SUPPLEMENTARY ONLINE DATA

Characterization, Mutagenesis and Mechanistic Analysis of an Ancient Algal Sterol C24-Methyltransferase: Implications for Understanding Sterol Evolution in the Green Lineage

Brad A. Haubrich,^{*} Emily K. Collins,^{*1} Alicia L. Howard,^{*} Qian Wang,⁺ William J. Snell,⁺ Matthew B. Miller,^{*} Crista D. Thomas,^{*} Stephanie K. Pleasant^{*1} and W. David Nes^{*2}

^{*}Center for Chemical Biology and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 and ⁺Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, Texas 75390

Supplemental Figure S1. Comparative sterol biosynthesis across kingdoms in Eukaryota as adapted from references 1-5. Biosynthetic steps catalyzed by SMTs are highlighted in red. .

Supplemental Figure S2. Phylogenetic tree of 24- and 28- SMTs. Adapted from References 3 and 5.

Supplemental Table S1. Comparison of the occurrence of putative and known SMT genes across kingdoms.

Strain ¹	Class	Taxon	Source ²	Subfamily ³	Type ⁴	Percent Similarity ⁵
Chlamydomonas reinhardtii	Chlorophyceae	Green alga	gi 158279461	d	SMT2	100%
Cucumis sativus	Magnoliopsida	Flowering plant	gi 449517755	a	SMT1-2	39.60%
Selaginella moellendorffii	Isoetopsida	Lycophyte	gi 302769362	а	SMT1	38.70%
Cucumis sativus	Magnoliopsida	Flowering plant	gi 449464010	а	SMT1	38.20%
Glycine max	Magnoliopsida	Flowering plant	gi 351725990	а	SMT1	37.10%
Physcomitrella patens	Bryopsida	Moss	gi 162662665	а	SMT1	35.80%
Amphimedon queenslandica	Demospongia	Demosponge	gi 340378018	а	SMT1	35.70%
Cyanidioschyzon merolae	Cyanidiophyceae	Red alga	gi 449018476	а	SMT1	30.10%
Aphanomyces euteiches	Oomycota	Water mold	gi 189026959	а	SMT1	27.60%
Saccharomyces cerevisiae	Saccharomycetes	Yeast	gi 396515	b	SMT1	37.10%
Paracoccidioides brasiliensis	Eurotiomycetes	Dimorphic fungus	gi 226288403	с	SMT1	34.50%
Cucumis sativus	Magnoliopsida	Flowering plant	gi 449437406	d	SMT2	48.90%
Physcomitrella patens	Bryopsida	Moss	gi 162676403	d	SMT2-2	48.80%
Physcomitrella patens	Bryopsida	Moss	gi 162676411	d	SMT2-1	48.10%
Selaginella moellendorffii	Isoetopsida	Lycophyte	gi 300156481	d	SMT2-1	48.10%
Physcomitrella patens	Bryopsida	Moss	gi 168047907	d	SMT2-3	47.70%
Selaginella. moellendorffii	Isoetopsida	Lycophyte	gi 300153528	d	SMT2-2	47.50%
Glycine max	Magnoliopsida	Flowering plant	gi 242755468	d	SMT2-2	46.00%
Glycine max	Magnoliopsida	Flowering plant	gi 242755433	d	SMT2-1	43.80%
Thalassiosira pseudonana	Coscinodiscophyceae	Diatom	gi 223996139	d	SMT2	38.00%
Thalassiosira pseudonana	Coscinodiscophyceae	Diatom	gi 224006796	d	SMT2	36.80%
Dictyostelium discoideum	Dictyostelia	Slime mold	gi 60464861	d	SMT2	35.90%
Ectocarpus siliculosus	Phaeophyceae	Brown algae	gi 299469830	d	SMT2	34.10%
Ectocarpus siliculosus	Phaeophyceae	Brown algae	gi 299469813	d	SMT2-1	32.20%
Trypanosoma cruzi	Zoomastigophora	Kinetoplastid	gi 407843552	e	SMT1	32.50%
Trypanosoma brucei	Zoomastigophora	Kinetoplastid	gi 70832598	e	SMT1	32.30%

¹Host organism of SMT ²Gene sequence from GenBank

³Based on the grouping of SMTs from the phyogenetic tree shown in Fig. S2. ⁴Based on the annotation from the GenBank or for *Cr*SMT and *E. siliculous* SMT2-1 based on biochemical reasoning,

⁵Percent similarity of amino acid sequences is relative to the amino acid sequence of *CrSMT*.

