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Document S1: Supplemental Information and Modeling Procedures 

Pre-optimized transcription-based amplifier design 

We chose synthetic transcription-based devices as our amplifier for their potential to exhibit a large 
dynamic range and amplification gain, while remaining orthogonal to our target small-molecule inputs. 
Transcription-based devices are typically implemented with a trans protein factor and cis DNA element. 
The trans elements are comprised of a DNA-binding domain (BD) fused to an activation domain (AD) and 
nuclear localization signal (NLS), whereas the cis hybrid promoter comprises operator (OP) sites for BD 
binding and a minimal promoter (miniP) for transcription initiation. Previous studies have demonstrated 
the use of various BDs to implement this trans-acting transcription initiation mechanism between protein 
and DNA, including bacterial DNA-binding proteins (Ajo-Franklin et al., 2007), zinc finger motifs (Khalil et 
al., 2012; Lohmueller et al., 2012), TALEs (Perez-Pinera et al., 2013), and recently CRISPR/dCas9 
systems (Farzadfard et al., 2013; Gilbert et al., 2013).  

We built a transcription-based amplifier based on this reported architecture using a bacterial DNA-binding 
protein LexA as the BD (Brent and Ptashne, 1985), a viral transcriptional activator VP16 as the AD 
(Gossen and Bujard, 1992), and a corresponding hybrid promoter by placing LexA-specific OP sites 
(LexAO) upstream of a minimal promoter from PGAL1 (Brent and Ptashne, 1985). The trans element was 
expressed from a constitutive promoter (PGPD), and a reporter cassette to measure the transcription-
based amplifier performance was designed by placing EGFP downstream of the hybrid promoter. Both 
expression cassettes harboring the trans and cis elements were placed on the same plasmid (pCS3434) 
and transformed into the yeast host (CSY3). We characterized the fluorescence expression levels of this 
pre-optimized transcription-based amplifier and observed no amplification activity (gain ~0.4 
protein/protein) and a low-to-medium expression level (Figure S1B). Moreover, the results indicate a 
bimodal distribution of the EGFP expression among cells; however, both populations of cells are above 
the autofluorescence level, suggesting that the transcription-based amplifier is functional but exhibits 
large variability.  
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Modeling RNA switch-controlled gene regulation 

Step 1: Obtaining a general model 

To enable a more quantitative understanding of RNA switches, we expanded a reported kinetic model for 
RNA switches to predict the protein expression level (McKeague et al., 2015). The modified model 
contains four internal states (R, RL, RM as distinct species of mRNAs; P for protein), and one external 
state ([Input] as a small molecule signal; Supplemental Data Figure 1). R represents the state of mRNA 
with its RNA switch in the cleavable conformation (i.e., no input binding), while RL represents the state of 
mRNA with its RNA switch in the input-bound, non-cleavable conformation. RM represents the state of 
mRNA that has a misfolded RNA switch during transcription, which is not responsive to input induction 
nor cleavable. P represents the level of the protein (encoded by the mRNA), and [Input] represents the 
small molecule concentration fed into the system. Eight kinetic parameters were used in the model to 
describe the RNA switch-associated gene expression: the rate constants of synthesis (ks_R, and ks_P), the 
rate constants of degradation (kd_R, kd_RS, and kd_P), mRNA folding partition coefficient (p), and binding 
kinetic constants (kon and koff) between the fed input and the sensor of the RNA switch (i.e., aptamer). 

 

Supplemental Data Figure 1. A modified kinetic model of RNA switches with four internal states, one 
external state, and eight parameters.  

 

Four assumptions were made (without losing the ability to capture the system dynamics) in this kinetic 
model to simplify the differential equations such that the system becomes computationally solvable. First, 
we assumed that the binding affinity of the input small molecule to the RNA switch on the mRNA is the 
same as its binding affinity to the aptamer (KD) measured at physiologically-relevant Mg2+ concentration in 
vitro (McKeague et al., 2015). Second, we assumed that the different species of mRNA (R, RL, and RM) 
have identical chances of being translated into proteins before their degradation, which is represented in 
the model with the same protein synthesis rate constant kd_P. Third, the cleaved mRNA degradation rate 
constant (kd_R) captures two independent processes: mRNA cleavage and decapping-associated 5' → 3' 
degradation. Since the decapping-associated degradation rate has been reported to be significantly faster 
than the RNA cleavage rate (Cao and Parker, 2001), these two processes can be simplified into one 
single rate constant. Last, we assumed that once the mRNA is transcribed into either conformation (R or 
RM), conformation interchanges between the two states are unlikely to happen (i.e., the existence of 
kinetic trap during mRNA transcription and folding) (Russell et al., 2006; Treiber and Williamson, 1999).   

The dynamics between these four states can be expressed as a set of differential equations as follows: 

𝑑[𝑅]
𝑑𝑡

= −𝑘!_! 𝑅 − 𝑘!" 𝐿 𝑅 + 𝑘!"" 𝑅𝐿 + 𝑝𝑘!_! 
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𝑑[𝑅𝐿]
𝑑𝑡

= 𝑘!" 𝐿 𝑅 − 𝑘!_!" 𝑅𝐿 − 𝑘!"" 𝑅𝐿  

𝑑[𝑅𝑀]
𝑑𝑡

= −𝑘!_!" 𝑅𝑀 + (1 − 𝑝)𝑘!_! 

