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Supplementary Methods 

Estimation of model parameters satisfying experimental data for the wild-type and 

mutant strains 

For k-ecoli457 development, we first constructed a genome-scale metabolic model of E. 

coli metabolism including all flux carrying pathways under the experimental conditions. 

The model includes 457 reactions and 337 metabolites. We also extracted 295 substrate 

level regulatory interactions from BRENDA [1] and EcoCyc [2] and integrated them into 

k-ecoli457. In addition, we defined a simplified version of biomass reaction described in 

[3] including all its constituent precursors. Next, we decomposed all metabolic and 

regulatory reactions into their elementary steps according to an iso-ordered mechanism 

[4]. This reaction decomposition expanded the network to 5,239 elementary interactions 

and 3,003 metabolites and enzyme complexes. We used the flux distribution of a wild-

type strain grown aerobically with glucose [5] as the reference strain and generated an 

ensemble of 217=131,072 models, wherein all of them converge to the same flux 

distribution (see Figure 2a). Similar to the previous effort [6], the intracellular reactions 

carrying a zero flux in the reference strain but a non-zero flux in at least one mutant strain 

under aerobic glucose conditions are adjusted to carry a minimal amount of flux (i.e., 

equal to 0.05 mmol gDW-1h-1 per 100 mmol gDW-1h-1 of glucose uptake) in the reference 

strain to ensure the participation of the reaction in the construction of the ensemble. For 

example, the reactions catalyzed by 6-phosphogluconate dehydratase (EDD) and 2-

dehydro-3-deoxy-phosphogluconate aldolase (EDA) do not carry flux in the wild-type 

strain but become active in △pgi [5]. For the reactions that carry a zero flux in the 

reference strain but a non-zero flux in at least one mutant strain under other growth 
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conditions (i.e., anaerobic growth or an alternate carbon substrate), we adjusted the flux 

of the reaction to carry a maximum amount (i.e., equal to 100 mmol gDW-1 h-1 per 100 

mmol gDW-1 h-1 of glucose uptake) in the reference strain while fixing the total pool of 

the normalized enzyme level 𝑒!"! to zero (i.e., 𝑒!"! = 𝑒 = 0). We allowed 𝑒!"! of those 

reactions to vary from zero (i.e., deletion) to a ten-fold over expression (i.e., 0 ≤ 𝑒!"! ≤

10) under other growth conditions. This ensures that the reaction is inactive in the 

reference strain but can become active under other growth conditions. Example includes 

the reaction catalyzed by pyruvate formate lyase (PFL) which is not active under aerobic 

conditions but become active under fermentative (anaerobic) conditions. Estimation of 

the k-ecoli457 parameters was carried out using experimentally measured flux data for 25 

mutant strains including 21 mutant strains grown with glucose (nineteen under aerobic 

[5] and two under anaerobic conditions [7]), three mutant strains grown with pyruvate 

under aerobic conditions [8] and one strain grown with acetate under aerobic conditions 

[9]. k-ecoli457 parameterization was proposed by first estimating equivalent Michaelis 

constants 𝐾! using all the mutant strains data along with estimating equivalent maximal 

velocities  𝑣!"#  under each mutant condition, separately. Due to the computational 

complexity of the problem and the large number of parameters, we converted the 

parameterization problem into a two-step hierarchical optimization procedure. In the first 

step, the equivalent 𝐾!  and 𝑣!"#  values were estimated using the experimentally 

measured flux data for the single knockout mutants grown aerobically with glucose (i.e., 

a total of nineteen flux datasets). In addition, for the reactions catalyzed by isozymes, we 

estimated the lost activity upon deletion of one of the isozymes (see online Methods). In 

the second step, the estimated equivalent 𝐾! values were fixed and 𝑣!"# values were 
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estimated again for the strains grown anaerobically with glucose and those with alternate 

carbon substrates pyruvate and acetate, separately (i.e., a total of six flux datasets). The 

mathematical representation of the optimization problem is described below. 

(a) Estimation of elementary kinetic parameters and isozymes activity using 

experimental data under aerobic conditions 

The first step of the optimization problem requires definition of the following sets: 

 
𝐼 = {𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒, 𝑒𝑛𝑧𝑦𝑚𝑒 𝑎𝑛𝑑 𝑒𝑛𝑧𝑦𝑚𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥}    

𝐽 = 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛         

𝐸! = {𝑒𝑛𝑧𝑦𝑚𝑒 𝑎𝑛𝑑 𝑒𝑛𝑧𝑦𝑚𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑗} 

𝐿! = {𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑗} 

𝑀𝐴 = 𝑚𝑢𝑡𝑎𝑛𝑡 𝑑𝑎𝑡𝑎 𝑔𝑟𝑜𝑤𝑛 𝑎𝑒𝑟𝑜𝑏𝑖𝑐𝑎𝑙𝑙𝑦 𝑤𝑖𝑡ℎ 𝑔𝑙𝑢𝑐𝑜𝑠𝑒  

𝑁 = {𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑙𝑢𝑥 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠} 

𝑅𝐼𝑆! =
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑡𝑎𝑙𝑦𝑧𝑒𝑑 𝑏𝑦 𝑖𝑠𝑜𝑧𝑦𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑙𝑦 
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑙𝑢𝑥 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑜𝑓 𝑖𝑡𝑠 𝑖𝑠𝑜𝑧𝑦𝑚𝑒𝑠 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛  

𝐶𝐼𝑆! = {𝑖𝑠𝑜𝑧𝑦𝑚𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑗} 

𝑃 = {𝑚𝑜𝑑𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒} 

 
We also define the following variables and parameters: 

Variables: 

 

𝑦!" =  

 

 

𝜅!"
!!!!!= Sampled elementary kinetic parameters of the model 𝑝 ∈ 𝑃 in the ensemble 

for the forward elementary mechanism of reaction 𝑗 ∈ 𝐽 in step 𝑙! ∈ 𝐿! 

𝜅!"
!!!= Sampled elementary kinetic parameters of the model 𝑝 ∈ 𝑃 in the ensemble for 

the reverse elementary mechanism of reaction 𝑗 ∈ 𝐽 in step 𝑙! ∈ 𝐿! 

𝑘!
!!!!!= Forward kinetic parameter of elementary reaction 𝑗 ∈ 𝐽 in step 𝑙! ∈ 𝐿! 

	
	
	

if	kinetic	parameter	of	reaction	𝑗 ∈ 𝐽	is	selected	
from	model	𝑝 ∈ 𝑃 in	the	ensemble	

otherwise	

1, 

 
 

0,	
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𝑘!
!!!= Reverse kinetic parameter of elementary reaction 𝑗 ∈ 𝐽 in step 𝑙! ∈ 𝐿! 

𝑣!= Flux of reaction j  

𝑣!
!!!!!= Forward flux of the elementary reaction 𝑗 ∈ 𝐽 in step 𝑙! ∈ 𝐿! 

𝑣!
!!!= Reverse flux of the elementary reaction 𝑗 ∈ 𝐽 in step 𝑙! ∈ 𝐿! 

