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Supplementary Methods 

 

The Singleton Density Score (SDS) – theoretical motivation: The history of a sample 

of haplotypes going back to their common ancestor can be described by a branching 

structure known as the coalescent, that represents the genealogy of the sample at a 

particular site (26). While we cannot observe the sample genealogy directly, population 

genetics theory tells us how, for a random sample, the expected times of coalescence in 

the genealogy depend on the underlying population size history. In turn, the distribution 

of mutations depends on branch lengths: specifically, mutations are modeled as Poisson-

distributed with rate equal to the product of mutation rate times branch length (26). This 

basic connection between distribution of sequence variants in a sample and the historical 

demographic model of the population underlies much of modern theory and methods in 

population genetics.  

 

Our goal in this paper is to detect very recent allele frequency changes at SNPs. The key 

idea underlying SDS is that recent frequency changes generate differences in the 

distributions of coalescence times on the two allelic backgrounds. We designed SDS to 

detect differences between the derived and ancestral alleles with respect to their most 

recent coalescent times – namely, the external branches of the genealogies (also known as 

“tip branches”). Under a constant population size model with effective (diploid) 

population size 𝑁!, the expected length of a tip branch in a sample of 2𝑛 haplotypes 

equals !!!
!

 (26). Consider a test SNP with sample derived allele frequency (DAF) of 𝑓, 

and assume for the purpose of illustration that this sample frequency equals the 

population frequency, and that the population frequency hasn’t changed over history. 

Then under this simplistic neutral model, the tip-branches of the derived and ancestral 

alleles have the same expected length: 2 !!!
!"

= 2 !! !!!
! !!!

= 2 !!
!

. However, if one allele 

has been increasing in frequency, then its expected tip branch should be shorter than the 

neutral expectation, as going back in time the effective allele population size is smaller, 

and so the probability to coalesce increases. Likewise, for the alternative allele, whose 

frequency has been decreasing, we expect longer tip branch lengths. This is illustrated in 
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Figures 1 and S1 by a more realistic simulation (e.g., accounting for population growth, 

drift, etc. See simulation details in the Methods section: Simulations for the illustration 

figure).  

 

SDS detects recent changes in allele frequency by inferring and contrasting the expected 

tip-branch lengths of the derived and ancestral alleles. We do so by modeling the local 

distribution of singletons, those variants that originated along tip-branches. The effective 

timescale of SDS is therefore roughly the average tip-branch length of neutral 

genealogies (i.e., ~ !!!
!

 in a constant population size), which gets shorter for larger 

samples. In comparison, related methods such as the Extended Haplotype Homozygosity 

(EHH) (27) and the integrated Haplotype Score (iHS) (5) have a much older timescale 

that does not depend on the sample size. These methods could be conceptualized as 

detecting recent changes in frequency by contrasting the average pairwise coalescent 

times of the derived and ancestral alleles, whose expected times are on the order of 𝑁!. 

 

The Singleton Density Score Model: Consider a bi-allelic test SNP. We want to 

evaluate whether there is a difference in average tip lengths between the genealogies of 

the two alleles.  For each diploid individual 𝑖 = 1…𝑛, we compute the distance 𝑑! 

between the nearest upstream singleton and nearest downstream singleton, relative to the 

test SNP. Note that singletons are defined with respect to the entire sample of n 

individuals: i.e., a singleton is a variant that is seen exactly once in the sample of n. 

Further, since current sequencing data typically do not allow phasing of singletons, we 

compute 𝑑! using the distances to the nearest singletons in the diploid genotype without 

regard to phase.  

 

The SDS score is computed from a maximum likelihood estimate (MLE) of the log-ratio 

of mean tip branch lengths on the two allelic backgrounds, standardized to have mean 0 

and variance 1. To compute this likelihood, we use the following approximate generative 

model for each distance 𝑑!.  
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We assume that tip branches of allele ℎ (where h=derived or ancestral) are drawn 

independently and identically from an allele-specific distribution of tip-branch lengths. 

These distributions will be denoted 𝜑!. Thus, at each site, each individual has two tip 

lengths drawn from the appropriate distributions, given their genotype. 

	  

Then, ignoring recombination, we further assume that for each haplotype, given that the 

tip branch of the test SNP is of length  𝑡 and the local mutation rate is 𝜇, a Poisson process 

with rate 𝑡𝜇 describes the occurrence of singletons around the test SNP. It follows that 

the distance from the test SNP to the nearest downstream (or equivalently upstream) 

singleton over the haplotype is an Exponential random variable with rate 𝑡𝜇. In turn, for 

an individual with test-SNP tip-lengths 𝑡! and 𝑡!, the distance to the first downstream (or 

equivalently upstream) singleton in the diploid, without regard to phase, is an 

Exponential random variable with rate 𝑡! + 𝑡! 𝜇. Therefore, given the tip lengths for the 

test SNP in individual 𝑖, the distance 𝑑! between the nearest upstream singleton and the 

nearest downstream singleton is a sum of two Exponential random variables with equal 

rates, and is given by a Gamma distribution with shape parameter 2 and rate parameter 

𝑡! + 𝑡! 𝜇. 

 

Integrating over the uncertainty of the two tip-lengths of an individual diploid, the 

likelihood of 𝑑! is given by: 

𝐿 𝑑!;𝜃!"#$%&'!( ,𝜃!"#$%"! , 𝜇   

= 𝒢 𝑑!; 2, 𝑡! + 𝑡! 𝜇 ∙ 𝜑! !,! 𝑡!;𝜃! !,! ∙ 𝜑! !,! 𝑡!;𝜃! !,!   𝑑𝑡!  𝑑𝑡!
!!,!!

 

where 𝜃!"#$%&'!(  and 𝜃!"#$%"!  are the parameters of the tip length distributions, 

𝜑!"#$%&'!((𝑡) and 𝜑!"#$%"!(𝑡); 𝒢 𝑥;𝛼,𝛽  is the Gamma distribution with shape and rate 

parameters  𝛼 and 𝛽; and ℎ 𝑖, 1  and ℎ 𝑖, 2  are the ancestral/derived annotations for the 

two test-SNP haplotypes for individual 𝑖. 

 

To account for imperfect mapping of singletons, and the variability in sequencing depth 

among individuals, we further assume that for each individual 𝑖, singletons are observed 

with probability 𝑝! . Events that follow a Poisson process with rate  𝜆  and are then 
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observed with probability 𝑝 follow a Poisson process with rate 𝜆𝑝. Thus, the likelihood 

of 𝑑! is given by: 

𝐿 𝑑!;𝜃!"#$%&'!( ,𝜃!"#$%"! , 𝜇,𝑝!   

= 𝒢 𝑑!; 2, 𝑡! + 𝑡! 𝜇𝑝! ∙ 𝜑! !,! 𝑡!;𝜃! !,! ∙ 𝜑! !,! 𝑡!;𝜃! !,!   𝑑𝑡!  𝑑𝑡!
!!,!!

 

 

As we motivate later on in this section, we choose to model the tip length distributions of 

the ancestral and derived alleles by Gamma distributions: 

𝜑!"#$%&'!( 𝑡;𝜃!"#$%&'!( = 𝒢 𝑡;𝛼!"#$%&'!( ,𝛽!"#$%&'!(  

𝜑!"#$%"! 𝑡;𝜃!"#$%"! = 𝒢 𝑡;𝛼!"#$%"! ,𝛽!"#$%"!  

 

The likelihood then becomes: 

𝐿 𝑑!;𝛼!"#$%&'!( ,𝛽!"#$!"#$% ,𝛼!"#$%"! ,𝛽!"#$%"! , 𝜇,𝑝!   

=
𝑡! + 𝑡! 𝜇𝑝!

!

Γ 2 𝑑!𝑒! !!!!! !!! !! ∙
𝛽! !,!

!! !,!

Γ 𝛼! !,!
𝑡!!! !,! !!𝑒!!! !,! !!

!!,!!

∙
𝛽! !,!

!! !,!

Γ 𝛼! !,!
𝑡!!! !,! !!𝑒!!! !,! !!   𝑑𝑡!  𝑑𝑡!  

 

We are ultimately interested to learn the ratio between the mean tip lengths of the 

ancestral and derived alleles, which is given by !!"#$%&'!(
!!"#$%"!

= !!"#$%&'!( !!"#$%&'!(
!!"#$%"! !!"#$%"!

. This ratio 

of tip lengths is not dependent on the local mutation rate 𝜇, but do we need to know – or 

explicitly learn – this parameter? The answer is no. We only care about  !!"#$%&'!(
!

	  and	  

!!"#$%"!
!

,	  because	  both	  the	  ratio	  of	  mean	  tip	  lengths	  and	  the	  likelihood	  are	  dependent	  

only	   on	   these	   compounded	   parameters,	   and	   not	   on	  𝛽!"#$%&'!( ,	  𝛽!"#$%"!  and 𝜇 

individually. For the ratio of mean tip lengths this is immediate: 

!!"#$%&'!(
!!"#$%"!

=
!!"#$%&'!(

!!"#!"#$%&
!

!!"#$%"!
!!"#$%"!

!
. To see it for the likelihood, make a change of variables 

𝑇! = 𝜇𝑡! and 𝑇! = 𝜇𝑡! to get: 

𝐿 𝑑!;𝛼!"#$%&'!( ,𝛽!"#$%&'!( ,𝛼!"#$%"! ,𝛽!"#$%"! , 𝜇,𝑝!   
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=
𝑇! + 𝑇! 𝑝!

!

Γ 2 𝑑!𝑒! !!!!! !! !! ∙
!! !,!
!

!! !,!

Γ 𝛼! !,!
𝑇!!! !,! !!𝑒!

!! !,!
! !!

!!,!!

∙
!! !,!
!

!! !,! !

Γ 𝛼! !,!
𝑇!!! !,! !!𝑒!

!! !,!
! !!   𝑑𝑇!  𝑑𝑇!  

= 𝐿 𝑑!;𝛼!"#$%&'!( ,
𝛽!"#$%&'!(

𝜇 ,𝛼!"#$%"! ,
𝛽!"#$%"!

𝜇 , 1,𝑝!   

 

We assume that we know a priori the individual-specific probabilities to observe 

singletons due to incomplete sequencing depth, 𝑝!, up to an unknown constant 𝑐 > 0. We 

refer to 𝑜! = 𝑝! ∙ 𝑐 as the “singleton observability” constants, and we present how we 

estimated them for the UK10K data later on (in Methods section: Computing SDS for 

UK10K data). As we now show, in the maximum likelihood framework we can account 

for the 𝑝!’s by simply scaling the observed distances between singletons by 𝑜! – that is, 

by working with 𝑑! ∙ 𝑜! instead of 𝑑!. This follows from the fact that for any 𝑐 > 0: 

𝐿 𝑑!;𝛼!"#$%&'!( ,
𝛽!"#$%&'!(

𝜇 ,𝛼!"#$%"! ,
𝛽!"#$%"!

𝜇 , 1,𝑝!   

= 𝑝!𝑐
𝑡! + 𝑡! !

!

!

Γ 2 𝑑!𝑝!𝑐 𝑒! !!!!!
!
! !!!!! ∙

!! !,!
!

!! !,!

Γ 𝛼! !,!
𝑡!!! !,! !!𝑒!

!! !,!
! !!

!!,!!

∙
!! !,!
!

!! !,! !

Γ 𝛼! !,!
𝑡!!! !,! !!𝑒!

!! !,!
! !!   𝑑𝑡!  𝑑𝑡!  