𝑑[𝑃]
𝑑𝑡

= 𝑘!_! 𝑅 + 𝑘!_! 𝑅𝐿 + 𝑘!_! 𝑅𝑀 − 𝑘!_! 𝑃  

We can re-write this set of differential equations of a linear system as the matrix form: 

𝑑
𝑑𝑡

𝑅
𝑅𝐿
𝑅𝑀
𝑃

=

−𝑘!_! − 𝑘!"[𝐼𝑛𝑝𝑢𝑡] 𝑘!"" 0 0
𝑘!"[𝐼𝑛𝑝𝑢𝑡] −𝑘!_!" − 𝑘!"" 0 0

0 0 −𝑘!_!" 0
𝑘!_! 𝑘!_! 𝑘!_! −𝑘!_!

𝑅
𝑅𝐿
𝑅𝑀
𝑃

𝐹           

+

𝑝𝑘!_!
0

(1 − 𝑝)𝑘!_!
0
𝐺

 

If F is invertible, then we can solve the linear system and obtain the time-dependent analytical solution: 

 

𝑅(𝑡)
𝑅𝐿(𝑡)
𝑅𝑀(𝑡)
𝑃(𝑡)

= 𝐹!! 𝑒!" − 𝐼 𝐺 

And since the eigenvalues of the matrix F are all negative in the range of our parameter space (see 
Supplemental Proof 1), we can obtain the steady-state solution by setting the time variable (t) to infinity:  

𝑅(∞)
𝑅𝐿(∞)
𝑅𝑀(∞)
𝑃(∞)

= −𝐹!!𝐺 

If the encoded gene is a fluorescent protein (e.g., EGFP), we can express the expected fluorescence 
level by a linear scalar (denoted as r) multiplying the expected protein levels. Previous studies have 
shown that the cellular fluorescent protein concentration is proportional to the measured fluorescence (Li 
et al., 2000). The equation then becomes:  

𝑅(∞)
𝑅𝐿(∞)
𝑅𝑀(∞)

𝐺𝐹𝑃(∞)/𝑟

=

𝑅(∞)
𝑅𝐿(∞)
𝑅𝑀(∞)
𝑃(∞)

= −𝐹!!𝐺 

To verify that the model is capable of capturing RNA switching dynamics, we performed a simulation 
using this eight-parameter in silico model over five decades of input concentration (10-5 to 100 M in log) 
with KD = 10-6 M, p = 0.95, and kon = 10 Ms-1 (see the Supplemental Data Table 1 for all parameters). The 
simulation results demonstrated a typical RNA switch activity where the gene expression level increases 
as the input level increases (Supplemental Data Figure 2A). We then proceed to evaluate the effect of p 
(mRNA partition coefficient) and kon (input-aptamer association rate constant) on the performance of an 
RNA switch (i.e., activation ratio). We simulated the model across five decades of kon (10-2 to 103 Ms-1 in 
log) and a linear range of p (0.9 to 1). The simulation results indicate that the activation ratio can be 
determined by potentially varying both p and kon (Supplemental Data Figure 2B). Moreover, high 
activation ratios were observed to be in the top-right corner of the heat map plot, suggesting that a large 
kon (strong binding between the input signal and aptamer) and a large p (correct folding) are critical for 
desirable RNA performance.  
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Supplemental Data Table 1. Summary of parameters used in the RNA switch model.  
Name Description Value Reference 

ks_R Synthesis rate of mRNA 10-8
 M/s (Beisel et al., 2008) 

kd_RS Degradation rate constant of stable 
mRNA 

4.2x10-4/s (Cao and Parker, 2001) 

kd_R Degradation rate constant of unstable 
mRNA 

6.2x10-2/s (Determined 
by sTRSV) 

This work 

ks_P Synthesis rate constant of protein 10-2/s (Beisel et al., 2008) 

kd_P Degradation rate constant of protein 10-3/s (Beisel et al., 2008) 

r Linear ratio between predicted protein 
level and measured EGFP 
fluorescence 

3.2x10-5 (Determined by 
sTRSV inactive) 

This work 

KD Binding affinity between aptamer and 
target small molecule 

theophylline (3.38 µM) 
tetracycline (30 nM) 
neomycin (137 nM)  
(6R)-FA (61 nM) 

This work and 
(McKeague et al., 2015) 

kon Association rate constant between 
small molecule and aptamer 

Determined by in vivo 
data 

This work 

koff Dissociation rate constant between 
small molecule and aptamer 

Determined by KD × kon This work 

p mRNA folding partition coefficient Determined by in vivo 
data 

This work 

 

  

 

Supplemental Data Figure 2. (A) Simulation of a typical RNA switch activity. (B) Simulated activation 
ratio (AR) based on a range of kon and p.  
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Supplemental Proof 1.  

To prove that the steady-state solution exists, we need to show that F has negative eigenvalues. We first 
write down the derivation formula to derive the eigenvalues (λ’s) of the matrix F. The determinant of the 
characteristic polynomial matrix is set to zero to solve for eigenvalues.  

𝐹 − 𝐼λ = 0 ⇒

−𝑘!_! − 𝑘!" 𝐼𝑛𝑝𝑢𝑡 − λ 𝑘!"" 0 0
𝑘!"[𝐼𝑛𝑝𝑢𝑡] −𝑘!_!" − 𝑘!"" − λ 0 0

0 0 −𝑘!_!" − λ 0
𝑘!_! 𝑘!_! 𝑘!_! −𝑘!_! − λ

= 0 

We can then simplify the characteristic polynomial matrix using matrix decomposition:  

 ⟹ −𝑘!_! − λ −𝑘!_!" − λ
−𝑘!_! − 𝑘!" 𝐼𝑛𝑝𝑢𝑡 − λ 𝑘!""