𝑐!= Normalized concentration of metabolite 𝑖 ∈ 𝐼 

𝑒!= Fraction of free enzyme or enzyme complex 𝑖 ∈ 𝐼 

𝛼!
!"#!= Activity loss of isozymes catalyzing reaction 𝑗 ∈ 𝐽 upon deletion of 𝑐𝑖𝑠! 

Parameters: 

𝑆!,!= Stoichiometric coefficient of reaction 𝑗 ∈ 𝐽 and metabolite 𝑖 ∈ 𝐼 after reaction 

decomposition based on the elementary mechanism 

𝑣!
!"# =  Experimental measurements of flux of reaction 𝑗 ∈ 𝐽  in different mutant 

strains 

𝐶𝑉! = Coefficient of variation for reaction 𝑗 ∈ 𝐽  with available experimental 

measurements in the reference strain (wild-type) 

𝑟𝑖𝑠!= 
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑡𝑎𝑙𝑦𝑧𝑒𝑑 𝑏𝑦 𝑖𝑠𝑜𝑧𝑦𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑙𝑦 
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑙𝑢𝑥 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑜𝑓 𝑖𝑡𝑠 𝑖𝑠𝑜𝑧𝑦𝑚𝑒𝑠 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛  

𝑐𝑖𝑠!= Isozymes of reaction 𝑗 ∈ 𝐽  

 

The objective function of the optimization problem minimizes the average relative 

deviation between k-ecoli457 predictions and the experimentally measured flux datasets 

across all the nineteen mutant strains 𝑀𝐴. For each reaction with measured flux data, the 

average relative error is scaled by its coefficient of variation to capture the reported 

uncertainty in the experimental data. As a result, the reactions with tighter confidence 

interval have a larger contribution in the objective function. The optimization problem is 

described as follows:   
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
!!"

    𝑧 =
1

𝑐𝑎𝑟𝑑(𝑀𝐴)
1

𝑐𝑎𝑟𝑑(𝑁)
1
𝐶𝑉!

𝑣! − 𝑣!
!"#.

𝑣!
!"#.

!∈!!∈!"

 

subject to: 

𝑆!,! . 𝑣! = 0
!∈!

 

𝑘!
!!!!! = 𝑦!"

!∈!

𝜅!"
!!!!! 

𝑘!
!!! = 𝑦!"

!∈!

𝜅!"
!!! 

𝑦!" = 1
!∈!

 

𝑣!
!!!!! = 𝑘!

!!!!! 𝑐!
!!,!

  !!,!!!

𝑒!
 !!,!!!

 

 

𝑣!
!!! = 𝑘!

!!! 𝑐!
!!,!

 !!,!!!

𝑒!
 !!,!!!

 

 

𝑣! = 𝑣!
!!!!! − 𝑣!

!!! 

𝑒!"! = 𝑒! = 0
!∈!!

 

 

𝑒!"! = 𝑒! = 1− 𝛼!
!"#!

!∈!!

 

 

 

 

𝛼!
!"#! = 1

!"#!∈!"#!

 

𝑦!" ∈ 0,1  
0 ≤ 𝛼!

!"#! ≤ 1 

∀𝑖 ∈ 𝐼                         (1) 

 
∀𝑗 ∈ 𝐽, 𝑙! ∈ 𝐿!           (2) 

 
∀𝑗 ∈ 𝐽, 𝑙! ∈ 𝐿!           (3) 

 

 

∀𝑗 ∈ 𝐽                         4  

 

∀𝑗 ∈ 𝐽, 𝑙! ∈ 𝐿!           (5) 

 
 

 

∀𝑗 ∈ 𝐽, 𝑙! ∈ 𝐿!           (6) 

 
∀𝑗 ∈ 𝐽, 𝑙! ∈ 𝐿!           (7) 

∀𝑗 ∈ {𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑  
𝑟𝑥𝑛 𝑖𝑛 𝑀𝐴}\𝑅𝐼𝑆!    (8) 

 

∀𝑗 ∈ {𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑  
𝑟𝑥𝑛 𝑖𝑛 𝑀𝐴} ∩ 𝑅𝐼𝑆!,  
𝑐𝑖𝑠! ∈ {𝑑𝑒𝑙𝑒𝑡𝑒𝑑  
𝑖𝑠𝑜𝑧𝑦𝑚𝑒}                 (9) 
 
 

∀𝑗 ∈ 𝑅𝐼𝑆!               (10) 
 
 

∀𝑗 ∈ 𝐽,𝑝 ∈ 𝑃 
 

∀𝑗 ∈ 𝑅𝐼𝑆!, 𝑐𝑖𝑠! ∈ 𝐶𝐼𝑆! 
 
Constraint (1) represents conservation of mass for each metabolite, enzyme and enzyme 

complex in the model following elementary decomposition. Constraint (2) and (3) assign 

a sampled elementary kinetic value in the ensemble to the elementary forward and 

∀𝑚 ∈ 𝑀𝐴	
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reverse kinetic parameters of reaction 𝑗  in step 𝑙! , denoted as 𝑘!
!!!!!  and 𝑘!

!!! , 

respectively. 𝜅!"
!!!!! and 𝜅!"

!!! represent forward and reverse elementary kinetic parameters 

of reaction j in step 𝑙!, respectively, in model 𝑝 in the ensemble. For each elementary 

kinetic parameter there are 𝑃 alternatives in the initial ensemble. 𝑦!" is a binary variable 

acting as a “switch” that ultimately assigns the sampled parameter values in model p to 

all the elementary kinetic parameters of reaction j. Constraint (4) ensures that only one 

value for each elementary kinetic parameter is selected from the models in the ensemble. 

Constraints (5) and (6) represent the mass action kinetics for the forward and reverse 

elementary reactions, respectively. Constraint (7) computes the net flux of reaction j (𝑣!) 

as the difference between the corresponding elementary forward and reverse reactions. 

The flux of the perturbed reactions in mutant MA which is not catalyzed by isozymes is 

set to zero in constraint (8). For the reactions catalyzed by isozymes, constraint (9) allows 

the total level of enzyme 𝑒! to vary between its deletion (i.e., 0) and the wild-type level 

(i.e., 1) to capture the lost activity upon deletion of one of the isozymes. Constraint (10) 

ensures that the sum of the total level of the isozymes 𝑐𝑖𝑠! catalyzing reaction j is set to 

the wild-type level (i.e., one). This optimization problem identifies the best combination 

of the sampled parameters in the initial ensemble as well as activity of isozymes with 

measured flux data upon their deletions. The experimentally measured flux data for the 

nineteen single knockout mutant strains including twelve single isozyme deletions were 

integrated at this step. These mutant strains were all grown under aerobic conditions with 

glucose as the sole carbon substrate (i.e., △pgi, △pykA, △pykF, △ppsA, △gnd, △zwf, 

△rpe, △pfkA, △pfkB, △fbaB, △gpmA, △gpmB, △pgl, △rpiA, △rpiB, △talA, △talB, △tktA 

and △tktB) [5]. The optimization problem was solved by iteratively adding mutant strain 
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data one at a time and initializing the problem from the best solution obtained at the 

previous iteration.  