= 𝑜! ∙ 𝐿 𝑑!𝑜!;𝛼!"#$%&'!( ,
𝛽!"#$%&'!(

𝜇 ,𝛼!"#$%"! ,
𝛽!"#$%"!

𝜇 ,
1
𝑐 , 1   

= 𝑜! ∙ 𝐿 𝑑!𝑜!;𝛼!"#$%&'!( ,
𝛽!"#$%&'!(
𝑐 𝜇 ,𝛼!"#!"#$ ,

𝛽!"#$%"!
𝑐 𝜇 , 1,1  

 

Since the 𝑜! term that scales the Likelihood above is a constant, it does not affect the 

maximum likelihood estimation and we can ignore it. Thus without loss of generality we 

think of the observations 𝑑! as already being scaled by 𝑜!. We further simplify notation 

by using 𝛽′!"#$%&'!( ≝
!!"#$%&'!(

! !
 and 𝛽′!"#$%"! ≝

!!"#$%"!
! !

. The likelihood is then given by:  
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𝐿 𝑑!;𝛼!"#$%&'!( ,𝛽!!"#$%&'!( ,𝛼!"#$%"! ,𝛽
!
!!"#$!%   

=
!!! !,!

𝑑! + !!! !,!

!! !,!

∙
!!! !,!

𝑑! + !!! !,!

!! !,!

∙ 𝑑!

∙
𝛼! !,! 𝛼! !,! + 1

𝑑! + !!! !,!
! + 2

𝛼! !,! 𝛼! !,!

𝑑! + !!! !,! 𝑑! + !!! !,!

+
𝛼! !,! 𝛼! !,! + 1

𝑑! + 𝛽′! !,!
!  

 

The derivation of the above closed-form solution to the likelihood is somewhat long and 

we skip it here. We note that the basic idea in solving the double integral is the 

observation that integrals of the form !!

!(!)
𝑥!!!𝑒!!"𝑑𝑥!

!!!  equal 1 because 

!!

!(!)
𝑥!!!𝑒!!" is the probability density function of the Gamma distribution. 

 

We now further simplify the model by assuming that we know a priori the shape 

parameters 𝛼!"#$%&'!( and 𝛼!"#$%"!. Notice	   that	   for	   a	   Gamma	   distribution	  𝒢 𝑥;𝛼,𝛽 ,	  

the	   mean	   and	   variance	   are	   given	   by	  𝐸 = !
!
	  and	  𝑉 = !

!!
,	   so	   the	   shape	   parameter	  

describes	   the	  variance	  as	   function	  of	   the	  mean:	  𝛼 = !!

!
.	   The	   tip	   length	  distribution	  

depends	  in	  general	  on	  the	  demographic	  model,	  the	  exact	  allele	  frequency	  trajectory,	  

and	  the	  allele	  sample	  size.	  We	  therefore	  chose	  to	  fix	  the	  Gamma-‐shape	  parameters	  

to	   best	  match	   the	   shapes	   of	   tip-‐length	   distributions	   that	   we	   simulate, for a given 

demographic model, sample size and present-day allele frequency, under a model of 

neutral drift. The estimates for each shape parameter were taken to be the average of 

squared mean over variance, over the simulated tip-length distributions. This is described 

in more details below (in Methods section: Computing SDS for UK10K data). 

 

We	  can	  now	  better	  motivate	  the	  choice	  for	  a	  Gamma	  distribution	  to	  model	  the	  allele-‐

specific	   tip	   length	   distribution.	   First,	   we	   found	   empirically	   that	   simulated	  

genealogies	   under	   a	  model	   of	   neutral	   drift	   are	   reasonably	   described	   by	   a	  Gamma	  

distribution.	   Second,	   the	   choice	   of	   Gamma	   distribution	   allowed	   us	   to	   solve	   the	  
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double	  integral	  in	  the	  likelihood	  into	  an	  explicit	  form,	  thus	  simplifying	  the	  maximum	  

likelihood	   optimization.	   Third,	   in	   our	   model,	   the	   two	   parameters	   of	   the	   Gamma	  

distribution	  split	  nicely	  into	  two	  components	  –	  one	  parameter	  (rate)	  absorbs	  all	  the	  

locus-‐specific	   and	   individual-‐specific	   effects,	   including	   the	   regional	  mutation	   rate,	  

and	   the	  probability	   to	  detect	   singletons	  due	   to	  global	   sequencing	  depth	  as	  well	  as	  

due	   to	  any	  other	   local	  effect	   (e.g.,	   locus-‐specific	  challenges	   in	  mapping	  sequencing	  

reads	   due	   to	   specific	   base	   composition	   or	   repetitive	   nature	   of	   the	   sequence);	  

whereas	  the	  other	  parameter	  (shape)	  is	  more	  global	  in	  nature,	  which	  motivates	  	  its	  

pre-‐fixation	  based	  on	  neutral	  simulations.	   	  Thus	   in	  sum,	   this naïve approximation is 

nevertheless a mathematically convenient and effective choice for the tip-length 

distributions. We note that a somewhat similar use of a Gamma distribution to describe a 

tip-length distribution was previously presented (28). 	  

	  

Therefore,	  the	  model	  depends	  on	  only	  two	  parameters,	  𝛽′!"#$%&'!( 	  and	  𝛽′!"#$%"! .	  The	  

objective	  of	  SDS,	  the	  ratio	  of	  means	  of	  the	  tip	  length	  distributions	  for	  the	  ancestral	  

and	  derived	  alleles,	  is	  then	  given	  by:	  !!"#$%&'!(
!!"#$%"!

= !!"#$%&'!( !!!"#$%&'!(
!!"#$%"! !!!"#$%"!

.	  	  

	  

We	  thus	  define:	  

𝛽′∗!"#$%&'!( ,𝛽′
∗
!"#$%"! ≝ argmax

!!!"#$%&'!(,!!!"#$%"!
𝐿 𝑑!;𝛽!!"#$%&'!( ,𝛽

!
!"#$%"!

!

!!!

	  

	  

We	   infer	   these	  maximum	   likelihood	   estimates	   	   (MLEs)	   using	   a	   standard	   gradient	  

descent	   optimization,	   implemented	   in	   R	   using	   the	   nlm	   function.	   Using	   both	  

simulations	  and	  real	  data	  we	  verified	  that	  the	  optimization	  indeed	  reaches	  optimal	  

solutions	  by	  comparing	  optimization	  results	  with	  those	  obtained	  by	  exhaustive	  grid	  

searches	  (which	  is	  easy	  to	  visualize	  given	  that	  there	  are	  only	  two	  parameters).	  We	  

define	  the	  “raw	  SDS”	  statistic	  to	  be	  the	  log-‐ratio	  of	  mean	  tip	  lengths	  as	  obtained	  by	  

the	  MLE	  estimates	  above:	  

𝑟𝑎𝑤  𝑆𝐷𝑆 ≝ log
𝛼!"#$%&'!( 𝛽!

∗
!"#$%&'!(

𝛼!"#$%"! 𝛽!∗!"#$%"!
= log

𝑡∗!"#$!"#$%
𝑡∗!"#$%"!
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Notice that 𝑟𝑎𝑤  𝑆𝐷𝑆 is also the direct MLE of our model. This is because in the 

Maximum Likelihood estimation framework, it is mathematically equivalent to re-

parameterize the model directly in terms	   of	   this	   quantity	   of	   interest,	   e.g.,	   by	  

log !!"#$%&'!( !!!"#$%&'!(
!!"#$%"! !!!"#$%"!

	  and	  𝛼!"#$%"! 𝛽′!"#$%"! ,	  and	  report	  raw	  SDS	  as:	  

𝑟𝑎𝑤  𝑆𝐷𝑆 ≝ argmax
!"#

!!"#$%&'!( !!!"#$%&'!(
!!"#!"#$ !!!"#$%"!

𝐿 𝑑!;𝛽!!"#$%&'!( ,𝛽
!
!"#$%"!

!

!!!

	  

	  

The Singleton Density Score (SDS) that we finally report is a standardized version of the 

raw SDS, relative to the genome wide predictions with similar DAF. That is, we define a 

partition of all SNPs genome-wide into derived allele frequency bins (in practice for the 

UK10K analysis we defined bins of 1% DAF; see details in Method section: Computing 

SDS for UK10K data). Then, assuming a test SNP 𝑠! with derived allele frequency f 

belongs to bin 𝐵 𝑓 , we define the standardized SDS to be: 

𝑆𝐷𝑆 𝑠! ≝
𝑟𝑎𝑤  𝑆𝐷𝑆 𝑠! − 𝜇! !

𝜎! !
 

where 𝜇! !  and 𝜎! !  are the mean and standard deviation estimates of raw SDS over all 

SNPs 𝑠!that belong in bin 𝐵 𝑓 . That is, 

𝜇! ! =
1

𝐵 𝑓 𝑟𝑎𝑤  𝑆𝐷𝑆 𝑠!
!!∈! !

 

𝜎! ! =
1

𝐵 𝑓 − 1 𝑟𝑎𝑤  𝑆𝐷𝑆 𝑠! − 𝜇! !
!

!!∈! !

 

 

In summary, large positive SDS corresponds to a lower density of singletons associated 

with the derived allele and hence that derived allele tip-branches are much shorter than 

the tip-branches of the ancestral allele, and thus implies a recent increase in frequency of 

the derived allele. 
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Modeling considerations and possible future extensions: One key simplification of the 

SDS model is that we ignore the effect of recombination. The main effect of 

recombination is that it scrambles distant singletons across allelic backgrounds. This 

effect will tend to bias true signal back toward the null hypothesis whenever the nearest 

recombination event (on the tip branch) is closer than the nearest mutation, but should not 

create false positives.  

 

A practical issue with current data is that detection of singletons may be incomplete, 

especially in low-coverage data sets such as UK10K.  Again, we regard this as an effect 

that reduces our power to detect true signals; however in most cases we do not expect 

singleton detection to differ systematically by genotype at the test SNP, and thus this 

should not systematically create false positives. (See below for a discussion of this issue 

in the context of the MHC region.) More generally, in SDS the two allelic backgrounds 

provide a natural control against each other for a variety of possible shortcomings in the 

data and models. Another strength of SDS compared to earlier methods such as iHS, is 

that the information comes from a large number of nearly independent tip branches, thus 

explaining why the statistic is well-behaved under the null. 

 

In principle, modifiers of mutation rate could also generate significant SDS scores (29). 

At the present time, no common alleles are known that modify mutation rates, and we 

anticipate that such signals are likely to be less numerous than signals due to positive 

selection. 

 

There are numerous possible extensions to SDS. First, it would be of value to consider 

alleles at different frequencies – e.g., doubletons, tripletons, etc.  Consideration of 

variants in different frequency classes will make it possible to explore more detailed 

trajectories of frequency over time. These will require substantial modifications of the 

current statistical model. Second, it would be valuable to infer recombination break 

points on each tip. The singleton distances become uninformative past the nearest 

recombination event, and these censoring points could be incorporated into the 

likelihood. Moreover, the recombination distances are themselves informative about 
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branch lengths. Recombination-based analysis could allow extension of SDS to genotype 

or exome data, neither of which contain enough singleton information for application of 

the current SDS method. Third, SDS might be combined with allele frequencies from 

other populations to gain further power. 

 

We also investigated other metrics for quantifying the number of singletons, such as the 

number that occur within a window of fixed size. However we found that such statistics 

were heavily impacted by outliers. Further, in humans, recombination and mutation occur 

at roughly similar rates per base pair, this implies that on average only ~1 singleton per 

individual is truly informative. 