𝑘!"[𝐼𝑛𝑝𝑢𝑡] −𝑘!_!" − 𝑘!"" − λ
= 0 

It can be simply observed that the first two eigenvalues, - kd_P and - kd_RS, are both negative. This leaves 
us the other two eigenvalues, which can be obtained by solving the determinant of the 2-by-2 matrix.  

−𝑘!_! − 𝑘!" 𝐼𝑛𝑝𝑢𝑡 − λ 𝑘!""
𝑘!"[𝐼𝑛𝑝𝑢𝑡] −𝑘!_!" − 𝑘!"" − λ

= 0 

⟹ −𝑘!_! − 𝑘!" 𝐼𝑛𝑝𝑢𝑡 − λ −𝑘!_!" − 𝑘!"" − λ − 𝑘!""𝑘!" 𝐼𝑛𝑝𝑢𝑡 = 0 

⟹ λ! +  𝑘!_! + 𝑘!" 𝐼𝑛𝑝𝑢𝑡 + 𝑘!_!" + 𝑘!"" λ + 𝑘!_!𝑘!_!" + 𝑘!""𝑘!_! + 𝑘!" 𝐼𝑛𝑝𝑢𝑡 𝑘!_!" = 0 

For this equation to have real negative solutions, the following criteria must hold (as a simple result of 
quadratic formula):  

𝑘!_!𝑘!_!" + 𝑘!""𝑘!_! + 𝑘!" 𝐼𝑛𝑝𝑢𝑡 𝑘!_!" > 0                                                                                   (1) 

𝑘!" 𝐼𝑛𝑝𝑢𝑡 + 𝑘!"" + 𝑘!_! + 𝑘!_!"
!
− 4 𝑘!_!𝑘!_!" + 𝑘!""𝑘!_! + 𝑘!" 𝐼𝑛𝑝𝑢𝑡 𝑘!_!" > 0                  (2) 

When the two variables, kon[input] and koff, are nonnegative (which is true in our model), the condition (1) 
and (2) will hold. The two equations are quadratic (or reduced quadratic) with a positive z-intercept (i.e., 
the function value at (0, 0)) and continuous, positive first-order partial derivatives (i.e., ∂f/∂(kon[input]) ≥ 0 
and ∂f/∂(koff) ≥ 0; f representing either function). This means that for the functions values will continue to 
increase in both dimensions, with an initial value greater than zero. We plotted the values of both 
functions against the two variables to illustrate this result (Supplemental Data Figure 3). This shows that 
the last two eigenvalues are also real and non-positive. Therefore, we can conclude that the steady-state 
solution exists since F is a matrix with all real negative eigenvalues. 

 

Supplemental Data Figure 3. Function values of equation (1) and (2) against variables kon[input] and koff.  
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Step 2: In vivo characterization 

We proceeded to characterize RNA switches in vivo. We identified 18 different RNA switches: five 
theophylline-responsive (THEO1 to 5), three neomycin-responsive (NEO1 to 3), five tetracycline-
responsive (TC1 to 5), five (6R)-FA-responsive switches (FA7, 11, 14, 27, 58), and two control ribozymes 
(sTRSV and sTRSV inactive) (McKeague et al., 2015; Townshend et al., 2015). We inserted each RNA 
switch into the 3' UTR of the EGFP transcript. Cells harboring each genetic construct were grown in 
closed-batch culture and back-diluted into three input levels, in three biological replicates. Their 
fluorescence is measured by flow cytometer after 6 hours of re-growth (See STAR Methods), and the 
results are shown in Supplemental Data Figure 4.   

 

Supplemental Data Figure 4. In vivo characterization of RNA switches. Each dot represents a single 
experiment replicate. The subscript of AR (i.e., “high” in ARhigh) indicates the input concentration from 
which the AR is calculated.  

 

Step 3: Parameter estimation 

We used the measured in vivo data to estimate p and kon for each RNA switch. The kinetic parameters in 
the model can be grouped into switch-specific and non-switch specific parameters. Switch-specific kinetic 
parameters are ones that contribute to performance of RNA switches when regulating gene expression, 
such as kon, koff, and p. Most of the non-switch specific parameters have been reported (Supplemental 
Data Table 1). The two remaining unknown parameters (r and kd_R) can be determined through 
measuring the fluorescence levels with two non-input responsive controls: sTRSV (wild-type ribozyme) 
and sTRSV inactive (non-cleaving ribozyme variant). By placing sTRSV inactive in the 3' UTR of the 
mRNA (instead of RNA switches) to regulate protein expression, all mRNAs become non-cleavable (i.e., 
RM state in the model). The model can thus be reduced into two states (Supplemental Data Figure 5A) to 
determine the linear scalar between predicted protein level and the measured fluorescence (r).  
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𝑑
𝑑𝑡

𝑅
𝑅𝐿
𝑅𝑀
𝑃

=

0 0 0 0
0 0 0 0
0 0 −𝑘!_!" 0
𝑘!_! 𝑘!_! 𝑘!_! −𝑘!_!