Supplemental Figure S3. Michaelis-Menten plot determined under initial velocity conditions of *CrSMT2* incubated with cycloartenol at concentrations varied from 5 to 150 μ M and SAM fixed at saturation of 100 μ M. Reactions were performed for 45 min at 35 °C in phosphate buffer pH 7.5. Datapoints were assays of triplicate determinations. Error bars represent standard error (SEM).

с.	reinhardtii	SMT1	(1)	MAVALPAAVTSAYERLAGEFDKLSTTQKYAVGIAGGVTSLYLLAKVLKGSDRDKPTTLQLSGGSIDSSKVKDEFT	75
т.	brucei	SMT1	(1)	SRGPLSLLIARERDANGVNGDVNATAGRLR	34
<i>s</i> .	cerevisiae	SMT1	(1)	Ilgenter and the telever of the telever and the telever and the telever and the telever and the telever	48
G.	max	SMT1	(1)	LYWEVCVLG PAEQKGKRATDL3GGSISAE KVQDNYK	52
Α.	thaliana	SMT2	(1)	IYWFLCVLG PAERKGKR AVDLSGGSISAE KVQDNYK	52
с.	reinhardtii	SMT1	(76)	AYADSY GKNAGEG I TDRSKTVHL VDVF <mark>YSLVTD I</mark> YEWGW GQSFHFSPK LPNKDLKA SEAAHEAR I AALLRLQP GQKA <mark>LDC</mark>	155
Т.	brucei	SMT1	(35)	drydgkgasaserrodatsltneyydivtdf <mark>yeygwgonfhe</mark> aprymnetfyeslaryeyflayhaofkptdtv <mark>ld</mark> v	111
ς.	cerevisize	SMT1	(49)	NWDGRT DKDAEERRLEDYNEATHSYYNVVTDE <mark>YEYGWG</mark> SSEHE <mark>SRF</mark> YKGESFAASIARHEHYLAYKAGIQRGDLV <mark>LD</mark> V	126
G.	max	SMT1	(53)	QYWSFFRRPKEIETADKVPDFVDTFYNLVTDIYEWGWGQSFHFSPSIPGKSHRDATRLHEEMAVDLIEAKPGNRILDV	130
А.	thaliana	SMT2	(53)	QYWSFFRRPKEIETAEKVPDFVDTFYNLVTDI <mark>YEWGWGQSFHF</mark> SPSIPGKSHKDATRLHEEMAVDLIQVKPGQKILDV	130
с.	reinhardtii	SMT1	(156)	GCGVGG HMRTVAAV SGAHITGIT INQYQVDRAKTHNARQGLAPLTDVVRGDFTNMP FKENTFDGA <mark>YAIEATCHAH</mark> KLEQV	235
Т.	brucei	SMT1	(112)	GCGIGG ARNMVRFTSCNVMGVNNNEYQINR ARQHDSRYGMSGKINYTKTDFCNMCFGDNEFDGAYAIEATCH SESKVKC	191
<i>s</i> .	cerevisiae	SMT1	(127)	GCGVGG ARE IARFTGCNVIGLNNNDYQIAKAKYYAKKYNLSDQMDFVKGDFMKMD FEENTFDKVYAIEATCHAEKLEGV	206
G.	max	SMT1	(131)	GCGVGG MRAIAAH SRANVVGIT INEYQVNR ARMHNKKAG LESLCEVV CGNFLKMP FPDNSFDGAYSIEATCH AEKLEEV	210
Α.	thaliana	SMT2	(131)	GCGVGGEMRAIASH SRANVVGIT INEYQVNR ARLHNKKAG LDALCEVV CGNFLQMP FDDNSFDG AKSIEATCH AB	210
с.	reinhardtii	SMT1	(236)	YGEIYR VI <mark>KPGSYFVSYEW</mark> VSTQKFDVNNAE HVKIMDEINFGNGLPEMRTWKEAED AGKNVGFELVMSLDLAT ASV	311
т.	brucei	SMT1	(192)	YSEVFRA KPGAYFMLYEWCLTDLYDPANEE HQRVRHGI ELGDGLPELDTMRQVVA AVKAAGFV VEESFDMAE RFESGEP	271
<i>s</i> .	cerevisiae	SMT1	(207)	YSEIYK VIKPGGTFAVYEW WITD KYDENNPE HRKIAYEI ELGDGIPKMFHVDVARKALKNCGFE VLVSEDLADND	281
G.	max	SMT1	(211)	YAE IFR VIKPGALY VSYEWVTTD KYRGDDPE HVEVIQGI ERGDALPGLRNYTDIAE TARKVGFA VVKERDLAK PP	285
Α.	thaliana	SMT2	(211)	YAEIYR VI <mark>KPGSMY VSYEW</mark> VTTE KFKAEDDE HVEVIQGIERGDALPGLRAYVDIAE TAKKVGFE IVKEKDLAS PP	285
с.	reinhardtii	SMT1	(312)	VAGPWY	374
Т.	brucei	SMT1	(272)	KSVPWYEPLQG3YTSLSGLRATPAGRWLTSVTCRLLEAVRLAPAGTCKATEILEEGAVNLVKGGELGIFTPSF	344
<i>s</i> .	cerevisiae	SMT1	(282)	DE I PWY YPLTGEWK YVONLANLATFFRTSYLGROFTTAM VTVMEKLGLAPEGSKEV TAALENAAV GLVAGGKS KLFTPMM	361
G.	max	SMT1	(286)	AQ-PWW	347
А.	thaliana	SMT2	(286)	AE-PWWTRLKMGRLAYWRNHIVVQILSAVGVAPKGTVDVHEMLFKTADYLTRGGETGIFSPMH	347
с.	reinhardtii	SMT1	(375)	LLLFRKPGADKKK 387	
т.	brucei	SMT1	(345)	FVEARK PRIGEELS C 359	
<i>s</i> .	cerevisiae	SMT1	(362)	LFVARK PENAETPSQTSQEATQ 383	
G.	max	SMT1	(348)	MILCRK PHDKDDHN 361	
Α.	thaliana	SMT2	(348)	MILCRK PESPEESS 361	

