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Supplementary Figure 1. Electronic structure of Fe3 on Cu(111). (a) Spin-projected local

density of states (DOS) with spin-orbit coupling, for Fe #1, in three different magnetic structures:

ferromagnetic (F), chiral right-handed (R) and chiral left-handed (L). The arrows indicate majority

(up) and minority (down) contributions, projected along the direction of the spin moment. θ is the

polar angle between the spin moments and the surface normal, while different magnetic structures

are specified by the azimuthal angle. When all three spin moments lie in the same plane (θ = 90◦)

the L and R structures form a triangular Néel structure with C123 = S1 · (S2 × S3) = 0. (b–d)

Orbital-resolved minority DOS for Fe #1, in the (b) θ = 0◦ (F); (c) θ = 45◦ (L,R); and (d) θ = 90◦

(L,R Néel) structures. The z-axis is the one normal to the surface, while the x-axis lies in the

mirror plane passing through Fe #1 (the trimer has C3v symmetry, but each magnetic atom has

local Cs symmetry).
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Supplementary Figure 2. Chirality-driven orbital moments of Fe3 on Cu(111). (a) Orbital

magnetic moment, |m|, for Fe #1, without spin-orbit coupling, for the chiral right-handed (R)

structure. The dashed lines show a comparison with the angular dependence of C123(θ) = S1 ·

(S2 × S3) ∝ sin2 θ cos θ, with the amplitude chosen to match the data near θ = 0◦, θ = 90◦,

or θ near the maximum value of the orbital moment. (b) Dependence of the two non-vanishing

components, mx and mz, of the orbital moment of Fe #1 on the number of filled d-states (Nd),

without spin-orbit coupling and for the R structure (θ = 45◦). We take the electronic structure of

the Fe3 cluster as reference, and vary the Fermi energy with respect to the true one (∆EF). This

reveals the dependence of the orbital moment on which d-states are filled. From left to right, the

vertical dashed lines mark the fillings corresponding to Cr, Mn, Fe and Co, respectively.
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Supplementary Figure 3. Electronic structure of Fe layer in Pd/Fe/Ir(111). (a) Spin-

projected local density of states from density functional theory calculations [1] and from the tight-

binding model, Supplementary Equation 1. Only the contribution of x2−y2 and xy character is

shown. The arrows indicate majority (up) and minority (down) projections. (b) The two orbitals

selected for the construction of the tight-binding model, viewed along the z-axis (normal to the

Fe atomic plane). (c) Sketch of the hexagonal skyrmion lattice obtained by applying periodic

boundary conditions to the hexagonal unit cell. The red hexagons mark the boundary of the unit

cells, where the spins always point up, while the blue circles represent the skyrmion cores, where

the spins point antiparallel to those in the boundary.
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SUPPLEMENTARY NOTES

Supplementary Note 1 — Electronic structure calculations for trimers

The electronic structure calculations for the trimers are performed within density func-

tional theory (DFT), as implemented in the Korringa-Kohn-Rostoker Green function

method [2], using the atomic sphere approximation with full charge density, a cutoff of

`max = 3, and the local spin density approximation parametrized by Vosko, Wilk and Nu-

sair [3]. First a self-consistent calculation is performed for a slab of 22 Cu layers stacked

in the fcc (111) direction, terminated with two vacuum regions equivalent to three more

atomic layers on each surface. Then a real-space cluster is self-consistently embedded on the

Cu(111) surface, consisting of the magnetic trimer and nearest-neighbor atoms. Different

magnetic structures can be stabilized employing constraining fields [4, 5], and are illustrated

in Figure 1 of the main text.

The local density of states (DOS) with spin-orbit coupling (SOC) is shown in Supplemen-

tary Figure 1(a), for three magnetic structures of Fe3. The largest energy scale is provided

by the exchange splitting, leading to well-separate majority and minority states, even when

SOC is included in the calculation. The peak splittings in the minority DOS decrease with

increasing polar angle θ, as the noncollinearity reduces the effective hybridization between

magnetic sites. Supplementary Figure 1(b–d) shows the orbital-projected DOS for the same

magnetic structures. Although the trimer has C3v symmetry about its center, each atom has

only Cs symmetry (one mirror plane). The character of the d-states near the Fermi energy

determines the properties of the orbital magnetic moments — orientation and magnitude.

The orbital moments are computed using the atomic orbital angular momentum operator,

for each magnetic site.