(b) Estimation of enzyme levels using experimental data under environmental 

perturbations  

The estimated parameters at the first step were fixed and the levels of the enzymes were 

estimated through solving the second step of the optimization procedure (see Materials 

and methods). Thus we defined the identified elementary kinetic parameters and the lost 

of activity as the parameters: 

Parameters: 

𝑦!" = Identified binary variables  

𝛼!
!"#!= Identified activity loss of isozymes catalyzing reaction 𝑗 ∈ 𝐽 upon deletion of 

𝑐𝑖𝑠! 

𝑘!
!!!!!= Identified forward kinetic parameter of elementary reaction 𝑗 ∈ 𝐽 in step 

𝑙! ∈ 𝐿! 

𝑘!
!!!= Identified reverse kinetic parameter of elementary reaction 𝑗 ∈ 𝐽 in step 𝑙! ∈ 𝐿! 

 

This problem also requires defining three additional subsets and one variable: 

Subsets: 

𝐷 = 𝑚𝑢𝑡𝑎𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑎𝑛𝑎𝑒𝑟𝑜𝑏𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑟 𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒 𝑜𝑟 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑎𝑠 
𝑡ℎ𝑒 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒)  

𝑀𝑁 =  𝑚𝑢𝑡𝑎𝑛𝑡 𝑑𝑎𝑡𝑎 𝑔𝑟𝑜𝑤𝑛 𝑎𝑛𝑎𝑒𝑟𝑜𝑏𝑖𝑐𝑎𝑙𝑙𝑦 𝑎𝑛𝑑 𝑡ℎ𝑜𝑠𝑒 
𝑤𝑖𝑡ℎ 𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒 𝑜𝑟 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑎𝑠 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  

𝑅!
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑜𝑠𝑒 𝑒𝑛𝑧𝑦𝑚𝑒 𝑙𝑒𝑣𝑒𝑙 𝑤𝑎𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑡𝑜 𝑣𝑎𝑟𝑦 𝑖𝑛 𝑚𝑢𝑡𝑎𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑑  

 

Variable: 
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𝛽!!= The change in the enzyme level of reaction j in condition 𝑑 

The experimentally measured flux data for the remaining six mutant strains 𝑀𝑁 under 

three different growth conditions 𝐷 were integrated at this step to estimate the minimum 

number of enzymes whose level was allowed to vary under each condition, separately 

(i.e., a wild-type, △zwf and △gnd under aerobic conditions with pyruvate as the carbon 

substrate [8] and a wild-type strain grown under aerobic conditions with acetate as the 

carbon substrate [9]). The objective function of the second step of the optimization 

problem is still minimizing the average relative deviation between k-ecoli457 predictions 

and the experimentally measured flux datasets. The optimization problem is described as 

follows:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
!!
!

    𝑧 =
1

𝑐𝑎𝑟𝑑(𝑀𝐴)
1

𝑐𝑎𝑟𝑑(𝑁)
1
𝐶𝑉!

𝑣! − 𝑣!
!"#.

𝑣!
!"#.

!∈! !∈!"

 

subject to: 

Constraints (1, 5-8) 

𝑒! = 𝛽!!

!∈!!

 

0 ≤ 𝛽!! ≤ 10 

∀𝑚 ∈ 𝑀𝑁 

∀𝑑 ∈ 𝐷, 𝑗 ∈ 𝑅!    (11) 
 

 
The objective function and constraints (1, 5-8) are similar to those of the first step of the 

optimization problem. The binary variables 𝑦!"  as well as the elementary kinetic 

parameters 𝑘!
!!!!! and 𝑘!

!!! are obtained in the first step of the optimization problem, 

through identifying the best set of model parameters in the initial ensemble. In addition, 

for the reactions catalyzed by isozymes with available experimentally measured flux data 

of their deletion, the activity of each isozyme was estimated. Constraint (11) allows the 
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level of 𝑅 enzymes to vary under anaerobic growth or alternate substrates 𝐷 in order to 

capture metabolic transition. 

Simplified biomass reaction 

We integrated a simplified version of the biomass equation for E. coli described in [3], 

which acts as a drain for the amino acids as well as all the main constituent precursors in 

central metabolism. For the pathways absent in the simplified biomass equation, their 

main precursor in central metabolism was used and all unnecessary reactions were 

removed to make the model compact. For example, we defined an export reaction for 

Acetyl-CoA and G6P as a proxy for the lipid metabolism and nucleotide biosynthesis 

pathways drainage towards biomass. 

0.205 G6P + 0.071 F6P + 0.754 R5P + 0.129 GAP + 0.619 3PG + 0.051 PEP + 0.083 PYR + 
2.510 AcCoA + 0.087 AKG + 0.340 OAC + 0.488 Ala + 0.281 Arg + 0.229 Asn + 0.229 Asp + 
0.087 Cys + 0.250 Glu + 0.250 Gln + 0.582 Gly + 0.090 His + 0.276 Ile + 0.428 Leu + 0.326 Lys 
+ 0.146 Met + 0.176 Phe + 0.210 Pro + 0.205 Ser + 0.241 Thr + 0.054 Trp + 0.131 Tyr + 0.402 
Val + 0.443 MEETHF + 33.247 ATP + 5.363 NADPH à 39.68 biomass + 1.455 NADH 
 

GA implementation of the optimization problems 

Both optimization problems were solved using a binary coded genetic algorithm (GA) 

implementation in MATLAB (MathWorks Inc.) as described below: 

Genotype and phenotype of chromosomes: The problem solutions are represented as a 

population of chromosomes in the GA representation. Each chromosome is composed of 

a set of genes where each gene represents one problem variable in a discrete 

representation. Genotype of each gene is parsed to its phenotype by a decimal decoding 

operation. In the first step of the optimization problem, one integer variable is defined for 

each reaction j to assign a sampled set of elementary kinetic parameters from model p in 
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the ensemble, as represented by binary variables 𝑦!" in the optimization formulation. In 

addition, for the reactions catalyzed by isozymes with available experimentally measured 

flux data for one of the isozymes deletions, the total enzyme level 𝑒!"! is defined as a 

continuous variable. We defined a chromosome to represent both the integer and 

continuous variables in the first step of the optimization problem (see Supplementary 

Figure 1.a). For the integer variables, each gene represents a sampled model out of the P 

model in the ensemble for each kinetic parameter (i.e., 1≤decimal(bina)+1≤number of 

sampled models in the ensemble P, where bin represents the binary value). The length of 

each gene (i.e., number of bits) is defined as log! 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠  (where 𝑥  

represent the smallest integer not less than 𝑥), which is represented as a in Supplementary 

Figure 1.a. In order to prevent an undefined search space, the number of models in the 

ensemble was set to be an integer exponent of 2 (i.e., 217). We note that 217 models have 

been sampled in the ensemble as no further improvement in the model predictions and 

convergence to the optimal solution were achieved for a larger ensemble size. Thus, the 

number of bits a for the integer variables was set to 17. Alternatively, for the continuous 

variables we defined a gene for each enzyme level of the perturbed reactions catalyzed by 

isozymes that can take a value between its deletion and the wild-type level (i.e., 