 

Simulating genealogies: To study the specificity of SDS to recent history, for a sample 

comparable to the UK10K data we analyzed here, we performed simulations of samples 

of n=3,000 individuals (2n=6,000 haplotypes) using a recent demographic model of a 

European population (14). To this end, we examined first the average tip-branch length as 

a function of sample size by this demographic model, using 1,000 simulated genealogies 

per sample size, for samples ranging from 2n=100 to 2n=100,000 haplotypes (Fig. 2A). 

We used the coalescent simulator ms (30), with a population size model of the European 

population from (14). The average tip-branch length (in generations) decreases within 

this range from 360±54 (2n=100) to 13.3±0.04 (2n=100,000). For 2n=6,000 haplotypes, 

comparable to the size of the UK10K data sample, the average tip is 74.5±0.68 

generations. In the Methods section Estimating the mean tip-branch length in the UK10K 

data we consider additional demographic models and provide a more thorough 

description of the uncertainty about the actual mean tip length in the UK10K sample. 

 

Simulation of power and specificity of SDS to recent history: To study the power of 

SDS with n=3,000 individuals and its specificity to selection within the past 100 

generations (Fig. 2B), we simulated random samples of sequences under different models 

of selection using a backward coalescent approach. Given the present day derived allele 

frequency (DAF), and models of the history of the population size and relative fitness of 

the selected allele, we first simulated the DAF trajectory backward in time using 
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simuPOP (31). To this end, we used the population size model of a European population 

from (14), and considered one of three additive selection models (i.e., with dominance 

parameter h=0.5): (1) constant selection throughout history, (2) constant selection starting 

100 generations ago, and (3) constant selection ending 100 generations ago. For each 

model, we examined varying selection coefficients, ranging from very low s=0.001 to 

extremely high s=0.10. Main text results all correspond to present-day DAF=0.7, but 

simulations with additional initial frequencies from DAF=0.1 to 0.9 are shown in fig. S4. 

Given the simulated allele frequency trajectory, as well as the input population size 

trajectory, we then used mbs2 (32) to simulate samples of 2n=6,000 haplotype sequences 

of length 10Mb, and we randomly paired them to get samples of n=3,000 diploid 

genotypes. For this purpose, we set the per-generation mutation and recombination rates 

to 2.36e-8 and 1e-8, respectively. For each combination of initial DAF, selection model, 

and selection coefficient, we ran 100 simulations. We further ran additional simulations 

of neutral drift to confirm that SDS is indeed distributed roughly normally under the null: 

750 simulations for each DAF=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, and 0.9, and 2,000 

simulations for DAF=0.7 (Shapiro-Wilks p-value=0.52, Kolmogorov-Smirnov p-

value=0.93; fig. S2).  

 

Simulations for the illustration figure: The simulations presented in Figures 1 and S1 

were generated using the backward coalescent pipeline as described above (in Methods 

section: Simulation of power and specificity of SDS to recent history). Specifically, we 

used the population size model of (14); a recent selection of s=0.05 that started 100 

generations ago; and a sample size of 2n=6,000 individuals. The genealogies (Fig. 1B) 

were simulated separately for each allele using ms (30). The null distribution histogram 

presented in Figure 1F is based on the 2,000 neutral simulations shown in fig. S2. 

 

Simulations of a recent-admixture model for European demography: Consider the 

scenario that the demography of the studied population includes a recent admixture 

between populations that, before the admixture, evolved from different initial population 

sizes and at different growth rates. Their different growth rate increases the rate at which 

alleles would have changed frequencies in the union of populations before the admixture. 
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We hypothesized that this would affect the SDS predictions by inflating the raw 

(unstandardized) SDS variance but without changing the Gaussian shape of this 

distribution, and therefore without introducing false SDS predictions (since the final SDS 

scores are standardized by empirical variance). 

 

To test this intuition we simulated a recent-admixture model of a European population. 

We constructed our model as an extension to the Tennessen model (14). The Tennessen 

model assumes an out-of-Africa bottleneck (2040 generations ago), followed by a second 

bottleneck for “foundation of Europe” (920 generations ago), after which the population 

experienced a two epoch exponential growth (rate increased 205 generations ago). We 

added a population split that formed a second population (pop2) at the “foundation of 

Europe” bottleneck, and re-admixed the populations 60 generations ago. We 

parameterized the model with three variables: (1) the bottleneck of pop2; (2) the growth 

rate of pop2; (3) the proportions of pop2 and pop1 in the admixture. We examined three 

values for each parameter as follows. Population size of pop2 at the bottleneck relative to 

pop1: 0.1, 0.5, 1.0; growth rate of pop2 relative to pop1: 0.8, 1.0, 1.2; and the proportion 

of pop2 to the admixture: 40%, 20%, 0%. Following the admixture we assumed that 

population size is as in the original Tennessen model. Thus, when proportion of pop2 to 

the admixture is zero, this model reduces by construction to the original model of 

Tennessen.  

 

For each of the 3x3x3=27 parameter choices we simulated 1,000 samples of 6,000 10Mb-

long haplotypes for alleles that evolved under neutral drift to present derived frequency 

of 0.7. To this end we used the recently introduced simulator MSPRIME (33), the only 

available method that can perform such large-samples complex-demography simulations 

in feasible computational time and space. For each simulation we defined the test SNP to 

be the most central SNP with DAF in 0.70-0.71 (and rejected simulations without such 

SNPs). Haplotypes were randomly paired into 3,000 diploid genomes, and this sample of 

diploids was used for the SDS computation.  
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The 3x3=9 of the total 3x3x3=27 examined parameter combinations that correspond to 

no admixture served as a control. We examined whether the variance of raw SDS 

changes across the 27 parameter combinations using the Levene test for equality of 

variance, and found that indeed admixture can inflate the raw SDS variance (p=3.3x10-

28). We then tested whether after standardization any of the distributions is different from 

the standard Normal distribution, using 27 Kolmogorov-Smirnov tests. Accounting for 

the multiple hypotheses, there was no single parameter choice that significantly changed 

the normality of the standardized SDS. Illustration of the model, and the SDS 

distributions before and after standardization for the 27 examined parameter 

combinations is shown in figure S3. We conclude that recent admixture coupled with 

different growth rates is unlikely to introduce false SDS predictions under the null of 

neutral drift.  

 

We may also wonder about a more complex scenario: suppose that selection did occur in 

one of the pre-admixed populations but before the predicted timeframe of SDS.  Would 

this signal be detected by SDS? This would be a correct inference of selection, but we 

may underestimate the timeframe of selection. This possibility is difficult to address at 

the current time. To answer that one would first need to obtain a better estimate of the 

realistic parameters of the admixture demography; such an understanding is lacking at 

present. Furthermore, one would need to develop new simulation tools. MSPRIME (33) 

does not simulate selection; meanwhile other methods that allow the simulation of some 

relevant selection scenarios in such a complex admixture demography, such as MSMS 

(34), do not scale to such large samples and large genomic regions. One may further seek 

to augment the SDS framework to be able to distinguish pre vs. post-admixture selection 

events, etc. We believe that the study of more realistic demographic models, in general 

and with respect to the SDS framework, would be an interesting and important line of 

future work. 

 

Simulations to quantify the timescale of SDS in comparison with iHS: To quantify 

the effective timescale of SDS for a sample of n=3,000 individuals, and compare it to the 

timescale of iHS with the same sample size, we simulated a model of extremely strong 
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selection that had stopped T generations ago, for varying times T (Fig. 2C). To this end, 

we used the backward coalescent pipeline as described above, with selection coefficient 

s=0.10, and ran 100 simulations for each time at which selection had stopped (from T=0 

to T=2,000 generations ago). For SDS (with n=3,000 individuals), even super-strong 

partial hard sweep events are completely undetectable if they stopped more than 100-150 

generations before the present. In contrast iHS remains sensitive to events that stopped 

1,000-2,000 generations before the present.  

  

As another view of this fundamental difference between SDS and iHS, we compared the 

signals obtained by the two methods, using ROC analysis, for selection that started 100 

generations ago and continued until the present (“recent selection”) and selection that 

ended 100 generations ago and followed by neutral drift (“ancient selection”).  This re-

presentation of the simulations shown in Fig. 2B is shown and elaborated in figure S5A. 

While SDS obtains substantially higher scores for the recent selection, iHS typically gets 

higher scores for the ancient selection. In figure S5B we show that this translates into a 

unique practice for SDS: for a strong recent selection one can expect with high 

probability to obtain SDS values that are much higher than expected by chance for drift 

as well as for any selection with similar strength that did not entered into the very recent 

history. Thus, given bound estimates on selection strength, one can use SDS to make 

actual claims with statistical significance that selection persisted into recent times. But 

this is impossible to claim with iHS, regardless of the selection strength. In figure S14 we 

show an application of this property for interpreting the strong SDS signal we observed in 

the UK10K data for the lactase-persistence allele.  

 

Simulation of selection from present variation: We wanted to test the ability of SDS to 

detect recent selection from standing variation, in a setting that is as close to the real data 

as possible. Real data reflect much more complicated demography than in our 

simulations; variation in mutation and recombination rates; and incomplete, noisy 

detection of singletons. To this end, we simulated instantaneous selection from present 

variation by subsampling from UK10K data. Specifically, we used the genotype data for 

the 3,195 individuals from ALSPAC and TWINSUK cohorts that passed our quality 
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controls (see Methods section: UK10K data preprocessing). For a given present and 

target frequency pair, we randomly picked 1,000 SNPs with a matching present 

frequency, and then for each SNP we down-sampled 1,500 genomes, without 

replacement, to match the target frequency; with Hardy-Weinberg equilibrium genotype 

proportions. Figures 2D and S9 present the results for target DAF=0.7. Additional target 

frequencies are shown in figure S8.  

 

UK10K data preprocessing: Variant calling data and sample information for the two 

whole-genome sequencing cohorts from the UK10K project (15), ALSPAC and 

TwinsUK, were downloaded with permission from the European Genome-phenome 

Archive (EGA studies EGAD00001000740, EGAD00001000741, EGAD00001000789, 

EGAD00001000790). We started our quality control by considering only the 1,867 

ALSPAC and 1,754 TwinsUK individuals that were reported by the UK10K project to 

pass their quality control (QC) for inclusion in their association analyses (15). Notice that 

this original QC removed samples with apparent non-European ancestry as detected with 

PCA analysis, and further excluded samples with extremely high total number of 

singleton variants as these were suspected to correspond to “ethnic outliers” (15).  

 

To further minimize population structure in this data, we analyzed the total number of 

singleton SNPs per individual and used that to create an additional quality control filter 

for individuals with substantial non-British ancestry. To this end, we defined the UK10K 

singletons that were nevertheless reported by the 1,000 Genomes Project (Phase 1) (35) 

to be present outside Europe as “migration singletons”. We found that the total number of 

singletons per individual is notably explained by two factors: the individual sequencing 

depth, and the proportion of singletons that are likely due to migration (fig. S7). We thus 

decided to further exclude, separately for the ALSPAC and TwinsUK cohorts, 

individuals with either highest (10%) proportion of migration singletons, or a worst (5%) 

fit (i.e., largest residual) to a linear model of total singletons by both sequencing depth 

and migration proportion (fig. S7). The remaining 3,195 samples (1,647 ALSPAC and 

1,548 TwinsUK) were used for SDS predictions.  
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Computing SDS for UK10K data: We computed SDS for all autosomal bi-allelic 

variants, for which ancestral/derived annotation was reported in phase 1 of the 1,000 

Genomes project (35), and that further have derived allele frequency between 0.05-0.95, 

Hardy-Weinberg equilibrium p-value >1x10-6, and at least 5 individuals for each of the 

three genotypes. Singletons were restricted to single nucleotide variants (i.e., excluding 

indels). For a given test SNP we identified all nearest upstream and downstream 

singletons, if such exist, while not allowing opening a gap without any singleton (over the 

entire sample) longer than 1Mbp. In case more than 5% of singletons in one direction 

(upstream or downstream) were missing, we did not compute SDS for this test SNP. This 

criterion tends to exclude SNPs near centromeres and telomeres. Otherwise, for any 

individual with a missing singleton in either direction, we replaced the missing data value 

by the nearest boundary, defined as the most distant singleton that is included for this test 

SNP among other individuals.  