Supplementary Figure 2(a) compares the angular dependence of the chirality-driven or-

bital moment for Fe #1 in the R structure with the angular dependence of the scalar spin

chirality, C123(θ) = S1 · (S2 × S3) ∝ sin2 θ cos θ. The shape of the curves roughly agree,

but the maxima are located at different angles θmax. The angular function C123(θ) can still

be used for a range of angles near either the ferromagnetic or the triangular Néel states.

The explanation for the discrepancies is given in Supplementary Figure 1(b–d): as the mag-

netic structure changes with the polar angle, the orbital occupations and splittings near the
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Fermi energy change too, leading to a more complicated angular dependence of the orbital

moment.

Supplementary Figure 2(b) addresses the dependence of the chirality-driven orbital mo-

ment on the filling of the d-states, keeping the magnetic structure fixed (R, θ = 45◦). As for

the SOC-driven orbital moment, the chiral orbital moment has largest magnitude when the

d-states are partially filled (compare with Supplementary Figure 1(a)). The dashed lines

mark the fillings corresponding to the other magnetic species; there is good agreement with

the data for the other magnetic trimers shown in Figure 2(b–d) of the main text.

Supplementary Note 2 — Electronic structure calculations for skyrmions

The minimal tight-binding model for the skyrmionic structures is constructed using

the DOS from ferromagnetic DFT calculations for Pd/Fe/Ir(111), see Supplementary Fig-

ure 3(a). The magnetic Fe layer forms a hexagonal lattice with the lattice constant of the

Ir(111) substrate. We select two degenerate d-orbitals, |x2−y2〉 and |xy〉, see Supplemen-

tary Figure 3(b), as the largest contribution to the orbital moment comes from degenerate

orbitals that can be remixed by SOC or by the emergent magnetic field. The Hamilto-

nian consists of local exchange coupling to prescribed spin directions (ni) and hopping to

nearest-neighbors only, 〈i, j〉:

HTB = −J
∑
i

∑
mss′

c†ims ni · σss′ cims′ +
∑
〈i,j〉

∑
mm′s

c†ims tim,jm′ cjm′s . (1)

Here i labels the sites, m the orbitals and s the spins, with σ the vector of Pauli matrices.

Taking into account the shape of the orbitals, the hopping matrix is represented by

tij |x2−y2〉 |xy〉

〈x2−y2| t
(
1 + cos 4φij

)
t sin 4φij

〈xy| t sin 4φij t
(
1− cos 4φij

) , (2)

with the angle φij between the direction of the ij-bond and the x-axis. We take J = 1.2 eV,

t = 0.5 eV, include SOC on each site via HSOC = ξ
∑

i Li ·Si with ξ = 0.025 eV (here Li and

Si are the orbital and spin angular momentum operators for each site), mimic the effect of
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hybridization with all other neglected electronic states by a constant broadening Γ = 0.1 eV,

and set the band filling to Nd = 2.5. In the ferromagnetic state the spin moment per atom

is 1.4 µB, and the SOC leads to an orbital moment per atom of 0.1 µB. The corresponding

electronic structure is shown in Supplementary Figure 3(a), where it is compared with the

corresponding partial DOS from the DFT calculation.

To compute the electronic structure of skyrmionic magnetic structures, the remaining

ingredient is the skyrmion profile, which controls the local exchange coupling to the directions

ni. We adopt the radial profile, θ(r;B), from Ref. [6],

θ(r;B) = π + arcsin

(
tanh

r + c(B)

w(B)

)
+ arcsin

(
tanh

r − c(B)

w(B)

)
(3)

which is a sum of two domain walls centered at ±c with width w; these parameters depend

on the magnetic field B, as can be seen in Figure 2(e) of Ref. [6]. We employ the following

parametrization based on the data shown in that figure:

c(B) =
c0

1 +B/B0

, c0 = 12 nm , B0 = 0.2 T ; (4)

w(B) = w0 − w1B , w0 = 0.8 nm , w1 = 0.08 nm T−1 . (5)

The local spin direction is ni =
(
cos(mφi) sin θ(ri) , sin(mφi) sin θ(ri) , cos θ(ri)

)
, with

ri = 0 the center of the skyrmionic structure, m the vorticity (how many times the spins

wind around the center), and (ri, φi) the polar coordinates of the sites in the hexagonal

lattice, with a2D = 2.72 Å the lattice constant of the Ir(111) surface. The unit cell contains

31 × 31 = 961 sites, corresponding to a linear dimension of 31 × 0.272 nm = 8.4 nm; see

Figure 3(a) of the main text for an illustration. Periodic boundary conditions lead to a

skyrmion lattice, sketched in Supplementary Figure 3(c).
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