Supplementary Material

Hypothermia in mouse is caused by a denosine A_1 and A_3 receptor agonists and AMP via three distinct mechanisms

Jesse Lea Carlin^a, Shalini Jain^b, Elizabeth Gizewski^c, Tina C. Wan^c, Dilip K. Tosh^d, Cuiying Xiao^a, John A. Auchampach^c, Kenneth A. Jacobson^d, Oksana Gavrilova^b, and Marc L. Reitman^{a, *}

Fig. S1. Adenosine receptor ligands and related compounds.

AMP, adenosine 5'-monophosphate

R-PIA, $R(-)N^6$ -(2-phenylisopropyl) adenosine

CPA, N^6 -cyclopentyladenosine

CHA, N⁶-cyclohexyladenosine

Cl-ENBA, (\pm) -5'-chloro-5'-deoxy- N^6 -endo-norbornyladenosine

MRS5474, (1R,2R,3S,5S)-4-(2-chloro-6-((dicyclopropylmethyl)amino)-9H-purin-9-

yl)bicyclo[3.1.0]hexane-2,3-diol

Fig. S2. Systemic MRS5474 acts via A₃AR to induce hypothermia and decrease activity. (A,B) Tb response to the indicated MRS5474 dose injected i.p. into C57BL/6J mice. Data are mean \pm SEM, n=4-5/group. (C,D) Tb response to MRS5474 (3 mg/kg, i.p.) or vehicle in C57BL/6J (WT) and *Adora1*^{-/-} (KO) mice. (E,F) Tb response to MRS5474 (3 mg/kg, i.p.) or vehicle in C57BL/6J (WT) and *Adora3*^{-/-} (KO) mice. Data are mean \pm SEM, n=6-10/group in a crossover design; every tenth SEM is shown in A, C, and E; * p<0.05, ** p<0.01, *** p<0.001.

Fig. S3. Systemic CPA causes dose-dependent hypothermia and decreased physical activity through both A₁AR and A₃AR. (A,B) Tb response to the indicated CPA doses injected i.p. into C57BL/6J mice. Data are mean \pm SEM, n=3-6/group; every tenth SEM is shown in A. (C,D) Tb response to CPA (0.3 mg/kg, i.p.) or vehicle in C57BL/6J (WT) and *Adora1^{-/-}* (KO) mice. (E,F) Tb response to CPA (0.3 mg/kg, i.p.) or vehicle in C57BL/6J (WT) and *Adora1^{-/-}* (KO) mice. Data are mean \pm SEM, n=3-7/group in a crossover design; every tenth SEM is shown in C and E; *** p<0.001.

Fig. S4. Systemic A₃AR-mediated hypothermia is blocked by H₁R antagonist; A₁ARmediated hypothermia is not. (A,B) Tb response to pretreatment with pyrilamine (10 mg/kg, i.p.) or vehicle followed by MRS5474 (10 mg/kg, i.p.) or vehicle in C57BL/6J mice (n=5/group). (C,D) Tb response to MRS5474 (10 mg/kg, i.p.) in C57BL/6J (WT) or *Kit^{W-sh/W-sh}* mice (n=5-6/group). Data are mean \pm SEM in a crossover design; every tenth SEM is shown in A and C; *** p<0.001

Fig. S5. Three distinct adenosine-related routes to hypothermia in mice. 1) activation of central A₁AR, 2) peripheral mast cell activation by A₃AR agonists, releasing histamine, which stimulates histamine H_1 receptors, and 3) a central AMP-mediated mechanism.