 

The UK10K data set includes 43,826,558 autosomal variants, of which 5,844,996 are bi-

allelic, in HW equilibrium (p>1x10-6) and with MAF>5%. We excluded 423,574 SNPs 

because they were close to boundaries, 14,770 SNPs because they had less then 5 

individuals for one genotype group, and 955,217 SNPs for a lack of ancestral annotation. 

Our final data set consists of 4,451,435 SNPs with valid SDS calls. The mean singleton 

distance (both sides combined) is 1.4 Mb. The number of singletons used for the SDS 

computation was 16,393,375. 

 

For the “singleton observability” constants in the SDS model, which represent for each 

individual the probability (up to a scaling factor) that singletons are indeed observed in 

the data, we took the reported sequencing depths. This is justified by the roughly linear 

relationship that we observed between total number of singletons and sequencing depth 

(fig. S7).  

 

The “gamma-shape” constants in the SDS model, which represent an approximate ratio 

between the mean squared and variance of the ideal tip-branch length distribution under 

the null, for each allele frequency, were estimated from simulations for sample size of 
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3,195 individuals using the population size model of (14). To this end, we used ms (30) to 

simulate 1,000 genealogies for each DAF between 0.05-0.95 in resolution of 0.005, and 

for each DAF took the average over genealogies, of the tip-branch squared mean over tip-

branch variance. For intermediate frequencies “gamma-shape” constants were linearly 

interpolated. Raw SDS predictions were standardized within bins of 1% DAF (e.g., 0.05-

0.06), by subtracting the DAF bin average and dividing by the DAF bin standard 

deviation. For this purpose, DAF bin average and standard deviation were estimated with 

chromosomes 2 and 6 excluded, to avoid a bias from the extreme signals and long range 

LD structures of the LCT and MHC regions.  

 

Computing SDS for simulations: SDS was computed on non-phased genotype data, 

with all singletons observed (and taking “singleton observability” constants equal all to 

one). The “gamma-shape” constants were estimated similarly to the method we described 

above (Methods section: Computing SDS for UK10K data), from simulation of 

genealogies using the population size model of (14), but with n=3,000 individuals. Raw 

SDS predictions were standardized relative to corresponding neutral simulations. 

 

Computing iHS: The integrated Haplotype Score (iHS) (5) was calculated using selscan 

(36) with default parameters. For UK10K data, predictions were done with the phased 

haplotypes as provided (15), and we excluded singletons as these were not phased. For 

Figure 2E we computed iHS for the British population from the 1,000-Genomes project  

(GBR, phase 3) (37), using all available phased data, including singletons. For 

simulations, iHS was calculated on exact haplotypes with all SNPs observed, including 

singletons, and raw predictions were standardized relative to corresponding neutral 

simulations. 

 

Validation of SDS for UK10K by a comparison with 1,000 Genomes population 

frequencies: Our simulations suggest that SDS for 3,195 individuals from UK10K 

should reflect allele frequency changes in the British population during the past ~2,000 

years. Allele frequency differences between populations, on the other hand, give a direct 

measure of the combined change in frequency since populations effectively separated. 
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Thus, to validate that SDS looks like allele frequency changes we first tested if we can 

build a linear model of SDS for UK10K using allele frequencies of all 26 populations in 

1000 Genomes Phase 3 (37). The model was learned on a training set that excluded 

chromosomes 2, 6, and 10, as these chromosomes showed the most extreme SDS signal 

genomes wide (corresponding to the LCT, MHC and WDFY4 regions). Indeed, a notable 

25% of the variation in SDS could be explained using population allele frequencies data, 

and this result cross-validated on the left-out chromosomes (fig. S11).  

 

Moreover, the extreme genome-wide signals are also in general agreement with this 

population frequencies model of SDS, which is especially important with regard to the 

MHC region (fig. S11D), providing further support that the extreme signals in this region 

are not driven by mapping biases (a concern that we further addressed below in Methods 

section: Characterization of reference bias in read mapping in the Major 

Histocompatibility Complex).  

 

This comparison showed that there are many SNPs with a moderate SDS for which the 

1000-Genomes model of SDS predicted them a much higher SDS value (fig. S11A). For 

example, there are 234 SNPs with |SDS|<2.5 but |predicted-SDS|>3.5. However, we 

found that these outliers are mostly SNPs for which there is a large disagreement between 

the UK10K and the 1000 Genomes British population (GBR) on both their mapping and 

frequency estimates: they are highly enriched (>95% vs. 0.4% background) for having a 

huge difference in allele frequency (>10%) between these datasets, and they are also 

highly enriched (>21% vs. 0.02% background) for cases in which multiple SNPs mapped 

by the 1000-Genomes project were mapped later to a single SNP by the UK10K project. 

Thus these outlier SNPs are most likely not examples of failure of SDS to detect some of 

the strongest strong selection signals, but rather cases of inaccuracies of the 1000 

Genomes estimates.  

 

Last, we set out to validate that the timescale of these estimated allele frequency changes 

by SDS is indeed much more recent than the timescale of the iHS method. To this end, 

we computed the Spearman correlation of SDS with allele frequency differences across 
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pairs of 1000-Genomes phase 3 populations, and compared them to those correlations 

obtained instead with iHS (Fig. 2E). SDS is mostly correlated with differences between 

Southern and Northern Europe (e.g., GBR-TSI ρ=0.32), and is only weakly correlated 

with differences between Southern Europe and Africa (e.g., TSI-YRI ρ=0.057). In 

comparison, iHS is much less correlated with the within Europe differences (e.g., GBR-

TSI ρ=0.15), and is much more correlated with the differences between Southern Europe 

and Africa (e.g., TSI-YRI ρ=0.32). Thus, iHS predictions correspond to an Out-of-Africa 

timescale, whereas SDS predictions are specific to the much more recent timescales that 

had shaped variation within Europe. 

 

Estimating the mean tip-branch length in the UK10K data: The expected tip-branch 

length of a sample is a function of the demographic history of the sampled population, 

and a decreasing function of sample size. In this paper we applied SDS to a sample of 

3,195 individuals from the British population. As a working model for simulations we 

have used throughout the demographic model for a central/northern European population 

presented by Tennessen et al (14), and considered samples of 3,000 individuals 

(2n=6,000 haplotypes). The expected tip-branch length under the Tennessen model for a 

sample of 3,000 individuals is 74.9 generations. This is shown by an analytic 

computation in fig. S10, and in Fig. 2A by simulations (which further give the variance 

around this expectation). However, our current confidence in the accuracy of available 

demographic models is somewhat limited, and considerable uncertainty exists.   

 

Another model, by Nelson et al (38), predicts a much longer time of 174.8 generations. A 

third model, by Gazave et al (39), predicts an even shorter time of 60.1 generations.  

 

Another approach for estimating the related median tip-branch length was introduced 

more recently (28). This method is based on modeling an upper bound on the length of 

the identical-by-descent haplotype segment between “f2” variants (i.e., doubletons—sites 

that appear exactly twice in the entire sample). Applied to the British sample in 1000-

genomes (GBR), the median tip-branch length for this small sample of n=89 individuals 

was reported to be 90 generations (28). Since mean (or median) tip length decreases with 
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sample size, this gives an even much lower time estimate to the mean tip-length of the 

3,195 UK10K individuals. For example, the Tennessen model estimates the mean tip 

length of a sample of n=100 individuals to be ~275 generations. Alternatively presented, 

the Tennessen model predicts that the mean tip length of a sample of 3,000 individuals is 

~0.27 of the mean tip for 100 individuals. For the Nelson and Gazave models this ratio is 

0.4 and 0.29, respectively. By extrapolation, we can give a gross estimate that the 90 

generations estimated for the GBR correspond to ~24-36 generations for the 3,195 

UK10K individuals. This is an extremely short time estimate, even accounting for the 

fact that the median is smaller than the mean in the heavy-tailed tip length distribution. 

This is not a result of using an outdated over-estimate of the mutation rate, as the 

mutation rate used was 1.2x10-8, consistent with current estimates (28).  

 

Most recently, the UK10K consortium reported such an “f2 haplotype-age analysis” for 

their TwinsUK cohort (15). While this analysis focused on median tip length for 

doubletons shared between different regions in the UK, one can conclude that the 

estimated median tip length for the TwinsUK sample (n=1,754 individuals) is ~200 

generations. By extrapolation from the demographic models, this roughly corresponds to 

~148-164 generations for the 3,195 UK10K individuals. However, in our quality control 

for the UK10K data we have excluded 206 genomes from the TwinsUK cohort with 

abnormally high number of singletons that likely represented hidden structure due to 

recent immigration (see fig. S7 and Methods section: UK10K data preprocessing). 

Therefore, for the 3,195 UK10K individuals we have used here, the mean tip length is 

likely to be substantially shorter than this estimate.  

 

As an alternative, we provide an independent estimate for the mean tip length in our 

sample (see figure S10). The idea behind this estimate is that although the average 

sequencing read depth in this sample is low (6.37), for several dozens of individuals the 

read depth is much higher, and for these individuals the total number of singletons as a 

function of read depth seems to approach saturation (at ~8,200). (Note that there are off-

setting errors here, as some singletons may be missed in the high coverage individuals, 

but other sites in these individuals may falsely appear to be singletons because they were 
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missed in other individuals.) For this calculation we assume conservatively that the 

saturated number of singletons would be even ~5% higher; that only ~80% of the genome 

could be ideally mapped; and take a recent estimate of the mutation rate of 1.45x10-8 (40, 

41). Together, we can give a rough estimate that mean sample tip length is ~112 

generations.  

 

In conclusion, it is first important to acknowledge that there is a substantial uncertainty 

on the exact number. At the extremes there are estimates of ~175 and ~25-35 generations, 

which we believe are both outliers. Then we have on one hand a rough direct estimate for 

the UK10K data of ~112 generations, and on the other hand demographic model 

predictions of 60-75 generations. Assuming ~29 years per generation, we conclude that 

the mean tip length in the 3,195 individuals UK10K sample is about 2,000-3,000 years. 

 

How does the mean sample tip length relate to the timescale of SDS? The mean tip length 

is just one rough estimate for the characteristic timescale. One may speculate that since 

the tip length distribution is heavy tailed, then the mean may not be a good indicator of 

timescale (i.e., that the heavy-tail variance increases the effective timescale way beyond 

the mean). However, this intuition is wrong. The reason is that ancient changes in allele 

frequency affect the expected length of only the few tip-branches that reach that age 

regime; whereas a frequency change very close to the present affects the expected length 

of all tip-branches. Thus the most recent events contribute disproportionally more to the 

SDS statistic. This is indicated by our simulations (Figures 2B, S6, S14) which show, for 

example, that when selection stopped ~125 vs. ~150 generations ago the effect on the 

SDS signal is negligible; whereas if selection had stopped 25 generations ago or 

alternatively continued until the present, the difference in SDS could be very large (i.e., 

this difference of 25 generation regarding when selection had stopped contributes more to 

SDS the later it is). In the section below, we show how one could use SDS to make a 

statistical claim that the selection on lactase most likely persisted into the past 2,000 

years even if the mean tip length is assumed to be as large as 4,000 years.  
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Timescale of selection on lactase: The specificity of SDS to recent times can be utilized 

to make statistical claims about whether a strong selection event persisted into recent 

history, assuming bounds on the selection strength (see fig. S5 and Methods section: 

Simulations to quantify the timescale of SDS in comparison with iHS). Here we applied 

this principle to interpret the SDS signal we observed in the UK10K data for the lactase-

persistent allele (rs4988235, DAF=0.74, SDS=9.58).  