0 ≤ 𝑒!"! ≤ 1) in a discrete representation. The reduced level of the enzyme upon deletion 

of one of the isozymes is obtained by mapping the scaled value between zero and one 

following decimal decoding (i.e., 0≤scaled value=decimal(binb)/(2b-1)≤1, where b 

represents the number of bits for each gene). The length of each gene specifies the 

resolution of the solution space as 1/(2b-1). Thus, for a desired resolution, the length of 

each gene is log2
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 1

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . We set the number of bits b to 16 as no 
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improvement was observed for a higher resolution (i.e., equivalent of an approximate 

resolution of >1.5×10-5). In the second step of the optimization problem, the level of the 

enzymes is defined as a variable under each mutant condition, separately. Similarly, we 

defined a gene for each enzyme level that can take a value between its deletion and a ten-

fold up regulation (i.e., 0 ≤ 𝑒!"! ≤ 10) in a discrete representation under each mutant 

condition, separately. First, we mapped the binary value of each gene to a scaled value 

(i.e., 0≤scaled value=decimal(ac)/(2c-1)≤1, where c represents the length of each gene). 

We set the number of bits c to 16 (i.e., equivalent of an approximate resolution of 

>1.5×10-5) as no improvement was observed for a higher resolution (see supplementary 

Figure 1.b). Next, the enzyme level under each mutant condition is obtained by mapping 

the scaled value between zero and a ten-fold overexpression (i.e., 0≤ scaled value×𝑈𝐵 

≤10, where 𝑈𝐵 is the upper bound of the enzyme level, 10). 

	

Supplementary Figure 1 Genotype and phenotype representations of each chromosome. 
(a) In the first step of the optimization problem, the chromosome includes both integer 
and continuous variables representing the id of the sampled model in the ensemble and 

1 0 0 … 1 1 1 0 1 0 … 0 1 1 

Id of the sampled parameters  
in the ensemble 

Enzyme levels of the reactions  
catalyzed by isozymes 

Reaction 1 Reaction J Reaction 1 Reaction RISJ 

a b

1 0 0 … 1 1 0 … 0 1 0 … 0 1 1 

Enzyme level changes under 
mutant condition 1 

Enzyme level changes under 
mutant condition D 

Reaction r1 Reaction R1 Reaction rD Reaction RD 

c

a 

b 
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the reduced level of the enzyme for the perturbed reactions catalyzed by isozymes, 
respectively. The total number of metabolic reactions and the reactions catalyzed by 
isozymes with measured flux data of one of the isozyme deletion are represented by j and 
RISj, respectively. (b) In the second step of the optimization problem, the chromosome 
includes only continuous variables representing the change in the level of enzymes when 
growth is switched from aerobic glucose to the other growth conditions. Number of bits 
is represented by a, b and c. D represents the number of other growth conditions (i.e. not 
grown aerobically with glucose) and R represents the number of reactions whose level 
was allowed to vary under those conditions. 

Population size: In all simulations the population size was set to four to six times the 

number of variables (i.e., genes) in the chromosomes. 

Initialization of population: A uniform distribution was used to populate the 

chromosomes in the initial and remaining generations. Following the initial generation, 

only one chromosome was initialized with the best solution obtained in the previous 

generation. 

Crossover operator: We examined algorithm performance with different crossover 

fractions to find an optimal value. The GA problem initialized with 0.8 crossover fraction 

until no improvement is observed in the fitness after 40 generations. Next, the problem is 

run again with a more conservative crossover fraction (i.e., 0.9) until no improvement is 

observed again in the fitness after 40 generations. A scattered crossover was also used to 

construct the child chromosome by combining the parent’s genes. 

Termination criterion: The GA procedure is terminated when the fitness of the elite 

chromosome is considered sufficiently high (i.e., as good as the elite chromosome before 

the addition of new flux dataset) or if no improvement is observed in the elite 

chromosome after 40 generations. Overall, we observed that in the majority of runs, the 

fitness reaches the saturation level as the number of generations exceeds 100. However, 
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each run was submitted for another 40 generations to ensure there is no further 

improvement after 40 generations.  

Predicted steady-state metabolic flux distribution 

Following model parameterization, we observed that for 61% of the reactions the 

predicted flux data by k-ecoli457 are within the experimentally reported ranges (see 

supplementary Figure 2.a and Results section of the manuscript). We also tested the 

residual distribution of the predicted fluxes as a measure of statistical correctness of k-

ecoli457 predictions (see supplementary Figure 2.b-c). In general, we observed that the 

distribution is approximately normal implying the statistical accuracy of k-ecoli457 

predicted fluxes (see Supplementary Data 1 for the predicted flux distributions in all the 

mutant strains by k-ecoli457).  
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Supplementary Figure 2 (a) The experimentally measured and predicted steady-state 
fluxes by k-ecoli457 in the mutant strains for up to 25 reactions (see Supplementary Data 
2 for a complete list of predicted fluxes). Blue diamonds represent the experimental 
measurements for each mutant and green circles represent the predicted flux distributions 
by k-ecoli457. Error bars denote one standard deviation confidence interval for the 
corresponding reaction in the wild-type strain. (b) The residual distribution between the 
predicted steady-state flux data by k-ecoli457 and measured values. Blue bars denote k-
ecoli457 predictions and the red distribution shows the fitted distribution. (c) The 
cumulative distribution between the predicted steady-state flux data by k-ecoli457 and 

0

50

100

150

200

AC
AL
D

AC
O
N
Ta C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

IC
D
H
yr

IC
L

LD
H
−D

M
AL
S

PG
I

PG
M

PT
Ar

R
PI

SU
C
D
i

TP
I

D
AP

D
C

KA
R
A1

D
H
AD

1
IP
PS

IP
PM

Ib
IP
PM

Ia
IP
M
D

O
M
C
D
C

0

50

100

150

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
AP

D
IC
D
H
yr

IC
L

M
AL
S

PG
M

PT
Ar

R
PI

SU
C
D
i

TK
T2 TP
I

AC
LS

KA
R
A1

D
H
AD

1
IP
PS

IP
PM

Ib
IP
M
D

O
M
C
D
C

LE
U
TA

i
C
H
O
R
M

0

50

100

150

200
AC

AL
D

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
AP

D
IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
M

PT
Ar

R
PE

SU
C
D
i

TK
T2

AC
LS

D
H
AD

1
IP
PS

IP
PM

Ib
IP
PM

Ia
IP
M
D

O
M
C
D
C

LE
U
TA

i
C
H
O
R
M

0

50

100

150

200

AC
AL
D

AC
O
N
Ta C
S

EX
−c
o2
(e
)

FU
M

G
AP

D
G
N
D

IC
D
H
yr

LD
H
−D

PD
H

PG
I

PG
M

PT
Ar

R
PI TP
I

ED
A

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1
IP
PS

IP
PM

Ib
IP
PM

Ia
IP
M
D

LE
U
TA

i

0

50

100

150

200

AC
AL
D

AC
O
N
Ta C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

PD
H

PG
I

PG
M

PT
Ar

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1 TP
I

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1
3O

AS
16
0

3O
AR

16
0

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1

PG
M
T

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1 TP
I

PG
M
T

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1

0

50

100

150

200

250

300

350

400

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1 TP
I

ED
A

R
5P
P

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H

EX
−c
o2
(e
)