𝑅
𝑅𝐿
𝑅𝑀
𝑃

+

0
0
𝑘!_!
0

 

⇒
𝑑
𝑑𝑡

𝑅𝑀
𝑃 =

−𝑘!_!" 0
𝑘!_! −𝑘!_!

𝑅𝑀
𝑃 + 𝑘!_!

0
 

The steady-state analytical solution is:  

𝑅𝑀 ∞
𝑃 ∞ = −𝑖𝑛𝑣

−𝑘!_!" 0
𝑘!_! −𝑘!_!

𝑘!_!
0

 

= −𝑖𝑛𝑣 −4.2×10!! 0
1×10!! −1×10!!

1×10!!
0

= 2.38×10!!
2.38×10!!

 

The EGFP signal measured under the sTRSV inactive construct has a median value of 76.51 esu; 
therefore the linear scalar factor (r) between predicted protein concentration and measured fluorescence 
is 3.2 x 105. 

 

Supplemental Data Figure 5. (A) A reduced model for sTRSV control (non-responsive, non-cleavable 
ribozyme variant). (B) A reduced model for sTRSV (non-responsive, cleavable ribozyme).  

 

To determine kd_R, sTRSV is placed in the 3' UTR of the mRNA, which leads to all mRNAs in R state 
ready for cleavage and degradation (Supplemental Data Figure 5B). We assumed that all sTRSV-
regulated mRNAs are being cleaved; i.e., the non-cleaving (mis-folded) portion of the sTRSV-regulated 
mRNA is negligible, as demonstrated by previous studies (Shepotinovskaya and Uhlenbeck, 2008; 
Townshend et al., 2015). We can re-write the equations as: 

𝑑
𝑑𝑡

𝑅
𝑃 =

−𝑘!_! 0
𝑘!_! −𝑘!_!

𝑅
𝑃 + 𝑘!_!

0
 

⇒
𝑑
𝑑𝑡

𝑅
𝑃 =

−𝑘!_! 0
𝑘!_! −𝑘!_!

𝑅
𝑃 + 𝑘!_!

0
 

The steady-state analytical solution is:  

𝑅𝑀 ∞
𝑃 ∞ = −𝑖𝑛𝑣

−𝑘!_! 0
𝑘!_! −𝑘!_!

𝑘!_!
0

 

𝑃 ∞ = 𝑘!_!𝑘!_!
!!
𝑘!_!𝑘!_! 

⇒ 𝑘!_! = 𝑘!_!𝑘!_!/(𝑘!_!𝑃 ∞ ) = 𝑘!_!𝑘!_!/(𝑘!_!𝐸𝐺𝐹𝑃(𝑠𝑇𝑅𝑆𝑉))  

And the mean value of EGFP measured under the sTRSV construct is 0.52 esu, resulting in the 
degradation value of kd_R = 0.0618 s-1. 
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The switch parameters (kon, koff, and p) in the model are different for each switch, and explain the basic 
characteristics of RNA switch dynamics. For example, if an RNA switch has a high partition coefficient (p), 
this suggests that more mRNAs are pre-folded into the non-cleavable RM state, resulting in a higher 
basal level of protein expression. We begin with determining kon and koff of each RNA switch. Following 
the assumption in the model, we know that the ratio of kon and koff is an aptamer-specific parameter (KD) 
that can be explicitly determined through an in vitro SPR aptamer-binding assay (Supplemental Data 
Figure 6; see STAR Methods). Therefore, kon and koff together indeed only offer one degree of freedom in 
parameter fitting, which leaves the model with two to-be-determined RNA-switch-dependent parameters: 
p and kon.  

 

Supplemental Data Figure 6. In vitro SPR characterization of RNA aptamers at physiologically-relevant 
Mg2+ concentration. SPR sensorgrams are shown for the (A) theophylline aptamer (KD = 3.38 µM), (B) 
neomycin aptamer (KD = 137 nM), and (C) tetracycline aptamer (KD = 30 nM). In vitro binding data 
between (6R)-folinic acid and its aptamer used to construct RNA switches, and the associated KD (61 nM) 
were reported in (McKeague et al., 2015). 

 

Our goal is to determine the two RNA-switch-dependent parameters through measuring the EGFP 
expression levels at different input concentrations. However, conventional parameter-fitting approaches 
(such as, linear regression) are either not feasible or precise enough to solve the proposed kinetic model 
due to its natural non-linear dynamic characteristics. In order to address this challenge without having to 
further simplify our model, we adopted a convex optimization approach to solve this parameter-fitting 
question. Convex optimization has been demonstrated as a powerful and systematic approach to solve 
problems with properly defined system characteristics and obtain statistical inferences based on 
measured data (Boyd and Vandenberghe, 2004). In the following paragraphs, we will explain how to 
transform this parameter-fitting question into a standard convex optimization form: 

Minimize (Ax - b) under constraints: Cx + d = 0 
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We begin with solving the protein level at steady state, which can be expressed as: 

𝑑[𝑃]
𝑑𝑡

= 𝑘!_! 𝑅 + 𝑘!_! 𝑅𝐿 + 𝑘!_! 𝑅𝑀 − 𝑘!_! 𝑃 = 0 

⇒ [𝑃]! =
𝑘!_!
𝑘!_!

𝑅 ! + 𝑅𝐿 ! + 𝑅𝑀 !  

⇒ [𝐸𝐺𝐹𝑃]! = 𝑟[𝑃]! = 𝑟
𝑘!_!
𝑘!_!