 

The estimated strength of this well-known selection signal in northern Europeans varies 

considerably. The early study placed it in the wide range of 1.4-15% for the CEPTH 

population, and 9-19% for the Scandinavian population (2). Another work suggested 

5.18-15.9% for the subpopulation of dairying farmers (42); but this should translate into 

about a half of that for the entire population (43). Other (including the most recent) 

studies have suggested a lower range of selection coefficients, namely 1-3% (44, 45). 

 

We thus simulated 300 samples of 3,000 individuals for an allele with present derived 

frequency of 0.7, which undergone a strong selection (s=5%,7.5%,10%) that stopped 

some time along the past 200 generations (and followed by neutral drift). Simulations 

were performed as described in Methods section: Simulations of power and specificity of 

SDS to recent history. For each possible stopping time for the simulated selection, we 

then counted how many simulations resulted in an SDS value greater or equal to the 

observed SDS signal for lactase in the UK10K data (see figure S14). These simulations 

suggest that for any selection pressure ≤10%, the observed signal is too high to be the 

result of selection that stopped ≥37 generations from the present (p<1/300). In the 

Tennessen model 37 generations is half of the mean tip length (~75). We will assume that 

the true demographic model of the British is similar to the Tennessen model up to a 

scaling factor, and that the actual mean tip length ≤4,000 years (we estimate it to 2,000-

3,000 years; see Methods section above: Estimating the mean tip branch length in the 

UK10K data). Thus, assuming that the strength of selection on the lactase-persistent 

allele was ≤10%, which is higher than most of current estimates, we can infer that this 

selection most likely entered into the past 2,000 years (p<1/300).  
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Alternatively, we can give bounds on the selection coefficient. For example, under a 

more realistic estimate of the mean tip length (≤3,000 years) we can infer that if this 

selection did not continue into the last 1,000 years (i.e., stopped ≥25 generations ago in 

the Tennessen model), its selection coefficient was likely strictly greater than 7.5% 

(p<1/300; see figure S14). 

 

Characterization of reference bias in read mapping in the Major Histocompatibility 

Complex (MHC): Reads carrying more than one alternative allele (i.e., non-reference 

allele) are difficult to align to the reference genome, so there exists asymmetry in read 

depth and SNP calling between haplotypes carrying the reference allele and those 

carrying the alternative allele. We hypothesized that this reference bias might be 

particularly pronounced in the MHC region, due to its high density of polymorphisms and 

unusual long-range LD structure. On the one hand, the reference bias could cause 

difference in the probability of calling nearby singletons among individuals of different 

genotypes: on average, fewer variants will be called in individuals carrying more 

alternative alleles, possibly leading to spurious SDS signals for increased frequency of 

the alternative allele at the focal SNP site. On the other hand, the reference bias may lead 

to underestimation of the frequency of the alternative allele at the focal SNP, possibly 

producing spurious SDS signals for increased frequency of the reference allele (this is 

basically equivalent to our simulation of instantaneous selection from present data – here 

the mapping bias is like an instantaneous down-sampling of the alternative allele).  

 

With a concern that the extreme signal observed in the MHC region is a false positive 

driven by a biased read mapping, we carried out several analyses to characterize the 

range and extent of reference bias in the MHC region and its effects on SDS. We took an 

operational definition of the extended MHC region as the region bounded by SNPs 

rs498548 (chr6: 25,892,529) and rs2772390 (chr6: 33,436,144) plus 2Mb extensions on 

both sides. We calculated the Spearman correlation between genotype (i.e., the number of 

alternative alleles) at each common SNP (MAF≥0.05 in the 3,195 individuals included in 

SDS calculation) and read depth at each of the other SNPs in the MHC region. As 

expected, the read depth at a SNP is usually negatively correlated with number of 
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alternative alleles at nearby common SNPs (the diagonal line in fig. S16A1). This read 

depth asymmetry appears to be particularly strong in a few regions (the vertical patterns 

in fig. S16A), where the read depths are correlated with genotypes at almost all SNPs 

across the MHC region, reflecting the extensive LD structure. However, the lack of 

horizontal patterns shows that no common SNPs are vastly associated with read depths at 

all sites across the MHC region, indicating that the effect of reference bias in read depths 

is highly localized.  

 

To quantify the range and extent of the reference bias around a common variant, we 

combined the read depth at all polymorphic sites within certain distance (5Kb, 50Kb or 

500Kb) from the focal SNP, and tested for association between the combined read depth 

and genotype at the focal SNP. We regressed the combined read depths on the number of 

alternative alleles across the 3,195 individuals and calculated the ratio of the predicted 

combined read depth for homozygotes of the alternative allele to that of the reference 

allele. While the reference bias is evident in certain parts of MHC on short distance scales 

(in 10Kb window), the effect is weak in general: 95% common SNPs show less than 10% 

differences in read depth between the two homozygotes. The effect almost diminishes at 

1Mb scale (95% common SNPs have less than 3% difference; fig. S16B). Given that the 

distances of a common variant to the nearest singletons are usually on Megabase scale, 

the short-scale reference bias in read depth is unlikely to affect SDS results.  

 

Finally, to directly investigate the effect of reference bias on SDS, we quantified the 

correlation between SDS for the reference allele (positive value meaning selection for) 

and the log ratio of read depth for the alternative allele to that of the reference allele: the 

correlation is slightly negative on both short and long distance scales (Spearman’s ρ=-

0.095 for 10Kb window, and ρ=-0.077 for 1Mb window; fig. S16C). The direction of this 

correlation is consistent with the expectation that reference bias could lead to 

underestimation of the alternative allele frequency, thereby falsely increasing the SDS for 

the reference allele. Nevertheless, the correlation is so weak that very little variation of 

SDS in the MHC region can be explained by the extent of reference bias in read depth. 

Moreover, SNPs with relatively high SDS values in this region usually do not show large 
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asymmetry in read depth (fig. S16C). Additionally, the most extreme SDS values at the 

MHC regions are signals for increased frequency of the alternative alleles, so the overall 

weak bias for decreased SDS for alternative alleles is definitely not driving these most 

extreme SDS signals. Thus, the strongest selection signals in the MHC region are not 

driven by a reference bias in read mapping.  

 

Analysis of high SDS enrichment for pigmentation variants: To test whether alleles 

with known phenotypic effects tended to be targets of positive selection in ancestors of 

the British within the past 2,000 years, we examined the distribution of SDS over NHGRI 

GWAS catalog SNPs (downloaded October 1, 2015). To this end we considered all SNPs 

that were reported for phenotypic association with genome-wide significance (p<5x10-8), 

and removed duplicates. We tested for an inflation of squared SDS values using a chi 

square test, under the assumption that SDS has a Normal distribution.  The rationale for 

this test is that trait-associated SNPs may be more likely than random SNPs to undergo 

short-term directional selection, however we do not know the direction of change a 

priori. 

 

This set of variants with known effects showed significantly inflated variance of SDS  

(p=7.4x10-16). Although a notable part of this signal comes from the extended HLA and 

LCT (lactase) regions (chr6: 25,892,529-33,436,144 and chr2: 134,608,646-138,608,646; 

hg19 coordinates), the test was still significant after we excluded those regions 

(p=4.9x10-7). 

 

To further identify relevant categories of SNPs under selection we grouped the significant 

NHGRI GWAS catalog SNPs by ontology and tested each term separately for increased 

SDS variance. After removing extended MHC and LCT regions, retaining only the most 

significantly associated SNP per 100Kb window per term and requiring at least 3 SNPs 

per term, each term was tested for inflated variance by taking the sum of its squared SDS 

scores and comparing to the chi square distribution with appropriate degrees of freedom. 

At a false discovery rate of 5%, only three terms were above the threshold: “suntan”, 

“eye color” and “hair color”.  
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To follow up on this finding, we compiled all associations from the GWAS catalog that 

were annotated with pigmentation-associated ontology terms: eye color, freckles, hair 

color, skin pigmentation, skin sensitivity to sun, sunburn, and suntan. Variants from 

studies that indirectly measured the pigmentation traits were excluded (e.g., studies which 

measured clinical response to sun through cancer risk). We then considered all these 

variants for which we further had SDS predictions (e.g., MAF>5% and available 

derived/ancestral annotation; see Methods section: Computing SDS for UK10K data). 

We again excluded variants within the extended MHC and LCT regions. For multiple 

SNPs located in the same locus we kept only the variant with most significant p-value, 

unless variants were more than 100Kb apart and we further found an experimental 

support in the literature for their independent functional significance. This resulted in 14 

SNPs with available SDS scores that are associated with either pigmentation or freckling. 

In all 14 cases the derived allele is associated with either lighter pigmentation (i.e., lighter 

hair, skin, or eyes) or increased freckling. The average SDS for these alleles is 

significantly larger than expected by chance (average: 1.58, one-sided p-value: 2x10-9, 

testing against standard normal with mean=0). The strongest signal is for selection in 

favor of a blond hair variant at the KITLG locus, currently at 12% frequency (p=2x10-6), 

and a weaker signal in favor of blond hair at SLC24A4 (p=8x10-3). We also replicate a 

known signal for blue eyes at the HERC2/OCA2 locus (p=2x10-5) (12, 24).  

 

The case of the KITLG blond hair allele (rs12821256) is of special interest (46). The 

KITLG locus shows a clear signal of selection in recent human history that includes an 

extended haplotype at high frequencies outside Africa, in both Europe and East Asia (47–

50). It is thought that this selection is related to the established role of KITLG in skin 

pigmentation (51). When rs12821256 was first found to be associated with the blond hair 

phenotype it was also tested for being a target of selection (46). Unlike the extended 

haplotype, the blond-hair allele is present in Europe but not in East Asia, and at much 

lower frequencies (~12% in UK10K). Sulem et al. showed that rs12821256 is present 

almost exclusively on the background of the extended haplotype, and that conditioned on 

the extended haplotype background it does not show a selection signal (of extended 
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haplotype). They concluded: “Thus, the rs12821256 C allele is not itself under positive 

selection, but rather is a hitch-hiker whose frequency is driven up by some selective 

advantage that is conferred by the extended haplotype.” (46). However, it seems likely 

that the hard sweep method that they used was underpowered for detecting a recent 

partial sweep that occurred on the background of a much older sweep that had already 

purged most of the variation from the region. 

 

In contrast, the SDS signal at the KITLG locus is peaked almost exactly on the blond-hair 

allele (fig. S20). To more directly disentangle between the SDS signal and the extended 

haplotype signal, we computed SDS for the blond-hair allele conditioned on being on the 

extended haplotype background. To this end we considered three SNPs that were 

previously used to tag the extended haplotype (list taken from (52)): (1) rs642742 (51), 

(2) rs10732643 (49), and (3) rs1881227 (50). For each of these tag-SNPs we took all 

UK10K individuals (of the 3,195) that were homozygous for the extended haplotype tag. 