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

PD
H

PG
I

PG
M

R
PE

TA
LA

TK
T1 TP
I

PG
M
T

R
5P
P

D
AP

D
C

KA
R
A1

D
H
AD

1
IP
PS

IP
PM

Ib
IP
PM

Ia
IP
M
D

O
M
C
D
C

0

50

100

150

AC
AL
D

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PG
I

PG
M

PT
Ar

R
PI

SU
C
D
i

TP
I

AC
LS

KA
R
A1

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1 TP
I

PG
M
T

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1

0

50

100

150

200

AC
O
NT

a
AK

G
DH C
S

FB
A

G
6P
DH

2r
G
AP

D
G
ND

IC
DH

yr IC
L

M
AL
S

PD
H

PG
I

PG
M

RP
E

RP
I

SU
CD

i
TA

LA
TK

T1
R5

PP
DA

PD
C

KA
RA

1
DH

AD
1

IP
PS

IP
PM

Ib
IP
PM

Ia
0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
IC
D
H
yr

IC
L

PD
H

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1

TK
T2

PG
M
T

R
5P
P

D
AP

D
C

AC
LS

KA
R
A1

IP
PS

IP
PM

Ib

0

50

100

150

200

250

300

350

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1

ED
A

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1

0

50

100

150

200

AC
O
NT

a
AK

G
DH C
S

FB
A

FU
M

G
6P
DH

2r
G
AP

D
G
ND

IC
DH

yr IC
L

M
AL
S

PD
H

PG
I

RP
I

SU
CD

i
TK

T1
TK

T2 TP
I

R5
PP

DA
PD

C
AC

LS
KA

RA
1

DH
AD

1
IP
PS

IP
PM

Ib

0

50

100

150

200

250

300

350

AC
AL
D

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PI

SU
C
D
i

TP
I

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1

0

50

100

150

200

250

300

350

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
AP

D
IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TK
T2 TP
I

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1 TP
I

PG
M
T

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
M

R
PI

SU
C
D
i

TA
LA

TK
T2 TP
I

PG
M
T

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1
IP
PM

Ib

0

50

100

150

200

250

300

AC
O
N
Ta

EX
−c
o2
(e
)

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1

TK
T2 TP
I

PG
M
T

R
5P
P

D
AP

D
C

KA
R
A1

D
H
AD

1
IP
PS

0

50

100

150

200

250

300

350

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
AP

D
IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TK
T2 TP
I

R
5P
P

AC
LS

KA
R
A1

D
H
AD

1

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H

EX
−c
o2
(e
)

FB
A

FU
M

G
AP

D
G
N
D

IC
D
H
yr

IC
L

PD
H

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1

TK
T2 TP
I

ED
A

PG
M
T

R
5P
P

D
AP

D
C

AC
LS

KA
R
A1

D
H
AD

1
IP
PS

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

G
AP

D
G
N
D

IC
D
H
yr

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1

TK
T2 TP
I

PG
M
T

R
5P
P

D
AP

D
C

AC
LS

KA
R
A1

D
H
AD

1
IP
PS

IP
PM

Ia

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FB
A

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
D
H
yr

IC
L

M
AL
S

PD
H

PG
M

R
PI

TA
LA

TK
T1

TK
T2 TP
I

PG
M
T

R
5P
P

D
AP

D
C

AC
LS

KA
R
A1

IP
PS

0

50

100

150

200

250

300

AC
O
N
Ta

AK
G
D
H C
S

EX
−c
o2
(e
)

FU
M

G
6P
D
H
2r

G
AP

D
G
N
D

IC
L

PD
H

PG
I

PG
M

R
PE R
PI

SU
C
D
i

TA
LA

TK
T1

TK
T2 TP
I

PG
M
T

D
AP

D
C

KA
R
A1

D
H
AD

1
IP
PS

IP
PM

Ib

Reaction

S
te

ad
y-

st
at

e 
flu

x,
 m

ol
ar

 h
-1

−150 −100 −50 0 50 100 150
0

50

100

150

200

250

300

350

400

450
Distribution of deviation

# 
of

 d
at

a 
po

ni
ts

fluxest − fluxmea

a

b c

−150 −100 −50 0 50 100 150
0

50

100

150

200

250

300

350

400

450
Distribution of deviation

# 
of

 d
at

a 
po

ni
ts

fluxest − fluxmea

−150 −100 −50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fluxprd − fluxexp

P
ro

ba
bi

lit
y

Cumulative distribution



	 15	

measured values. The blue distribution shows k-ecoli457 predictions and red distribution 
shows the normal distribution. 

Statistical significance of the model parameterization using a cross-validation 

analysis 

In order to assess over-fitting of the data to the underlying model, we performed leave-

one-out and leave-two-out cross validation tests by iteratively excluding, respectively, 

one and two mutant stains flux data at a time from the training set and then test the 

resulting model against the excluded data (the results of leave-two-out are not shown as 

they exhibited the same trends as leave-one-out tests). Overall, the cross validation 

analysis reflects the dependence of prediction on the inter-relation of the training 

datasets. The analysis displayed that for the mutant strains under aerobic conditions with 

glucose (nineteen mutants) and pyruvate (three mutants) as the carbon source, the model 

parameterization is generally robust to the excluded data with an average increase in 

average scaled deviation by 5% (15% increase was observed in the previously published 

core model [6]) across all validation tests (see Supplementary Figure 3). This is due to the 

fact that the integrated experimental data are comprised of a diverse set of enzyme 

perturbation strategies in different parts of the metabolism so that model parameterization 

is still supported by the data of the mutants located in the same vicinity of the cross 

validated mutant. For example, in the core model we reported a failure in cross-validation 

of △pgi due to the absence of flux data of the adjacent mutants for its model 

parameterization [6]. This issue is addressed here through integration of three additional 

sets of knockout mutants’ flux data in the preparatory phase of glycolysis (i.e., 

△pfkA,  △pfkB and △ fbaB). The same holds true for the remaining eighteen cross 

validation tests with glucose as the carbon substrate including those in pay-off phase of 
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glycolysis (i.e., △gpmA, △gpmB, △pykA, △pykF and △ppsA) as well as oxidative (i.e., 