, 𝑟
𝑘!_!
𝑘!_!

, 𝑟
𝑘!_!
𝑘!_!

𝑅!
𝑅𝐿!
𝑅𝑀!

 

This equation establishes the relationship between the measurable EGFP with the three mRNA states in 
the equation (R, RL, and RM), which can serve as the to-be-minimized objective function for the convex 
optimization program (as follows). In other words, the optimal values of the three mRNA states that 
minimize this objective function best describe the kinetic system model.   

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:𝑚𝑖𝑛 𝑟
𝑘!_!
𝑘!_!

, 𝑟
𝑘!_!
𝑘!_!

, 𝑟
𝑘!_!
𝑘!_!

!

𝑅!
𝑅𝐿!
𝑅𝑀!
!

− 𝐸𝐺𝐹𝑃!
!

 

We then derive the convex optimization constraints by eliminating the state P in the differential equation: 

𝑑
𝑑𝑡

𝑅!
𝑅𝐿!
𝑅𝑀!

=
−𝑘!_! − 𝑘!"[𝐼𝑛𝑝𝑢𝑡] 𝑘!"" 0

𝑘!"[𝐼𝑛𝑝𝑢𝑡] −𝑘!_!" − 𝑘!"" 0
0 0 −𝑘!_!"

𝑅!
𝑅𝐿!
𝑅𝑀!

+
𝑝𝑘!_!
0

(1 − 𝑝)𝑘!_!
 

At steady state, the equation is set to 0 and can be re-written as:  

−𝑘!_! − 𝑘!"[𝐼𝑛𝑝𝑢𝑡] 𝑘!"" 0
𝑘!"[𝐼𝑛𝑝𝑢𝑡] −𝑘!_!" − 𝑘!"" 0

0 0 −𝑘!_!"
!

𝑅!
𝑅𝐿!
𝑅𝑀!
!

+
𝑝𝑘!_!
0

(1 − 𝑝)𝑘!_!
!

= 0 

This set of equalities should hold for all mRNA states at different input concentrations, which can serve as 
the constraints for our convex optimization solver. Our goal is to determine the two RNA-switch-
dependent parameters (p and kon), under which the constraints are satisfied (i.e., feasible solutions) as 
well as minimize the objective function. However, there is a quasi-convex term in the constraints (that is, 
the variable kon is multiplied with mRNA state R in the first column of the matrix). Therefore, we 
implemented an iterative convex feasibility algorithm to solve this quasi-convex problem. This algorithm 
uses the convex optimization package CVX (Grant and Boyd, 2013) as the core solver. In addition, we 
chose L1-norm to minimize the data, which has been shown to be robust and less sensitive to outliners or 
noise (Boyd and Vandenberghe, 2004). For each RNA switch, the pair of p and kon can be found in 
Supplemental Data Table 2. Since the L1-norm optimization does not generate a “goodness-of-fit” 
number to show the accuracy of the estimated parameters, we reported the value of our minimization 
argument (i.e., distance score; with ranges from 300-500 for random pairs of p and kon) as an indicator. 
Another common approach to validate the estimated parameters is to plug them back into the model and 
apply Monte Carlo simulation to test if the predicted metrics (i.e., ARs) match the original measurements. 
The simulation results suggested that the pair of p and kon is capable of capturing the RNA switching 
dynamics for all identified RNA switches (last two columns in Supplemental Data Table 2). 
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Supplemental Data Table 2. Estimated RNA switch-specific parameters (p and kon) and optimization 
distance scores. Monte Carlo simulations (N = 5000) were also used to calculate predicted ARs to 
validate the accuracy of these estimated parameters. The subscript of AR (i.e., “high” in ARhigh) indicates 
the input concentration from which the AR is calculated. *Distance score represents the function value of 
the argument (Ax - b) used in L1-norm minimization, and has a range of 300-500 for random unoptimal 
pairs of p and kon. 

Name p kon 
Distance 
score* 

Predicted 
ARmed 

Predicted 
ARhigh 

THEO1 1.000 1.64 5.21 2.9 18.2 
THEO2 0.996 3.78 2.58 3.7 22.3 
THEO3 0.994 4.34 4.94 3.6 20.9 
THEO4 0.987 3.46 7.78 2.3 11.8 
THEO5 0.985 5.18 5.71 2.8 14.1 
NEO1 0.932 195.7 15.2 4.0 2.5 
NEO2 0.948 198.9 9.06 4.9 7.2 
NEO3 0.923 242.3 7.67 4.0 5.8 
TC1 0.987 8.62 9.21 1.7 7.1 
TC2 0.973 18.43 9.33 1.8 7.5 
TC3 0.975 13.30 9.52 1.6 6.4 
TC4 0.960 49.21 5.84 2.5 10.0 
TC5 0.967 12.42 11.31 1.5 5.0 
FA7 0.988 9.23 5.96 3.3 5.4 

FA11 0.987 13.20 8.25 4.0 6.7 
FA14 0.986 16.42 12.4 4.5 7.5 
FA27 0.992 8.29 8.08 3.6 6.0 
FA58 0.991 9.20 7.12 3.7 6.2 
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Modeling transcription-based amplifiers 

Step 1: Obtaining a general model 

The dynamics of transcription-based amplifiers have been well studied and the apparent amplification (i.e., 
the ratio of expression between “with amplifier” and “without amplifier”) can be modeled as a Hill equation 
(Alon, 2007). We chose to model the amplifier using a standard four-parameter function with: max (the 
saturation response level, i.e., ON state), min (the leakage response level, i.e., OFF state), n 
(cooperativity), and EL50 (level of that gives half-maximal response, i.e., the inflection point). The equation 
is shown as follows: 

 𝑦 = 𝑚𝑖𝑛 +  !"#! !"#
!!!"!(!"#!"!"!!"#$)

  

in which y represents the expression level with the amplifier, and x represent the expression level without 
the amplifier.  

