39 

BWA-meth 1.55 1.50 1.52 1.61 1.71 1.88 

Paired-end 

WALT 2.66 1.20 0.85 0.63 0.59 0.61 

Bismark 4.60 5.50 6.63 6.69 7.82 8.09 

BSMAP 0.62 1.11 1.79 1.40 2.09 3.08 

BS-Seeker2 20.98 23.88 22.83 20.88 24.04 22.43 

BatMeth       

BWA-meth 5.38 4.47 4.47 4.62 4.93 5.48 
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6. Uniquely mapped reads on different number of mismatches in WALT 

Table S13. The number and percentage of uniquely mapped reads on different number of 

mismatches in WALT 

Number 

of mismatches 

SRR1532534 SRR948855 SRR2296821 

Single-end Paired-end Single-end Paired-end Single-end Paired-end 

0 
34,689,403 

(69.38%) 

27,200,475 

(54.40%) 

34,743,554 

(69.49%) 

27,559,957 

(55.12%) 

13,728,491 

(63.72%) 

12,697,635 

(58.94%) 

1 
5,489,829 

(10.98%) 

8,090,762 

(16.18%) 

5,211,452 

(10.42%) 

7,388,497 

(14.78%) 

1,279,528 

(5.94%) 

1,809,749 

(8.40%) 

2 
1,131,020 

(2.26%) 

2,394,739 

(4.79%) 

898,452 

(1.80%) 

2,342,240 

(4.68%) 

287,268 

(1.33%) 

473,105 

(2.20%) 

3 
448,474 

(0.90%) 

983,247 

(1.97%) 

361,270 

(0.72%) 

810,523 

(1.62%) 

178,251 

(0.83%) 

190,001 

(0.88%) 

4 
250,467 

(0.50%) 

511,419 

(1.02%) 

228,968 

(0.46%) 

404,315 

(0.81%) 

107,945 

(0.50%) 

161,688 

(0.75%) 

5 
155,276 

(0.31%) 

289,866 

(0.58%) 

156,000 

(0.31%) 

238,442 

(0.48%) 

56,045 

(0.26%) 

128,729 

(0.60%) 

6 
112,357 

(0.22%) 

55,709 

(0.11%) 

114,289 

(0.23%) 

46,935 

(0.09%) 

29,368 

(0.14%) 

47,482 

(0.22%) 

SUM 
42,276,826 

(84.55%) 

39,526,217 

(79.05%) 

41,713,985 

(83.43%) 

38,790,909 

(77.58%) 

15,666,896 

(72.72%) 

15,508,389 

(71.99%) 
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7. WALT Output Format 

WALT supports Tab-delimited SAM (Li, et al., 2009) and MR (Song, et al., 2013) output formats. 

In WALT, SAM and MR formats have 12 and 8 mandatory fields, respectively. One mapping 

result has one line and different fields are separated by a Tab. Here shows the mandatory fields in 

order for SAM and MR formats. 

 

SAM Format 

 QNAME (read name) 

 FLAG (bitwise FLAG) 

 RNAME (chromosome name) 

 POS (start position, 1-based, 0 means unmapped) 

 MAPQ (255 in WALT) 

 CIGAR (CIGAR string) 

 RNEXT (chromosome name of the mate read) 

 PNEXT (start position of the mate read) 

 TLEN (observed segment length) 

 SEQ (read sequence) 

 QUAL (quality sequence) 

 NM-tag (number of mismatches) 

MR Format 

 RNAME (chromosome name) 

 SPOS (start position, 0-based) 

 EPOS (end position, 0-based) 

 QNAME (read name) 

 MISMATCH (number of mismatches) 

 STRAND (forward or reverse strand) 

 SEQ (read sequence) 

 QUAL (qualify sequence) 
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8. Test Environment and Command Lines 

All tests were run on the USC HPC cluster with Intel Xeon E5-2600 processors at clock speed 

2.4 GHz. All experiments were run in single thread on single processor. WALT 1.0, Bismark 

0.13.1, BSMAP 2.88, BS-Seeker2 2.0.10, BatMeth 1.04 and BWA-meth 0.10 were used in these 

experiments. Here shows the command lines for them. 