△zwf, △pgl and △gnd) and non-oxidative (i.e., △rpe, △rpiA, △rpiB, △talA, △talB, △tktA 

and △tktB) sections of the PP pathways. Likewise, a robust model parameterization was 

observed during cross validation of three mutant data with pyruvate as the carbon 

substrate (i.e., the wild-type, △zwf and △gnd), as their parameterizations were still 

endorsed by two other mutant data. For the latter case with the exceptions of the reactions 

catalyzed by pgi, zwf and gnd, we note that the observed robust cross validation of the 

wild-type strain is a result of the similarity of the measured flux data compared to two 

other mutants. As expected, this robust model parameterization was not the case for cross 

validation tests of the two mutant strains under anaerobic conditions with glucose as the 

carbon source (i.e., the wild-type and △ldh) as alluded by higher prediction deviations 

from experimental data (i.e., a 14% increase in average scaled deviation). In particular, 

the measured flux data of the fermentative products (i.e., formate, lactate, acetate and 

ethanol) are significantly different in both mutant strains. This variation in the activity of 

the fermentation pathways was not considered during each mutant cross validation test 

and thereby the predicted enzyme levels could not properly capture the excluded 

phenotypes. Even though these discrepancies propagate to some extent in other part of 

the network, the model prediction is still acceptable for the remaining reactions (i.e., an 

average 8% deviation from the experimental ranges). We note that due to having only 

one strain data grown on acetate, we did not perform a cross validation test for this strain 

and thus no conclusion was drawn for the robustness of the estimated parameters.  
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Supplementary Figure 3 Cross-validation analysis. Gray bars represent the average 
scaled deviation of the predicted steady-state fluxes for different mutant strains upon their 
exclusion from the training dataset. Blue bars correspond to the average scaled deviation 
of the predicted steady-state flux distribution from the experimental measurements while 
including all mutant strains data. The difference between the two bars represents the 
increase in average scaled deviation upon excluding the flux data of the mutant strain.  

Confidence intervals of the estimated and measured parameters 

The predicted normalized metabolite concentrations and Michaelis-Menten constants are 

scaled by the corresponding metabolite concentration ranges in the reference (wild-type) 

strain in order to convert them into the actual ranges. As a result, large confidence errors 

in the experimental data for metabolite concentrations lead to large confidence intervals 

for model predictions (see Figures 3 and 4). We extracted five additional measured 

concentration datasets for the wild-type strain and used their intersection as the base 

confidence ranges to reduce the uncertainties of the base concentrations, as described in 

the Methods section (see Supplementary Table 1 and 2). In order to assess statistical 
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correctness of k-ecoli457 model predictions we performed a statistical analysis on the 

residual distribution of the predicted parameters. Overall, the results revealed a near-

normal residual distribution implying statistical significance of the estimated parameters 

[10] (see Supplementary Figure 4).  

 
Supplementary Figure 4	The residual distribution and cumulative distribution between 
the measured and predicted (a-b) steady-state metabolite concentrations in the twenty 
mutant strains, and (c-d) Km and (e-f) kcat values by k-ecoli457. Blue bars denote k-
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ecoli457 predictions and red curve shows the fitted distribution. The blue distribution 
shows k-ecoli457 predictions and the red distribution shows the normal distribution. 

Supplementary Table 1 The list of flux datasets used for the k-ecoli457 
parameterization 

#	 Genetic	
background	 Strain	 Growth	condition	 Substrate	 Dilution	rate	(or	specific	

growth	rate),	h-1	 Ref.	

1 wild-type BW25113 

aerobic glucose 0.2 [5] 

2	 △pgi	 KO04	
3	 △pykA	 KO12	
4	 △pykF	 KO13	
5	 △ppsA	 KO14	
6	 △gnd	 KO17	
7	 △zwf	 KO15	
8	 △rpe	 KO18	
9	 △pfkA	 KO05	
10	 △pfkB	 KO06	
11	 △fbaB	 KO08	
12	 △gpmA	 KO10	
13	 △gpmB	 KO11	
14	 △pgl	 KO16	
15	 △rpiA	 KO19	
16	 △rpiB	 KO20	
17	 △talA	 KO23	
18	 △talB	 KO24	
19	 △tktA	 KO21	
20	 △tktB	 KO22	
21 wild-type BW25113  anaerobic	 glucose	 0.16	 [7]	22 △ldh JW1375 0.14	
23 wild-type BW25113 aerobic	

	 pyruvate	 0.2	 [8]	24 △zwf JWK1841	
25 △gnd JWK2011	
26 wild-type K12	 aerobic	 acetate	 0.22	 [9]	

	
	

Supplementary Table 2 The list of metabolite concentration datasets used for the k-
ecoli457 testing 

#	 Genetic	
background	 Strain	 Growth	condition	 Substrate	 Dilution	rate	(or	specific	

growth	rate),	h-1	 Ref.	

1 wild-type BW25113 

aerobic glucose 0.2 [5] 

2	 △pgi	 KO04	
3	 △pykA	 KO12	
4	 △pykF	 KO13	
5	 △ppsA	 KO14	
6	 △gnd	 KO17	
7	 △zwf	 KO15	
8	 △rpe	 KO18	
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9	 △pfkA	 KO05	
10	 △pfkB	 KO06	
11	 △fbaB	 KO08	
12	 △gpmA	 KO10	
13	 △gpmB	 KO11	
14	 △pgl	 KO16	
15	 △rpiA	 KO19	
16	 △rpiB	 KO20	
17	 △talA	 KO23	
18	 △talB	 KO24	
19	 △tktA	 KO21	
20	 △tktB	 KO22	
21 wild-type K12	 aerobic	 acetate	 0.22	 [17]	
22 

wild-type 
 

BW25113	

aerobic	
	 glucose	

0.2	 [11]	
23 BW25113	 0.52	 [12]	
24 W3110	 0.1,	0.32,	0.55	 [13]	
25 BW25113	 0.1	 [14]	
26 BW25113	 0.2	 [15]	
27 W3110	 0.1	 [16]	
28 NCM3722	 	 [17]	

	
 
Correlation between measured and predicted product yields 

The Pearson correlation coefficient is used to represent the strength of a linear association 

between the experimentally measured product yields 𝑦!"#. and predicted values 𝑦!"#. by 

k-ecoli457 (𝑦 shows the mean value). A Student's t distribution is used to transform the 

correlation (see Supplementary Table 3 for Pearson correlation coefficients of predicted 

and measured product yield values).  

𝑟 =
𝑦!
!"# − 𝑦!"# 𝑦!

!"# − 𝑦!!"!

𝑦!
!"# − 𝑦!"# !

! 𝑦!
!"# − 𝑦!"# !

!

 , 𝑧 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑦𝑖𝑒𝑙𝑑  

Supplementary Table 3 Pearson correlation coefficient for the predicted and measured 
product yields 

 k-ecoli457 FBA MOMA Max. yield 
Measured 0.8388 

𝑃 <10-4 
0.1826 
𝑃 <10-3 

0.3707 
𝑃 <10-4 

0.4650 
𝑃 <10-4 

k-ecoli457  0.0721 
𝑃 <0.1958 

0.2518 
𝑃 <10-4 

0.4225 
𝑃 <10-4 
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FBA   0.5978 
𝑃 <10-4 

0.2462 
𝑃 <10-4 

MOMA    0.2477 
𝑃 <10-4 

 

k-ecoli457 parameterization under anaerobic growth or alternate substrates 

Regulatory programs at the transcription and (post)translation levels are the main cellular 

strategy to optimally modulate enzyme abundances under different conditions (e.g., 

growth mode or substrate changes) [18, 19]. In general, these regulatory events act by up-

regulating key enzymes with originally low basal expressions [20] and repressing 

enzymes that interrupt cell growth [21] through subtle regulation mostly acting at branch 

points in central metabolism [22]. In order to capture these regulatory effects and 

parameterize k-ecoli457 under anaerobic growth or alternate substrates, we used the 

parameters estimated using flux data of the mutant strains grown aerobically with 

glucose. We fixed the estimated parameters (i.e., Km) but allowed the level of a limited 

number of enzymes (i.e., 𝑣!"# in Michaelis-Menten description) to vary from zero (i.e., 

deletion) to a ten-fold up-regulation (i.e., 0 ≤ 𝑒!"! ≤ 10) to match the measured flux 

datasets under each mutant condition independently. These conditions include (i) 

anaerobic growth and (ii) pyruvate or (iii) acetate as the carbon substrate.  