Step 2: In vivo characterization 

We chose to characterize a LexA-based amplifier (CSY1101 + pCS3442; see the circuit symbol next to 
the y-axis in Supplemental Data Figure 7), and used two RNA switches (THEO1 and THEO5) in 
combination with a fine titration of input to generate the EGFP expression at different levels. Ideally the 
“without amplifier” constructs should have been built correspondingly by using PSTE5 to regulated EGFP 
expression with RNA switches; however, the EGFP expression of these constructs was extremely low 
and noisy, and we were not able to obtain measurement with good quality (data not shown). Instead, we 
built the “without amplifier” constructs using a strong constitutive promoter (PTEF1) with the same two RNA 
switches, and then measured the EGFP expression of these constructs before converting into the PSTE5-
equivalent expression level (PSTE5 : PTEF1 = 1 : 40; see the circuit symbol next to x-axis in Supplemental 
Data Figure 7).  
The experiment was performed in closed-batch culture, by first growing the device-harboring strains 
overnight, and back-diluting (1:50) into fresh media under different input levels (0, 0.005, 0.01, 0.02, 0.05, 
0.1, 0.2, 0.5, 1, 2, 5, and 10 mM of theophylline). The EGFP expression level was measured after 6 hours 
of growth using flow cytometry, and the results are presented in Supplemental Data Figure 7. 

Step 3: Parameter estimation 

We then fit the measured EGFP levels into the model described in Step 1 to estimate the unknown 
parameters. As shown in Supplemental Data Figure 7, the data exhibit strong fitness to the proposed 
model (R2 = 0.93). The associated parameters we obtained for this transcription-based amplifier are: max 
= 55.8 (esu), min = -0.6 (esu), n = ~2, and EL50 = 0.62 (esu). The model was fitted using the default 4-
parameter sigmoid fitting process in Prism (GraphPad). With this amplifier model, we can further generate 
similar models to describe other amplifiers (e.g., amplifiers with different ENs) by simply changing the 
values of max and min in the equation to the ON and OFF state values of the new transcription-based 
amplifier (values can be found in Figures 2E and 2F).  
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Supplemental Data Figure 7. Characterization of the LexA-based amplifier. Each dot represents mean 
values and error bar represent ± 1 s.d. of three biological replicates. The circuit symbols attached at both 
axes represent the constructs used to obtain the experimental data.  
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Modeling His5p-dependent cell growth 

Step 1: Obtaining a general model 

We also chose to use a standard four-parameters function to characterize the His5p-dependent growth 
(Boer et al., 2010): max (the saturation growth, i.e., wild-type yeast strain growth), min (the basal growth 
level, i.e., histidine-deficient limited growth), n (cooperativity), and EL50 (the His5p level of that gives half-
maximal growth). The equation is shown as follows: 

 𝑦 = 𝑚𝑖𝑛 +  !"#! !"#
!!!"!(!"#!"!"!!"#$)

  

in which y represents the with relative growth of yeast (evaluated by normalizing the viable cell counts to 
yeast with full histidine supply), and x represent the expression level of EGFP-His5p. 

Step 2: In vivo characterization 

We characterized His5p-dependent growth using a fusion EGFP-His5p to enable quantitative 
measurement. We used a reported mutant library of ribozymes (Townshend et al., 2015) to generate a 
range of EGFP-His5p protein expression (see Supplemental Data Figure 8 for the expression levels 
generated by these ribozymes). These ribozymes (see “RNA switches and ribozyme” in Supplemental 
Data 1) were placed at the 3' UTR of the EGFP-His5p (expressed from the promoter PTEF1) on a plasmid 
and further transformed into yeast (CSY3). The device-harboring cells were grown overnight to stationary 
phase with histidine supply, and carefully back-diluted (1:50) into fresh media in the presence or absence 
of histidine. The cell counts (i.e., growth) and EGFP (i.e., His5p expression) were measured after growing 
for another 6 hours using flow cytometry. The relative growth (showing on the y-axis in the plot of Figure 
4A) was obtained by dividing the viable cell counts of the cells with histidine to that without histidine. The 
results indicate a clear transition from reduced cell growth (~30%) to resumed growth (~100%) across a 
two-order of magnitude of His5p expression range (plot of Figure 4A).  
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Supplemental Data Figure 8. (A) The EGFP expression level of each mutant ribozyme. Bar represents 
mean values and error bars represent ± 1 s.d. of three biological replicates. The vertical dash line 
represents the autofluorescence level (“AF”; measured from CSY3). (B) EGFP expression of each mutant 
ribozyme in + his (x-axis) and - his (y-axis) media conditions. Each dot represents the mean values and 
error bars represent ± 1 s.d. of three biological replicates. The equation of the fitted curve is y = 0.7814x + 
11.08 (R2 = 0.9999; fit with standard linear regression model).  
 