Supplemental Figure S4. Alignment of sterol methyltransferase amino acid sequences (GenBank accession numbers) from *C. reinhardtii* (gi|159465129), *T. brucei* (gi|70832598), *S. cerevisiae* (gi|6323635), *G. max* (gi|242755433) and *A. thaliana* (gi|332191841). Identical residues conserved in the primary structure are in red. The sequences were aligned using Align X (Informax Inc) with defauled parameters. The deduced substrate preference of SMT catalyzes the first (Δ 24(25)-substrate or second (Δ 24(28)-substrate) C1-transfer reaction, SMT1 or SMT2 is reported. Sterol and SAM binding sites are indicated as boxed Regions 1, 2 and 4 or Region 2, respectively.

Supplemental Figure S5. Spectral and chromatographic properties of *Cr*SMT2-generated chlamysterol 2. (A) TIC chromatogram of obtusifoliol 1 conversion to chlamysterol 2. C-MS (30 m HP-5 capillary column) coupled to HP 6890 gas chromatograph interfaced to a 5973 mass spectrometer at 70 eV; GC flow rate of He was set at 1.2 ml/min, injector port was 250 °C and the initial temperature was set at 170 °C, held for 3 min, and increased at 19 °C/min to 280 °C. (GC Method B) Cholesterol eluted at 16.5 min. (B) RP-HPLC chromatogram of 1 conversion to 2. Phenomenex Luna C18(2) column, 250 mm x 4.6 mm x 5 μ m, (Phenomenex, Torrance) eluted with 100 % methanol at 1 mL/min and 20 °C, monitored at 210 nm. At these conditions, cholesterol eluted at 17 min. (C) High-end EI mass spectrum of 2. Base peak is 425 [M⁺ – Me]. (D) ¹HNMR at 500 MHz of 2. Olefinic signals of H27.