There were 2,181, 2,836 & 2,881 individuals homozygous for SNPs (1), (2) & (3) above, 

respectively. The frequency of the blond-hair allele increased in these subsets in line with 

the reported association with the extended haplotype (from 12.4% in UK10K to 15.2%, 

13.1% & 13.1%). We then computed SDS on chromosome 12 for all SNPs within the 

same DAF-bin to that of the blond hair allele, and used that to standardize the raw scores. 

In all three cases, the SDS score for the blond hair allele (rs12821256) conditioned on the 

extended haplotype background is slightly higher (SDS=5.15, 4.87 & 4.91) than the 

original 3,195-UK10K prediction (SDS=4.60). We conclude that the blond-hair allele 

was not a hitch-hiker on the extended haplotype but rather a target of more recent 

selection. 

 

In summary, there is by now evidence that the KITLG locus has been subject to at least 

two independent selection events in recent human history: (1) selection related to light 

skin color at about the time of migration of humans out of Africa, which left a signature 

of an extended out-of-Africa haplotype; and (2) more recent selection on the blond-hair 

allele in northern Europe – likely persisting well into the past 2,000-3,000 years – that 
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left a signature of lower density of singleton variants in UK10K around the selected 

allele. 

 

GWAS processing: Summary statistics from published GWAS for 44 traits were 

downloaded and converted to a common file format. Criteria for inclusion consisted of 

study subjects of European ancestry, presence of signed effect sizes, estimates for at least 

1 million markers, and at least one genome-wide significant hit reported in the paper. For 

some traits, summary GWAS statistics were reported for men and women separately as 

well as for the combined cohorts. The analyses presented in Figure 4A,B are based on the 

sex-combined summary statistics for height from the family-based study of (20). For the 

analysis presented in Figure 4C we only included the sex-specific summaries, where 

those were available, and excluded the combined GWAS. For consistency with the other 

studies, Fig. 4C also excludes the height and BMI results from the family-based studies 

of Robinson et al. After insertion and deletion variants were removed, SNP RSIDs were 

remapped to the GRCh37 version of dbSNP build 142 and assigned genomic coordinates. 

Odds ratios were log2 transformed to report a signed effect size per SNP (to facilitate 

comparison with fit coefficients per SNP for quantitative traits). To match the same 

direction as SDS scores, reported effect sizes’ signs were polarized such that positive 

GWAS summary statistics represented a trait-increasing effect of the derived allele. For 

each GWAS, SNPs for which we had estimated an SDS score were taken forward for 

significance testing. 

 

GWAS selection testing: For all downstream analysis, strand ambiguous SNPs (i.e. A>T 

or G>C) were removed to prevent the possibility of strand errors, and the extended MHC 

and lactase regions were excluded because of the previously known selective pressures 

exerted on them (chr6: 25,892,529-33,436,144 and chr2: 134,608,646-138,608,646; hg19 

coordinates). The pipeline for each GWAS was identical: SDS scores were re-normalized 

with respect to the derived allele frequency in 1% bins to control for possible 

ascertainment biases in the GWAS SNPs. Following this adjustment, tSDS scores were 

generated by switching the sign of SDS scores so that a positive tSDS score represents an 

increase in the frequency of the trait-increasing allele reported by the GWAS. The 
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strength of selection acting on a trait was taken as the spearman correlation between tSDS 

and GWAS log p-value such that positive correlation would reflect selection for 

increasing the trait and negative for decreasing the trait.  

 

To ascertain the significance of the correlation in the context of LD, a blocked jackknife 

approach was employed to calculate the standard error in the Spearman correlation 

estimate (53, 54). For each GWAS, SNPs were assigned to one of 1,500 contiguous 

blocks based on concatenated genomic coordinates for an average of 2 Mb of sequence 

per block. Correlated tip lengths should be accounted for by this estimation. Spearman 

correlation was calculated globally and after removing each block to calculate the 

jackknife error. Raw p-values were calculated for the point estimates using null normal 

distributions with mean zero correlation and standard deviation equal to that of the 

jackknife error. P-values were robust to binning approach and were confirmed by an 

alternate method in which the genome was partitioned into fixed 1 Mb blocks and the 

direction of tSDS scores for all SNPs in the block were flipped with one-half probability 

prior to calculating genome-wide correlations between tSDS and GWAS summary 

statistics. Log p-values produced by this method were essentially equivalent (R2 > 0.99). 

We further verified that significance of the GWAS-tSDS correlations is not affected by 

local variation in G/C content (fig. S24), nor by regional variation in the B-statistic – a 

proxy for background selection and known correlate of functional density (55) (figures 

S25, S27). 

 

Estimating SDS-GWAS correlations using LD Score regression: Consider a GWAS 

study of a complex trait.  Let zi be the Z-score of the signal on SNP i. The underlying 

principle of LD Score regression is that, under a polygenic model (i.e., assuming many 

causal variants), the expected squared effect size E[zi
2] scales linearly with the effective 

number of LD partners tagged by that SNP (referred to as the SNP’s LD Score).  Thus for 

a GWAS with true signal (as opposed to spurious signals due to confounding) we expect 

to see a positive relationship between LD Score and zi
2. Bulik-Sullivan and colleagues 

proposed LD Score regression as a tool for assessing the extent of polygenic signal in a 

GWAS study (24). Using theoretical models, and simulations based on real genotype 
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data, they argued that the main effect of population structure confounding is to push the 

LD score regression intercept above 1; but that realistic levels of structure are unlikely to 

have significant impact on the slope. 

 

In a follow-up paper, Bulik-Sullivan and colleagues extended LD Score regression to 

measure the correlation between pairs of traits (25).  Let zi1 and zi2 be the Z-scores at SNP 

i for two different traits.  Then the expected slope of the regression of zi1 x zi2 is 

proportional to the genetic covariance between traits 1 and 2. Here we extend this 

intuition by replacing GWAS z scores by SDS z scores: specifically we measure the 

correlation between the product of a trait and SDS z scores: i.e., zi x SDSi against LD 

Score. The logic here is similar to that in the GWAS context: we expect trait effect sizes 

to have larger variance in regions of high LD Score, and hence they should have 

proportionally greater effects on SDS. Note that this is expected to be a much less 

powerful analysis than simply testing for correlation between zi and SDSi, yet more robust 

if the GWAS data are confounded by population structure.  

 

To apply LD Score regression, genetic correlation and genetic correlation p-values for 

SDS Scores and GWAS summary statistics were calculated using code from Bulik-

Sullivan et al (25) (https://github.com/bulik/ldsc). SDS Scores were processed as 

genome-wide summary statistics for association study. The sample size option (N) was 

fixed at the number of informative individuals in the combined TWINSUK and ALSPAC 

cohort (3,195) for SDS Scores and the number of individuals reported in each GWAS for 

GWAS traits, though in practice this choice had little impact on the resulting p-values. 

Other pipeline options were left as the default for all traits. LD Score regression 

intercepts were fit and largely fell near 1 as expected. Traits showing both a Bonferroni 

significant tSDS correlation p-value and a LD Score regression one-sided p-value under 

0.05 were considered suggestive of selection truly acting on the trait. The LD Score 

regression p-values were enriched for small p-values and concordant directions with the 

main analysis, but aside from height the individual significance levels were modest (the 

smallest was 5x10-4, one-sided, for female hip size). See the Supplemental Excel file for 
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details of the GWAS studies examined, and the results obtained for them with each of the 

statistical tests above.  

 

Analysis of family-based height data using ashR. To investigate our observation that 

mean tSDS is >0 even for nonsignificant p-values, we applied the ashR method (23) to 

the family-based GWAS data from Robinson et al (20). The goal was to assess whether it 

is plausible to find a tSDS signal for SNPs that do not show any significant association in 

the GWAS analysis.  ashR operates under a unimodal assumption whereby the mode of 

true effect sizes are zero, and null p-values are uniformly distributed across the interval 0 

to 1. By maximizing the likelihood of measured effect sizes and standard errors under 

this assumption and the constraint that the least significant p-values are assigned to the 

null distribution, ashR can report for each test the probability of the true sign of beta 

being 0, the same as the estimated sign, or the opposite sign. Our rationale for this 

analysis is that in order for mean tSDS to be positive, the fraction of SNPs with correct 

sign has to be substantially greater than the fraction of SNPs with incorrect sign. The 

context of a GWAS study differs from standard applications of ashR as noncausal SNPs 

may have large estimated effect sizes because they tag - are in LD with - a causal site. 

This is appropriate for the present application, since the expected sign of SDS should 

depend on the summed effects of a SNP and all its LD partners, regardless of whether it, 

itself, is actually causal. 

 

Results from this analysis are shown in figure S23. As shown in the figure, even for SNPs 

with p-values >0.5, ashR estimates that a substantial fraction of SNPs have a nonzero 

effect and, moreover, that the sign is estimated correctly more often than not. This 

provides independent confirmation of the plausibility of our tSDS results for height at 

nonsignificant SNPs. 

 

Correspondence between SDS signals of polygenic adaption and phenotypes of 

modern British: We find it interesting to report that for some traits for which we see a 

signal of selection there is some evidence that they indeed match phenotypic 

characteristics of present day British. For height this has been reported before: there is a 
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notable south to north gradient of increased stature within Europe (20, 9), consistent with 

our signal for recent selection for tall stature in ancestors of the British. Two GWAS 

meta-analyses show a signal in our study consistent with selection for delayed sexual 

maturation in British women: SDS correlates with a lower Tanner stage (56) and a later 

age of menarche (57). Perhaps consistent with that, age at menarche was also reported to 

show a positive south to north gradient in Europe (58, 59). It is also known that head 

circumference in the British is among the largest in Europe, consistent with the selection 

signal we observed for increased infant head circumference. For example, the following 

literature review summarizes reports for children head circumference at two years across 

26 countries around the world (60).  
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Supplementary Data File. 

Table S2: Summary of GWAS data sets and results. This table is available online as 

an Excel file.  

 

External Online Resources. 

A table of SDS values and R code for computing SDS are available through the Dryad 

Digital Repository at http://datadryad.org/resource/doi:10.5061/dryad.kd58f and GitHub 

at https://github.com/yairf/SDS, as well as	   through the authors’ website at 

http://pritchardlab.stanford.edu. 
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Supplementary Figures. 
 