Step 3: Parameter estimation  

We then fitted the measured data into the described model. As shown in Figure 4A, the data exhibit 
strong fitness to the proposed model (R2 = 0.97). The associated parameters were: max = 102% growth, 
min = 32% growth, n = 1.8, and EL50 = 6.1 (esu). The model was fitted using the default 4-parameter 
sigmoid fitting process in Prism (GraphPad). The fitted model together with the experimental data are 
plotted in Figure 4A.  
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Two-stage device controls 

To further support the utility of our design framework, we constructed functionally equivalent devices 
using a two-stage architecture (i.e., RNA switches directly regulating the actuating stage) as controls. For 
the various applications demonstrated in this study, only three of seven controllers (His5p, AND, and 
positive feedback) could be implemented with the two-stage architecture (Supplemental Data Figure 9). 
Controllers with functional mechanisms implemented at the transcriptional level (specifically, repression 
and OR) are currently not feasible in the corresponding two-stage framework.  
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Supplemental Data Figure 9. Circuit symbols of functionally equivalent devices between two-stage and 
three-stage architecture. Three-stage controllers with functional mechanisms implemented at the 
transcriptional level (i.e., repression and OR) are not feasible in the corresponding two-stage framework. 

 

1. Two-stage His5p controller 

We began by demonstrating how devices with the two-stage architecture regulate the live-death 
phenotype. We constructed a two-stage version of the THEO1-based His5p-activator (circuit symbol in 
Supplemental Data Figure 10) by placing the THEO1 switch in the 3' UTR of the same phenotypic 
actuator His5p. Instead of using the original very weak controller-driving promoter (PSTE5), we chose a 
strong promoter (PTEF1), which has ~40 times stronger expression level. We believe that if we implement 
the two-stage controller using PSTE5, the experimental result (i.e., difference in the absence/presence of 
the input) will be weak or barely detectable, leading to an unfair comparison between the two-stage and 
three-stage architectures.  

 

Supplemental Data Figure 10. Circuit symbol of the two-stage phenotypic controller using His5p (left). A 
serial dilution plating experiment was conducted to assess input-controlled cellular growth of both a two-
stage and three-stage THEO1-based His5p-activator (right). The assay was conducted as described in 
Figure 4B in three biological triplicates.   

 

The two-stage device expression cassette was placed in a low copy plasmid, and transformed into our 
yeast host. Cell harboring the two-stage (CSY3 + pCS3473) and three-stage His5p-activator (CSY1115 + 
pCS3442-THEO1) were characterized side-by-side using the serial dilution plating assay as described in 
Figure 4B. The same three media conditions were used for plating: +his/-theo, -his/-theo and -his/+theo, 
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with the same cell density range (from 105 to 10-2 viable cells per µL) in three biological replicates. The 
results indicate that the three-stage His5p-activator exhibits a similar 4 orders of resumed growth range 
with no leakage growth as observed in Figures 4B and S3B (Supplemental Data Figure 10). In contrast, 
the two-stage His5p-activator was observed to exhibit a reduced input-inducible range (~1-2 orders of 
magnitude in cell density) and significantly higher basal growth in the absence of the input. Improvements 
to increase the performance of this two-stage device (e.g., decrease the basal leakage growth) can only 
be achieved by changing either the RNA switch or the controller-driving promoter. However, the RNA 
switch (THEO1) used in this controller is already one of the lowest basal level RNA switches that we have 
designed (with a basal expression level close to the wide type sTRSV) (Townshend et al., 2015). 
Moreover, changing the controller-driving promoter will result in a reduced ON-state (i.e., the resumed 
growth level), and potentially decrease the input-inducible range. These observed challenges associated 
with designing a two-stage RNA switch-based device support the limited dynamic ranges and lack of 
design freedom with this architecture.  

2. Two-stage AND controller 

We constructed two-stage AND controllers by moving the AND1 (NEO1/TC4) and AND2 (THEO5/FA14) 
switches to the 3' UTR of the EGFP output (circuit symbol in Supplemental Data Figure 11). We used 
PTEF1 as the controller-driving promoter for better visualization, and each two-stage AND cassette was 
placed on a low copy plasmid (pCS3474 and pCS3475, respectively). The experiment was conducted as 
described in Figure 5B in three biological triplicates.  

We observed a ~4-fold reduction in Boolean ARs for both two-stage AND controllers (1.6 and 1.8; see 
Supplemental Data Figure 11) compared with the corresponding three-stage ANDs (7.6 and 8.5; see 
Figure 5B). Also the two-stage ANDs exhibit increased basal leakage expression (significantly higher 
than autofluorescence level), which is consistent with the experimental results observed with the two-
stage His5p-activator. Despite the general reduction in device performance, the response of the two-
stage ANDs (specifically, the AND2 construct) under input combination became less ideal as AND logic. 
This observed input disparity can be a small molecule-dependent effect or the switching activity affected 
by the order of the RNA switches when placed in tandem. We believe the use of the transcription-based 
amplifier (i.e., three-stage architecture) may have helped shape this response disparity among inputs (i.e., 
a non-linear Hill response curve that can make any expression below the threshold lower), which 
improved the performance of the AND controller.  