In general, we observed that k-ecoli457 parameterization performed well under anaerobic 

growth and the two other substrates by accurately capturing the metabolic regulations 

through the estimated enzyme level changes. For example, the metabolic transition from 

aerobic to anaerobic conditions is mainly controlled at the transcription level by the two-

component Arc system (aerobic respiratory control) [23] and FNR (fumarate and nitrate 

reductase regulation) [24]. During the transition, they repress the PP pathway [25] and 
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the TCA cycle [26] while activate glycolysis [7] and fermentative pathways [26]. We 

observed that the estimated enzyme levels accurately captured these metabolic 

phenotypes by changing the level of 81 enzymes in order to satisfy the measured flux 

datasets. For example, under anaerobic conditions, the electron transport chain in the 

oxidative phosphorylation pathway is not active, thus preventing the oxidation of cofactor 

nadh, which is generated instead in the pay-off phase of glycolysis by glyceraldehyde 3-

phosphate dehydrogenase (GAPD). Without an adequate nadh sink, a significant amount 

of metabolic flux is directed towards ethanol, acetate, lactate and formate to maintain 

redox balance and cellular growth. This increased activity of fermentative products was 

adequately captured by the estimated up-regulation of acetaldehyde dehydrogenase 

(ACALD) (i.e., nine-fold), phosphotransacetylase (PTAr) (i.e., seven-fold), lactate (i.e., 

six-fold) and formate transport reactions (i.e., five-fold). In addition, the oxidative part of 

the TCA cycle is repressed by ArcA inhibition [27] while the reductive (i.e., C4) section 

is activated by FNR [28] to convert anaplerotic flux towards succinate, malate and 

fumarate. This branching of the TCA cycle was also captured by down-regulating 

aconitase (ACONTa) (i.e., ten-fold) in oxidative section and up-regulation of fumarase 

(FUM) (i.e., eight-fold) and malate dehydrogenase (MDH) (i.e., nine-fold) in the 

reductive section. The increased activity of glycolysis and reduced activity of the PP 

pathways were also captured by up-regulating pyruvate kinase (PYK) (i.e., eight-fold) 

and phosphofructokinase (PFK) (i.e., eight-fold) and down-regulating ribose transport 

(i.e., ten-fold) and transaldolase (TALA) (i.e., two-fold).  

The same agreement with the experimental reports was also observed for the mutant 

strains with pyruvate or acetate as the carbon substrate by changing 35 and 5 enzyme 
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levels, respectively. For the strains grown on pyruvate, activity of the PP pathway is 

repressed, thus decreasing the level of reducing power (i.e., nadph) required for cell 

biosynthesis. In general, up-regulating the TCA cycle and the anaplerotic pathway [8] as 

well as transhydrogenase (THD) [29], which equilibrates the nadh and nadph pools, are 

two strategies to fulfill the nadph demand in E. coli. We observed that the estimated 

enzyme levels predicted the increased activity of the TCA cycle and the anaplerotic 

pathway to produce cytosolic nadph and replenish the C4 intermediate in the TCA cycle 

by up-regulating ACONTa (i.e., two-fold), succinyl-coa synthetase (SUCOAS) (i.e., four-

fold) and FUM (i.e., nine-fold). However, we note that the estimated enzyme levels could 

not capture the increased activity of THD that is possibly due to the lack of training 

dataset representing such phenotype. The experimentally reported increase in the carbon 

dioxide evolution rate [8] was also captured by up-regulating carbon dioxide transport 

(i.e., eight-fold). For the strain grown on acetate, the PP pathway contributes negligibly to 

the metabolism, as a large fraction of acetate is routed towards the TCA cycle thus 

satisfying nadph demands for cell growth [9]. The estimated enzyme levels suggested a 

deviation of gluconeogenesis flux from glyceraldehyde 3-phosphate (g3p) towards serine 

to reduce the activity of the PP pathway by up-regulating phosphoserine phosphatase 

(PSP) (i.e., seven-fold).  

While the above described estimated enzyme level changes recapitulated mostly the 

known regulatory effects, the initially integrated regulatory events at substrate-level in k-

ecoli457 also simultaneously reapportioned the enzyme levels to reproduce the training 

datasets in each mutant strain. For example, atp is a competitive inhibitor of PYK [30] 

and PTAr [31], therefore the degree of repression imposed on the activity of glycolysis 
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and the fermentative pathways is proportional to its concentration. The predicted lower 

concentration of atp under anaerobic compared to that of aerobic conditions (i.e., 1.3-

fold) reduced this regulatory effect as reported experimentally [13, 17]. Likewise, the 

reduced inhibitory effects of malate on phosphoenolpyruvate carboxylase (PPC) [32] 

increased the anaplerotic flux towards the reductive section of the TCA cycle through the 

malate shunt [13, 17]. In addition, the experimentally reported acetyl-coa overflow in 

△ ldh [7] was partially captured by up-regulating (i.e., 1.3-fold) malonyl-coa-acp 

transacylase (MCOATA) due to the reduced inhibition of coa [33], thus directing acetyl-

coa towards membrane lipid metabolism. The substrate-level regulations also led to 

accurate predictions of metabolic regulation during growth with the two other carbon 

substrates. For example, for the strains grown on pyruvate, the predicted reduced 

inhibition of phosphate resulted in up-regulating (i.e., 1.2 fold) fructose-bisphosphatase 

(FBP) [34] and thus captured the increased activity of phosphoglucose isomerase (PGI), 

as reported experimentally [8]. For the strain grown on acetate, the increased activity of 

the TCA cycle and the glyoxylate shunt [9] was also estimated by reduced inhibition of 

phosphoenolpyruvate, thus up-regulating ICDH (i.e., 1.1-fold) and ICL (i.e., 1.7-fold) 

[35], respectively. While the activity of the PP pathway was repressed by the estimated 

total enzyme level changes, up-regulating (i.e., 1.1-fold) transaldolase (TALA) was also 

suggested to ensure a minimal production of erythrose 4-phosphate (e4p) for the 

biosynthesis of nucleotides and aromatic amino acids [9]. Overall, these observations 

indicated that k-ecoli457 parameterization led to accurate phenotype predictions even 

when growth mode or carbon substrate was changed by concurrently capturing the effect 

of all regulatory events. While regulatory interactions at transcription and 
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(post)translation level are often responsible for drastic enzyme activity changes mainly at 

key branch points of metabolism [18, 19], regulations at substrate-level modulate the 

enzyme activity by sensing the metabolic level and inducing appropriate regulatory 

signals [22]. This implementation of regulation enabled us to efficiently integrate 

available measured fluxes for different genetic variants under various growth conditions 

to parameterize a single model. 