 
 
Figure S1: Illustration of SDS in the case of neutral drift. (A) Simulated allele frequency 
trajectory for a derived allele that drifted (i.e., was selectively neutral) to present day frequency of 
0.7. Compare with Figure 1, which shows a simulated example of an allele that followed a strong 
selection from standing variation starting 100 generations ago to reach the same present day 
frequency of 0.7. (B) Blow-up of a small part of the genealogy for a random sample of 3,000 
present day genomes (6,000 haplotypes). The mean lengths of terminal (“tip”) branches for the 
derived and ancestral alleles are highly similar (~75 generations). Compare with the selection 
example in Figure 1, where recent selection led to favored allele haplotypes having shorter tip-
branches than in the neutral case, and to disfavored allele haplotypes having longer tip-branches 
than in the neutral case. (C) The distribution of distances between consecutive singletons over the 
simulated test-SNP (which captures singleton densities), for the three test-SNP genotypes. As 
average tip-branch lengths for the ancestral and derived alleles are similar, the singleton densities 
are similar. SDS is the standardized, inferred log-ratio of mean tip lengths. For this neutral 
simulated example SDS is not significantly different than zero (p=0.35).  
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Figure S2: QQ-plot for neutral SDS simulations. (A) Standardized SDS values for 2,000 
neutral simulations are shown against the quantiles of the Normal distribution. Simulations are 
based on a European population size model, for alleles with present day frequency of 0.7, and 
samples of 3,000 individuals. Formal statistical tests for Normality are not rejected (Shapiro-
Wilks p=0.52, and Kolmogorov-Smirnov p=0.93). For more simulation details see Methods 
section: Simulation of power and specificity of SDS to recent history. (B) Standardized SDS 
values for neutral simulations as in (a), but for additional present-day derived allele frequencies 
(DAF=0.1-0.9; 750 simulations per DAF).  Note that we standardize SDS using the empirical 
standard deviation.  This is essentially an assumption that true selection signals are sparse; it will 
tend to be conservative if a large fraction of the genome is actually under selection. 
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Figure S3: Neutral SDS simulations for a simple admixture model of European 
demography. (A) Illustration of the demographic model we used to simulate the effect of recent 
admixture. As a base model we use the Tennessen model (14). Tennessen assumes two bottleneck 
events, one for out-of-Africa and another for foundation of Europe. We assume that a second 
population (pop2) had split at the Europe-foundation bottleneck. The bottleneck of pop2 relative 
to pop1 is a parameter, and we considered values: 0.1 (illustrated), 0.5, and 1. Tennessen then 
models a two-epoch exponential growth. We further parameterized the growth rate of pop2 
relative to pop1, and considered values: 0.8, 1, and 1.2 (illustrated). We modeled admixture of the 
two populations 60 generations ago. After admixture we set the effective population size to that 
of the Tennessen model. The fraction that pop2 contributed to the admixture is our last parameter, 
and we considered: 40%, 20%, and 0% (i.e., without admixture). (B) Raw (unstandardized) SDS 
values	 (mean ±	 SD) for 1,000 simulations for each of the 3x3x3=27 parameter choices 
described. Admixture inflates the variance of unstandardized SDS. (C) QQ-plot of standardized 
SDS for the 27 parameters. Thus, admixture (coupled with different growth rates) is unlikely to 
lead to non-normality of SDS under the null of neutral drift.  
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Figure S4: Extended simulations of power and specificity to recent history. (A) The signal 
(mean ±	 SD) of SDS (left) and iHS (right) for simulations of sequences for 3,000 individuals 
under different models of positive selection, for alleles with present derived frequency of 0.9, 
using a European population size model. Three models of positive selection are presented: 
orange: continuous selection throughout history (i.e., the classic partial hard sweep model); cyan: 
selection that started from standing variation 100 generations ago; and black: selection that 
stopped 100 generations ago. Each model is shown for different selection coefficients, and is 
standardized relative the Neutral drift model (gray). (B) The average frequency trajectories for 
these simulations are shown for the past 200 generations. (C,D) Simulations as in (A,B) for 
present-day DAF=0.5. (E,F) Simulations as in (A,B) for present-day DAF=0.1. This simulation 
figure thus extends on the simulations presented in Figure 2B by showing results for additional 
present-day derived allele frequencies, as well as by providing more information on performance 
of iHS and by showing the actual DAF trajectories. For more simulation details see Methods 
section: Simulation of power and specificity of SDS to recent history. 
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Figure S5: A unique feature of SDS compared with iHS is the ability to show that selection 
persisted into very recent history. (A) ROC analysis for discriminating 100 simulations of 
selection that started 100 generations ago (i.e., from standing variation) from 100 simulations of 
selection at the same strength that stopped 100 generations ago (i.e., followed by drift). For SDS 
recent selection results with increased score relative to the ancient selection; whereas for iHS it is 
the ancient selection that typically gets a higher score. Simulations are from Figure 2C 
(Tennessen model; a sample of n=3,000 individuals) (B) Similar to (A) but instead of showing 
the area under the ROC curve (AUC), we show the point of the ROC at x=0.05. Assume that 
selection started 100 generations ago (continued until the present), with known selection 
coefficient.  Can we use the observed signal (SDS or iHS) to determine whether selection 
continued within the past 100 generations? The worst case under the null is a selection at that 
strength that stopped exactly 100 generations ago. The ROC at x=0.05 is the estimated 
probability that one observes a signal that is higher than 95% of such worst case null simulations. 
By chance we expect 5% to be higher than 95% null simulations. With iHS we do not expect to 
exceed the 5%, which comes from the fact shown in (A) that it usually gets an even higher signal 
for the older selection scenario. With SDS we can expect to be able to make such claims about 
selection continuing into the past 100 generations for almost all instances of a strong selection 
(s≥0.05). In Figure S14 we use this property to infer that the SDS signal we observe in UK10K 
for lactase most likely reflects selection that persisted well into the last 2,000 years. 
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Figure S6: SDS power and timescale depends on sample size. (A) SDS signal (mean ± SD) for 
simulations of a continuous selection model (i.e., hard sweep) in European demography (14), for 
various selection coefficients (x-axis) and sample sizes (colors). For both panels, each point 
corresponds to 200 simulations; except for the largest sample size (n=10,000), for which we 
performed only 50 simulations due to computational burden. (B) Simulations of the SDS signal 
for a strong selection (s=0.05) that stopped in the past and followed by drift, for various stopping 
times (x-axis) and for various sample sizes (colors). With smaller samples SDS has fewer 
independent observations to estimate the change in frequency, and so it has less power to detect a 
selection that persisted to the present. However if selection only occurred at more ancient times, 
there is a tradeoff between sampling error and effective timescale. The smaller samples have 
longer tips, and so SDS can integrate these old signals that are out of reach for the large sample 
SDS; leading to increased signal with decreased sample size.  
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Figure S7: Data quality control to remove UK10K individuals with abnormal numbers of 
genome-wide singletons. (A,B) For the ALSPAC cohort, shown in (A) is the total number of 
singletons per individual, by the fraction of these singletons that were detected by the 1000-
Genomes project to be also present in non-European populations (termed here “migration” 
singletons). The total number of singletons by the sequencing depth is shown in (B). Individuals 
were excluded from downstream analysis (red), if they had either an abnormally high fraction of 
migration singletons, or an abnormally high number of total singletons accounting for both 
migration singletons and sequencing depth (see Methods section: UK10K data preprocessing). 
(C,D) As in (A,B) but for the TwinsUK cohort. 
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Figure S8: Extended simulations of selection from real present variation. We considered the 
UK10K genotype data for the 3,195 individuals that passed our quality control. For each pair of 
present and target derived allele frequencies, we randomly picked 1,000 SNPs with this present 
DAF in UK10K and subsampled them with 1,500 individuals each to the target DAF. SDS and 
iHS were ran on these biased subsamples, and the results were standardized relative to the 
unbiased sampling case (i.e., when present DAF equals the target DAF). Shown here are results  
(mean ± SD) for three target derived allele frequencies (left to right): 0.1, 0.5, and 0.9. This 
simulation figure thus extends on the simulation presented in Figure 2D by showing results for 
additional target frequencies. For more simulation details see Methods section: Simulation of 
selection from present variation. 
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Figure S9: ROC analysis for the simulations of selection from real present variation. We 
considered the UK10K genotype data for the 3,195 individuals that passed our quality control. 
For each pair of present and target derived allele frequencies, we randomly picked 1,000 SNPs 
with this present DAF in UK10K and subsampled them with 1,500 individuals each (without 
replacement) to the target DAF. SDS and iHS were computed for these biased subsamples. 
Shown here is a ROC analysis view of the simulations presented in Figure 2D (present 
DAF=0.7). For each target DAF, shown is the area under the ROC curve (AUC) for 
discriminating the 1,000 simulations of this target DAF against the 1,000 simulations of unbiased 
sampling (i.e., when present DAF equals the target DAF). For more simulation details see 
Methods section: Simulation of selection from present variation. 
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Figure S10: Estimating the mean tip-branch length in the UK10K data. (A) The expected 
mean tip length under neutral drift for samples of varying sizes, shown for the three recent 
models of European demography. These expectations were computed using an analytic formula 
(61) (analogous results in Figure 2A are based on simulations). The mean tip length for a sample 
of 3,000 individuals (2n=6,000 haplotypes) for the Tennessen model (14), which was used 
throughout this paper for simulations, is 74.9 generations. A model by Nelson (38) predicts a 
much longer time of 174.8 generations; but most recent model by Gazave (39) gives an even 
shorter time estimate of 60.1 generations. (B) Total number of singletons for the 3,195 UK10K 
individuals used in this work vs. the individual sequencing read depth. Over all individuals, mean 
sequencing depth is 6.37±0.03; mean total number of singletons is 5,130±17; and in that regime 
there is a linear relationship between them. However, the increase in total number of singletons 
seems to saturate for individuals with highest sequencing depth. The top 78 individuals with 
highest sequencing depth (≥12; colored orange) have little dependence on sequencing depth, 
suggesting they are in the regime that approaches saturation. The mean total number of singletons 
for these 78 individuals is 8,200±70. We use this to give a gross direct estimate of the mean tip 
length in the UK10K sample. We assume that true saturation of average number of singletons 
would be ~5% higher; that with saturated read depth, variation could be determined for ~80% of 
the genome; as well as a mutation rate per generation of 1.45x10-8 (40, 41). This gives an 
estimated mean tip length of ~112 generations. In Methods section Estimating the mean tip-
branch length in the UK10K data we discuss another two reported estimates, and conclude that 
the mean tip length is likely on the order of 2,000-3,000 years. 
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Figure S11: Extended validation of SDS for UK10K using 1,000-Genomes population 
frequencies. We built a linear regression model to predict SDS in UK10K based on the allele 
frequencies in the 26 1000-Genomes populations. Most outlier SNPs that have high predicted 
SDS but low observed SDS are likely due to inaccuracies of the 1000 Genomes estimates as they 
are highly enriched within the set of SNPs that is in dispute between UK10K and 1000-Genomes 
GBR, in terms of both mapping (A) and frequency estimates (B). We fitted the regression model 
for SDS given population frequencies without using the three chromosomes with genome-wide 
significant SDS signals (i.e., 2, 6, and 10) (C). Nevertheless, this model predicts well the linear 
trend with SDS for those unseen test chromosomes (d-f), and furthermore shows that the extreme 
SDS signals at LCT (D), MHC (E), and WDFY4 (F) are broadly consistent with frequency 
differences between populations.  
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Figure S12: LocusZoom plot of the lactase (LCT) gene region. Causal SNP for lactase 
persistence is the index SNP, in purple. SDS shows massive signal along a multi-Mb region, 
concentrated towards the 5’ UTR of lactase. Derived alleles are largely increasing (SDS > 0) 
suggesting that many young variants have been pulled up along with the lactase persistence allele. 
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Figure S13: Comparison of SDS for UK10K with selection signals identified in Mathieson et 
al (2015). Shown are SDS scores for SNPs detected as recently selected in Europe by a study of 
ancient DNA of 230 Eurasians (12). SDS is directed here relative to the reported selected allele, 
so large positive SDS indicates agreement about selection signals between these studies.  
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Figure S14: Interpreting the timescale and selection strength of the lactase signal using 
simulations. (A) SDS signal (mean ± SD) for 300 simulations of a strong selection 
(s=5%,7.5%,10%) that stopped x generations before the present, and reached allele frequency of 
0.7; for a sample of 3,000 individuals and the Tennessen demographic model of Europe (14). The 
SDS signal observed for the known lactase-persistence allele is shown in dashed pink line. (B) 
For the simulations in (A), shown is the fraction of the 300 simulations that result in SDS value 
greater or equal to the observed lactase signal in the UK10K data. For selection that stopped any 
time ≥37 generation from the present, and for any selective pressure of ≤10%, all 300 simulations 
gave SDS signal strictly lower than we observed for the lactase allele in the UK10K data. As we 
elaborate in Methods section: Timescale of selection on lactase, this suggests that under 
conservative assumptions (s≤10% and mean tip length in UK10K ≤4,000 years), we can estimate 
that it is highly unlikely (p<1/300) that selection on the lactase-persistent allele did not enter the 
past 2,000 years. 
  