Supplemental Figure S7. Spectral and chromatographic properties of *Cr*SMT-generated cycloneolitsol. (A) TIC chromatogram of cyclobranol 1 conversion to cycloneolitsol 2. GC flow rate of He was set at 1.2 ml/min, injector port was 250 °C and the initial temperature was set at 170 °C, held for 3 min, and increased at 20°C/min to 280 °C. Cholesterol eluted at 14.2 min. (B) RP-HPLC chromatogram of 1 conversion to 2. Phenomenex Luna C18(2) column, 250 mm x 4.6 mm x 5 um, eluted with isocratic 60:40 (v/v) acetonitrile/2-propanol at 1 ml/min and 25 °C, monitored at 210 nm. Cholesterol eluted at 12 min. (C) High-end EI mass spectrum of 2. High end has been adjusted to show detail (base peak is 95 amu, M⁺ is 4 %, M⁺ - Pr 421 is 17 %). (D) ¹HNMR at 500 MHz of 2. Inset: Olefinic signals of H27.

Supplemental Figure S7. Different views of substrate-SMT interactions (adapted from references 5-7): A- 24-methylated zymosterol (orange) and 24-methylated cycloartenol (green) bound in the transition state, B and C-Homology models are taken from *TbSMT* and *ScSMT*, respectively, where details of the modeling are described including software.

Supplemental Figure S8. Mass spectra of products of first and second C_1 -transfer to lanosterol by *Cr*SMT2. A. 24 β -methyl lanosta-8,25(27)-dienol B. eburicol (24(28)-methylenelanost-8-enol) C. 24 β -ethyll anosta-8,25(27)-dienol . (see text for details for preparations of activity assays).

Supplemental Figure S9. Mass spectra of products of first and second C₁-transfer to [24-²H]lanosterol by *Cr*SMT2. A. 24 β -methyl [24 α -²H]lanosta-8,25(27)-dienol B. [25-²H]eburicol (24(28)-methylene [25-²H]lanost-8-enol) C. 24 β -ethyl [24-²H]lanosta-8,25(27)-dienol

Supplemental Figure S10. Molecular ions and diagnostic fragmentations for stereospecifically labeled products of first and second C_1 -transfer to [24-²H]lanosterol by CrSMT2. EI-mass spectral data was collected from 50-550 a.m.u.

REFERENCES

1. Weete, J. D., Abril, M. and Blackwell, M. (2010) Phylogenetic distribution of fungal sterols. Plos One 5(5):e10899

2. Miller, M. B., Haubrich, B. A., Wang, Q., Snell, W. J. and Nes, W. D. (2012) Evolutionary conserved $\Delta^{25(27)}$ -olefin ergosterol biosynthesis pathway in the alga *Chlamydomonas reinhardtii*. J. Lipid Res. **53**, 1636-1645

3. Neelakandan, A. K., Song, Z., Wang, J., Richards, M. H., Wu, X., Valliyodan, B., Nguyen, H. T. and Nes, W. D. (2009) Cloning, functional expression, and phylogenetic analysis of plant 24C-methyltransferases involved in sitosterol biosynthesis. Phytochemistry **70**, 1982-1998

4. Goad, L. J. and Akihisa, T. (1997) Analysis of sterols. Blackie Academic, London

5. Zhou, W., Nguyen, H. T. and Nes, W. D. (2008) Plant sterol methyltransferases: phytosterolomic analysis, enzymology, and bioengineering strategies. *In* Methods in Plant Biochemistry and Molecular Biology Vol. 1. N. G. Lewis, editor. Elsevier Science, Amsterdam. 241-281

6. Ganapathy, K., Jones, C. W., Stephens, C. M., Vatsyayan, R., Marshall, J. A. and Nes, W. D. (2008) Molecular probing of the *Saccharomyces cerevisiae* sterol C24- methyltransferase (SMT) reveals multiple amino acids involved in C2-transfer activity. Biochim. Biophys Acta **1781**, 344-351

7. Liu, J., Ganapathy, K., Wywial, E., Bujinicki, J. M., Nwogwugwu, C.A. and Nes, W. D. (2011) Effect of substrate features and mutagenesis of active site tyrosine residues on the reaction course catalyzed by *Trypanosoma brucei* sterol C24-methyltransferase. Biochem. J. **439**, 413-422