Statistical analysis of the estimated product yield 

We analyzed the residual distribution of the predicted product yields as a measure of 

statistical correctness of model predictions (see Supplementary Figure 5). In general, we 

observed that the distribution is approximately normal implying the statistical accuracy of 

k-ecoli457 predictions and systematic errors in the FBA, MOMA and maximization of 

product yield predictions. 

	
Supplementary Figure 5 (a) The residual distribution between the predicted product 
yields by k-ecoli457, FBA, MOMA and maximization of product yield, and 
experimentally measured values. The fitted distributions are shown for each model. (b) 
The cumulative distribution between the predicted product yields by k-ecoli457, FBA, 
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MOMA and maximization of product yield, and experimentally measured values. The 
normal distribution is shown in red. 

Enzyme level changes under substrate change or growth condition 

We estimate the enzyme level changes when we switch the growth mode from aerobic to 

anaerobic conditions and also carbon substrate from glucose to pyruvate or acetate. This 

is because regulatory events at the transcription and (post)translation levels are the main 

cellular strategy to optimally modulate enzyme abundances under such perturbation 

scenarios [18, 19, 22]. For example, the reaction catalyzed by pyruvate formate lyase 

(PFL) does not carry any flux under aerobic conditions but becomes active under 

anaerobic conditions. Likewise, the reactions in fermentative pathways carry higher flux 

under anaerobic conditions to maintain redox balance for cell growth. In order to capture 

these regulations, we allowed the level of a limited number of enzymes RD under each 

mutant condition D (i.e., 𝑣!"# in Michaelis-Menten description) to vary between 0 and a 

10-fold over expression (i.e., 0 ≤ 𝑒!"! ≤ 10). In order to identify the minimum number 

of enzymes of which altered activity is required to reproduce the anaerobic data as well 

growth with pyruvate or acetate, we developed trade-off plots for each mutant condition, 

separately, and used the values in the “break points” as the optimal number of enzyme 

levels with varied levels (see Supplementary Figure 6). 
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Supplementary Figure 6 Trade-off plots to identify a minimum number of enzymes 
whose levels were allowed to vary under (a) anaerobic conditions, (b) pyruvate and (c) 
acetate as the carbon substrates. The highlighted numbers were used as the minimum 
number of enzymes with altered levels. 

	
Conversion of the estimated elementary kinetic parameters to Michaelis-Menten 

constants 

Elementary kinetic is the most fundamental kinetic description at molecular level in 

which reactions are decomposed into their elementary steps. For enzymatic reactions, 

reactants first bind to the enzyme one at each step to form a complex. Reaction 

transformation (e.g., isomerization) takes place during conversion of the central 

complexes and subsequently products are released one at each step. The order of binding 

reactants to the complex or release of products from the complex depends on the reaction 

mechanism [4]. For example, for a reversible reaction with one substrate and one product 

with an iso-ordered mechanism (iso-ordered Uni-Uni): 
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𝑆	
!
	𝑃	

	

Elementary	steps	are:	

	 	 E						+						S																ES													EP																E+P	

		e														s																		x																		y																					p	

where, 

s= concentration of substrate S 
p= concentration of product P 
x= level of enzyme complex ES 
y= level of enzyme complex EP 
e= level of enzyme E 

	  

Next, we develop a mass action kinetics equation for each elementary reaction.  

𝑣! = 𝑘!. 𝑠. 𝑒 

where e can be expressed in terms of level of enzyme complexes and the initial level of 

enzyme E, 𝑒!"!: 

𝑒 = 𝑒!"! − 𝑥 − 𝑦 

The elementary kinetic parameters can then be converted to their equivalent Michaelis-

Menten constants by developing a quasi steady-state assumption for the reaction 

intermediates. For the enzyme complexes with a quasi steady-state assumption we can 

have: 

𝑑𝑥
𝑑𝑡 = 𝑦𝑘!! + 𝑒!"! − 𝑥 − 𝑦 𝑠𝑘! − 𝑘! + 𝑘!! 𝑥 = 0	

𝑘!	
𝑘!! 
	

𝑘!	
𝑘!! 
	

𝑘!	
𝑘!! 
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𝑑𝑦
𝑑𝑡 = 𝑥𝑘! + 𝑒!"! − 𝑥 − 𝑦 𝑝𝑘!! − 𝑘! + 𝑘!! 𝑦 = 0	

This equation can be solved to substitute the enzyme concentration with the substrate and 

metabolite concentrations into the reaction rate: 

𝑣 = 𝑘!𝑦 − 𝑘!! 𝑒!"! − 𝑥 − 𝑦 𝑝 

Solving the system of equations gives (see Supplementary Table 4): 

𝑣 =
𝑘!"#
! 𝑒!"!𝑠 − 𝑘!"#! 𝑒!"!𝑝

1+ 𝑠
𝐾!!

+ 𝑝
𝐾!!

=
𝑣!"#
! 𝑠 − 𝑣!"#! 𝑝

1+ 𝑠
𝐾!!

+ 𝑝
𝐾!!

	

Supplementary Table 4 Elementary form of Michaelis-Menten 
Constant 

Michaelis-Menten constant Elementary constant 

𝑲𝒎
𝑺 	

𝑘!!𝑘!! + 𝑘!!𝑘! + 𝑘!𝑘!
𝑘! 𝑘!! + 𝑘! + 𝑘!

	

𝑲𝒎
𝑷 	

𝑘!!𝑘!! + 𝑘!!𝑘! + 𝑘!𝑘!
𝑘!! 𝑘!! + 𝑘! + 𝑘!

	

𝒗𝒎𝒂𝒙
𝒇 	

𝑘!𝑘!𝑘!
𝑘!!𝑘!! + 𝑘!!𝑘! + 𝑘!𝑘!

𝑒𝑡𝑜𝑡	

𝒗𝒎𝒂𝒙
𝒃 	

𝑘!!𝑘!!𝑘!!
𝑘!!𝑘!! + 𝑘!!𝑘! + 𝑘!𝑘!

𝑒𝑡𝑜𝑡	

 

The same procedure can be carried out to derive equivalent Michaelis-Menten constants 

for the higher-order elementary reactions. King and Altman [36] and Wang and Hanes 

[37] also proposed two simple approaches to derive Michaelis-Menten representations  in 

terms of the individual rate constants without explicitly solving the algebraic equations. 

The optimal combination of the elementary kinetic parameters was identified for the 

mutants grown aerobically with glucose in the first step of the optimization problem. This 
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is equivalent of estimating 𝐾! and 𝑣!"# values. In the second step of the optimization 

problem, the identified elementary kinetic parameters were fixed and the total level of 

each enzyme 𝑒! was estimated under the remaining three mutant conditions, separately. 

This is equivalent of fixing 𝐾!’s to the estimated values at the first step while estimating 

𝑣!"# values under the other three conditions, independently. 
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