	   52	  

 
Figure S15: LocusZoom plot of the extended MHC region. Analysis of different index SNPs 
suggests at least three independent targets of selection within the extended MHC. 
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Figure S16: Reference bias in read depth in the MHC region and its effects on SDS. (A) 
Correlation between genotype at common SNPs (MAF>0.05) and read depth at nearby SNPs. 
Red and blue represent positive and negative correlations respectively, and the shade of color 
represents the -log(P-value) of Spearman’s rank correlation. For illustration purpose, only part of 
the MHC region is shown (chr6: 29,500,000-33,000,000). (B) Difference in combined read depth 
between two types of homozygotes in 10kb, 100kb and 1Mb windows. (C) Correlation between 
SDS for the reference allele and log ratio of combined read depths for the two alleles (alternative 
over reference). Notice that although some positions have biased read mapping, there is not a 
strong effect that some genotypes are associated with much higher read depths across a large 
region (A).  Moreover, the largest SDS scores are at SNPs with little or no difference in read 
depths between genotypes, arguing that reference bias does not drive the biggest signals. 
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Figure S17: LocusZoom plot of the WDFY4 gene region. The causal gene for the locus is 
unknown; the greatest SDS SNP was chosen as the index SNP. The two genome-wide significant 
hits are tightly linked to each other.  Interestingly, additional SNPs in the region approach 
genome-wide significance despite being unlinked. 
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Figure S18: Background selection does not inflate SDS variance. Background selection varies 
along the genome and was shown to be associated with GWAS-catalog variants (62). One might 
wonder whether our finding that GWAS-catalog variants have inflated SDS variance is an 
indirect result of some dependence of SDS variance on background selection. Variation in 
background selection is commonly modeled as a regional variation in the effective population 
size (55, 63).  (This is an approximate model of background selection; however more explicit 
models are computationally infeasible at the scale required for SDS simulations.)  Shown here are 
the unstandardized SDS values (mean ± SD) for 1,000 neutral simulations of present DAF 0.7, 
using the Tennessen demographic model (14) whose effective population size was scaled by up to 
a 20% increase or 20% decrease. Equality of variance over the different effective population sizes 
is not rejected (p=0.35; Leven test). Thus, background selection is unlikely to be the cause for the 
association of GWAS-catalog variants with increased SDS variance. 
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ID GENE CHR POS SDS FIRST 
AUTHOR PUBMED ID PVALUE DAF 

(UK10K) 

rs12821256 KITLG 12 89328335 4.6001293 Sulem P 17952075 4e-30 0.119 

rs12913832 OCA2/HERC2 15 28365618 4.0750304 Eriksson N 20585627 1e-300 0.770 

rs619865 ASIP 20 33867697 2.8031028 Eriksson N 20585627 5e-14 0.886 

rs12896399 SLC24A4 14 92773663 2.4172635 Sulem P 17952075 1e-48 0.446 

rs1393350 TYR 11 89011046 1.4666560 Jin Y 20410501 2e-18 0.273 

rs1408799 TYRP1 9 12672097 1.4084269 Sulem P 18488028 6e-17 0.695 

rs975739 EDNRB 13 78381146 1.4204976 Zhang M 23548203 2e-14 0.603 

rs2153271 BNC2 9 16864521 1.1036386 Eriksson N 20585627 4e-10 0.606 

rs916977 OCA2/HERC2 15 28513364 1.1088416 Kayser M 18252221 1e-43 0.850 

rs1003719 TTC3 21 38491095 1.0790324 Liu F 20463881 2e-10 0.559 

rs1667394 OCA2/HERC2 15 28530182 1.0656963 Sulem P 17952075 2e-53 0.841 

rs35264875 TPCN2 11 68846399 0.2078374 Sulem P 18488028 4e-30 0.152 

rs1015362 ASIP 20 32738612 -0.4427474 Sulem P 18488028 6e-37 0.282 

rs13289810 TYRP1 9 12396731 -0.5271060 Kenny EE 22556244 1e-19 0.350 

 

 
Figure S19: Analysis of SDS signal at pigmentation variants. Information about the 14 
pigmentation variants presented in Figure 3C. Genome coordinates are in hg19. The referenced 
manuscript and p-value indicate studies that reported the association of the variant to the 
pigmentation trait. For more details about literature curation see Methods section: Analysis of 
high SDS enrichment for pigmentation variants. 
  	   	  

Further information for the pigmentation variants shown in Figure 3C 
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Figure S20: LocusZoom plot of the KITLG gene region. The blond-hair allele rs12821256 has 
been chosen as the index SNP. SDS scores suggest increase in haplotype frequency without 
achieving genome-wide significance.	   	  
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Figure S21: LocusZoom plot of the OCA2 gene region. rs12913832, implicated in eye color, 
has been chosen as the index SNP. SDS scores suggest increase in haplotype frequency without 
achieving genome-wide significance. 
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Figure S22: SDS signal for polygenic adaptation for increased height using GWAS meta 
analysis data. (A) Mean tSDS of SNPs, where tSDS is polarized according to the estimated 
direction of effect of each SNP on height in a recent GWAS meta analysis (21). The x-axis is 
ordered from least significant SNPs (p~1) to most significant (p~0) and SNPs are placed into bins 
of 1,000 consecutive SNPs (ρ=0.078, p=9x10-74). (B) Covariance of height effect size (Z-scores) 
and SDS, as a function of LD score (p=3x10-17 using the LD score test for genetic correlation 
(25)). These plots are analogous to Figure 4A,B, but using the GWAS meta analysis instead of 
the family-based data.  
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Figure S23: Estimated false sign rates in family-based height GWAS. The rows show 5% bins 
of SNPs (sorted by p-value).  For each SNP, ashR reports a probability that the estimated sign is 
reversed (e.g., positive when it should be negative) [left-hand violins]; correct [right-hand 
violins]; or zero [not shown]. For the most significant SNPs (bottom row), ashR estimates that 
nearly all SNPs reflect true effects with correctly estimated sign. SNPs with p-values as high as 
0.75 appear to reflect true signal more often than not.  
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Figure S24: SDS associations as a function of GC content. (A) Lower GC content regions 
(measured in 150bp bins around the test SNP) possess systematically greater SDS variance, 
although the effect of this is small. (B) GC content-associated differences appear to have little 
effect on GWAS Z-score correlation testing. The SDS vs. GWAS Z-score correlations vary little 
across the different partitions of GC content. 
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Figure S25: SDS associations partitioned by background selection. SDS signal is apparent 
across different partitions of susceptibility to background selection. SDS correlations with GWAS 
Z-scores for a selection of traits are only marginally stronger for functionally dense regions as 
determined by the B-statistic than functionally poor regions. 
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Figure S26: SDS associations partitioned by derived allele frequency. SDS correlations with 
GWAS Z-scores are stable across the spectrum of derived allele frequencies.  
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Figure S27: SDS associations vs. permutations that preserve derived allele frequency and B-
statistic. The correlations between GWAS Z-scores and tSDS scores were compared to 
correlations obtained for SNP permutations that preserve derived allele frequency and B-statistic 
– a proxy for background selection and a known correlate of functional density (55). SNPs were 
placed into bins on a two-dimensional grid defined by 20 equally sized DAF intervals and 10 
equally sized B-statistic intervals. SDS values within each of the 200 grid bins were permuted 
such that the SNPs retained their contiguity. The observed GWAS-tSDS correlations are shown in 
red. Correlations obtained for 19 SNP permutations, in black (box-plot and outer quartile 
outliers). Permuted values lead to correlations tightly distributed around zero, and the observed 
GWAS-tSDS associations remain highly significant by this test. 
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Figure S28: Height does not underlie other top signals in SDS associations. (A) SDS suggests 
selective pressures have been increasing height polygenic score in both men and women in 
Britain when each trait is tested individually (red dots). When all three height GWAS summary 
statistics are used to predict GWAS, most of the signal evaporates and only the meta-analysis 
holds close to the original effect size (black dots with standard error bars). (B) When different 
candidate traits for selection are used to predict SDS score jointly, the contributions of each of the 
top candidate traits largely persist.   
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Trait Spearman rho Jackknife p-value LD score p-value 
Height 0.078 9.59E-74 1.02E-11 
Height (M) 0.059 1.74E-58 9.80E-11 
Height (F) 0.053 7.92E-46 3.26E-06 
BMI (M) -0.022 2.74E-08 2.60E-02 
BMI (F) 0.002 5.84E-01 1.45E-02 
Hip size (M) 0.009 2.19E-02 2.43E-01 
Hip size (F) 0.022 2.43E-09 5.00E-04 
Waist circumference (M) 0.010 1.07E-02 8.70E-02 
Waist circumference (F) 0.021 9.13E-08 6.50E-03 
Waist to hip ratio (M) 0.013 9.28E-04 2.07E-01 
Waist to hip ratio (F) 0.008 4.40E-02 2.23E-01 
Infant head circumference 0.031 2.15E-17 8.50E-03 
Birth weight 0.014 4.87E-05 2.85E-02 
Birth length 0.010 2.20E-03 2.75E-02 
Childhood obesity -0.004 2.74E-01 9.21E-01 
Age at menarche (F) 0.018 1.35E-06 7.50E-03 
Growth spurt (M) 0.011 3.36E-03 7.50E-03 
Growth spurt (F) 0.001 7.02E-01 5.66E-01 
Tanner stage (M) 0.005 1.98E-01 3.81E-01 
Tanner stage (F) -0.008 2.37E-02 4.85E-02 
Pubertal growth (M) 0.005 1.49E-01 3.49E-01 
Pubertal growth (F) 0.004 2.31E-01 5.15E-01 
Fasting insulin (BMI adj) 0.026 1.98E-14 1.30E-02 
Two-hour OGTT 0.023 4.34E-10 3.00E-02 
Type 2 Diabetes -0.023 1.12E-10 2.08E-01 
HbA1c -0.023 8.67E-12 4.00E-03 
Corrected insulin response -0.012 1.16E-03 1.85E-02 
HOMA beta cell function 0.011 2.32E-03 9.95E-02 
Fasting proinsulin levels -0.009 1.56E-02 9.79E-01 
HOMA insulin resistance 0.008 2.56E-02 2.19E-01 
Fasting glucose (BMI adj) -0.008 2.76E-02 1.01E-01 
LDL -0.018 7.50E-06 6.40E-02 
Total cholesterol -0.014 5.75E-04 7.50E-03 
HDL -0.004 3.24E-01 4.05E-02 
Triglycerides -0.001 7.82E-01 1.88E-01 
Crohn's disease 0.014 1.12E-04 3.33E-01 
Ulcerative colitis -0.002 4.92E-01 5.07E-01 
Rheumatoid arthritis 0.002 5.58E-01 5.01E-01 
Epilepsy 0.012 1.69E-04 2.29E-01 
Schizophrenia -0.013 1.84E-03 4.27E-01 
Bipolar disorder -0.007 9.80E-02 3.53E-01 
Alzheimer's Disease 0.002 5.41E-01 4.30E-01 
Years of education 0.009 1.79E-02 7.95E-02 
Coronary artery disease 0.001 7.74E-01 2.87E-01 
 
Table S1: Summary of GWAS correlation testing with SDS. Positive values suggest trait-
increasing alleles are associated with recent selection. LD score genetic correlation p-values 
reported are one-sided for confirming the direction of effect in the raw correlation. 
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