 

Supplemental Data Figure 11. Circuit symbol of the two-stage AND controller (left). Two two-stage AND 
controllers were characterized (right). Bars represent the mean values and error bars represent ± 1 s.d. of 
three biological replicates. The Boolean AR is indicated.  
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3. Two-stage positive feedback system 

We designed a two-stage positive feedback system using the THEO1 switch to directly regulate yCDM8 
(Figure S6C). We chose PTEF1 as the controller-driving promoter, and placed the two-stage PFB cassette 
on a low copy plasmid (pCS3476) before transforming the construct into our yeast host (CSY3). We 
characterized this two-stage positive feedback system in a chemostat for 400 hours (~ 2.4 weeks), side-
by-side with its corresponding three-stage design (CSY1118 + pCS3442-THEO1; Figure 6C). The 
designed two-stage PFB system was observed to be non-functional; specifically, the ON state (~ 100 µM) 
failed to be maintained after the second induction phase (i.e., no observed bistability). In contrast, the 
three-stage PFB system exhibited bistability and was able to hold the induced ON state during the 
observed hold phase (~ 72 hours).  
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Glossary of Key Terms 

Activation ratio (AR): the ratio of gene expression levels in the presence and absence of input signals, 
only defined for input-controlled devices or systems. The subscript of AR (e.g., “high” of ARhigh) specifies 
the concentration of the input signal.  

Actuating stage: a stage in a multi-stage genetic system that produces actuators to execute desired 
functions (e.g., cellular growth, production of a secondary metabolites). It is typically used as the last 
stage in a genetic control system (Wang et al., 2013). 

Amplification gain (or “Gain”): the ratio of gene expression levels in the presence and absence of the 
amplifier (Figure S1A) and is a unitless measure.  

Basal level (BL): the gene expression level of an input-controlled device in the absence of the input.  

Boolean activation ratio (Boolean AR): the ratio of gene expression levels between the lowest level of the 
ON states and the highest level of the OFF states, which represents the worst-case AR of a Boolean 
controller. The ON and OFF states are defined according to the function of the Boolean controller.   

Dynamic range (DR): the ratio of gene expression levels between ON (with trans element) and OFF 
(without trans elements) states of a transcription-based device (Figure S1A).  

Fall time: the time of a system to decrease expression level from its ON state to mid-point level (i.e., half-
DR level) upon input removal. (Note: the term is defined differently in this study than that in an electronic 
system).  

Half dynamic range level (“half-DR level”): the midpoint (i.e., averaged) value between the ON and OFF 
states. The concept is similar to the idea of half-maximum level described in previous work (Rosenfeld et 
al., 2002) to evaluate system response times, but takes into account the expression level due basal 
leakage in a genetic system.  

Linearity (in an amplifier): the ability of an amplifier to produce output signal that accurately reflects (i.e., 
proportional) its input. The linearity/non-linearity we showed in this study is an indirect measurement. 
Instead of directly displaying the input/output relationship of a genetic amplifier, we plot the relationship 
between “with” and “without” amplifiers. The linearity/non-linearity we show in this study is an indirect 
measurement, as a direct measurement of linearity would require determining intracellular input 
concentrations.  

Percentage increase (or “incr”): the percentage increase of gene expression levels observed by inserting 
an epigenetic enhancer.  

Processing stage: a stage in a multi-stage genetic system that transmits genetic signals between stages. 
The process can involve signal amplification (“amplifiers”), signal inversion (“inverters”), or signal buffering 
(“buffers”). It is typically used as the middle stage in a genetic control system (Wang et al., 2013). 

Reduction ratio (RR): the ratio of gene expression levels in the absence and presence of input signals, 
which is essentially the multiplicative inverse of AR.  

Rise time: the time of a system to increase expression level from its OFF state to mid-point level (i.e., 
half-DR level) upon input induction. (Note: the term is defined differently in this study than that in an 
electronic system).  

Sensing stage: a stage in a multi-stage genetic system that is responsible for detecting the level of an 
input signal. It can also transduce the information encoded in the input signal to genetic signals (e.g., 
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small molecule concentrations to mRNA levels). It is typically used as the first stage in a genetic controller 
(Wang et al., 2013). 

Stage: a conceptual functional component in a genetic system, and is a result of decomposing the design 
goal into a series of genetic information operations (i.e., stages) to enable bottom-up assembly. A stage 
in a genetic system is commonly actualized with genetic device(s).  

Stage level matching (or “level matching”): the process of matching the input and output levels 
between stages in a system (e.g., in terms of gene expression levels or enzymatic activities), such 
that the output level from the upstream stage is sufficient, but not excessive, to be used as an input 
to its downstream stage (modified from (Wang et al., 2013)). Using the three-stage EGFP-activator 
as an example, it is divided into three stages with respective input/output as: small 
molecule/translation activity level (i.e., mRNA half-life) in the first stage, translation activity 
level/transcription activity level (i.e., PoPs) in the second stage, and transcription activity 
level/protein actuator in the third stage. The stage level-matching process involves tuning the RNA-
associated rates to obtain an optimal translation activity level (between the first and second stage), 
at which we can observe a controllable transcription activity level (third stage). Since the 
translation and transcription activity levels are not readily directly quantifiable with current 
experimental techniques, they are represented by the corresponding cis-regulated coding genes 
(i.e., the trans element of the transcription-based amplifier and EGFP, respectively). Therefore, this 
stage level-matching process can also be viewed as tuning the level of the trans element of the 
amplifier (through changing the synthesis, degradation, and ligand binding rates) to achieve an 
optimally controlled range of EGFP expression.   
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