WALT single-end mapping 
walt -i genome.dbindex -r reads_file_1.fastq -o output_single.sam 

WALT paired-end mapping 
walt -i genome.dbindex -1 reads_file_1.fastq -2 reads_file_2.fastq -o output_paired.sam 

Bismark single-end mapping 
bismark -N 1 -L 32 --path_to_bowtie bowtie2-2.2.4 --bowtie2 gnome_files reads_file _1.fastq 

Bismark paired-end mapping 
bismark -N 1 -L 32 --path_to_bowtie bowtie2-2.2.4 --bowtie2 gnome_files reads_file _1.fastq -2 
reads_file_2 

BSMAP single-end mapping 
bsmap -d gneome_files -a reads_file_1.fastq -p 1 -v 6 -r 0 -o output_single.sam 

BSMAP paired-end mapping 
bsmap -d gneome_files -a reads_file_1.fastq -b reads_file_2.fastq -p 1 -v 6 -r 0 -o output_paired.sam 

BS-Seeker2 single-end mapping 
./bs_seeker2-align.py --aligner=bowtie2 -g genome_files -m 6 --bt2-p 1 -d 
./bs_utils/reference_genomes/ -f sam -i read_file_1 -o output_single.sam 

BS-Seeker2 paired-end mapping 
./bs_seeker2-align.py --aligner=bowtie2 -g genome_files -m 6 --bt2-p 1 -d 
./bs_utils/reference_genomes/ -f sam -1 read_file_1 -2 read_file_2 -o output_paired.sam 

BatMeth single-end mapping 
./batmeth  -g genome_files -i read_file_1 -n 6 -p 1 -o output_single.out 

BWA-meth single-end mapping 
./bwameth.py --reference genome_files read_file_1 -t 1 --prefix PREFIX_SINGLE 

BWA-meth paired-end mapping 
./bwameth.py --reference genome_files read_file_1 read_file_2 -t 1 --prefix PREFIX_PAIR 

 

  



14 

References 

Campagna, D., et al. PASS-bis: a bisulfite aligner suitable for whole methylome analysis of Illumina and 

SOLiD reads. Bioinformatics 2013;29(2):268-270. 

Chen, Y., Souaiaia, T. and Chen, T. PerM: efficient mapping of short sequencing reads with periodic full 

sensitive spaced seeds. Bioinformatics 2009;25(19):2514-2521. 

Fortin, J.P., et al. Functional normalization of 450k methylation array data improves replication in large 

cancer studies. Genome Biol 2014;15(12):503. 

Guo, W., et al. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics 

2013;14:774. 

Harris, E.Y., Ounit, R. and Lonardi, S. BRAT-nova: fast and accurate mapping of bisulfite-treated reads. 

Bioinformatics 2016. 

Harris, E.Y., et al. BRAT-BW: efficient and accurate mapping of bisulfite-treated reads. Bioinformatics 

2012;28(13):1795-1796. 

Krueger, F. and Andrews, S.R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq 

applications. Bioinformatics 2011;27(11):1571-1572. 

Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25(16):2078-

2079. 

Li, Y.X. and Li, W. BSMAP: whole genome bisulfite sequence MAPping program. Bmc Bioinformatics 

2009;10. 

Lim, J.Q., et al. BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation. Genome 

Biol 2012;13(10):R82. 

Otto, C., Stadler, P.F. and Hoffmann, S. Fast and sensitive mapping of bisulfite-treated sequencing data. 

Bioinformatics 2012;28(13):1698-1704. 

Pedersen, B., et al. MethylCoder: software pipeline for bisulfite-treated sequences. Bioinformatics 

2011;27(17):2435-2436. 

Pedersen, B.S., et al. Fast and accurate alignment of long bisulfite-seq reads. In, ArXiv e-prints. 2014. 

Song, Q., et al. A Reference Methylome Database and Analysis Pipeline to Facilitate Integrative and 

Comparative Epigenomics. Plos One 2013;8(12). 

 


