Nonsulfide component [†]						Sulfide component [‡]				
	Atom	N	R	σ^2	ΔE_0	Atom	Ν	R	σ^2	ΔE_0
			(Å)	$(Å^2)$	(eV)			(Å)	$(Å^2)$	(eV)
Sed. A $\chi^2 = 0.44$	0	1.8 [§]	2.01 [§]	0.0050	-1.0 [§]	S	1.0 [§]	2.25	0.0012	-5.8 [§]
	Fe	0.5 [§]	3.08 [§]	0.0050		S	1.0 [¶]	3.44	0.0066	
	Si	0.6 [§]	3.26	0.0065		Fe	2.0 [¶]	3.82	0.0066	
Sed. B $\chi^2 = 0.35$	0	2.1 [§]	2.00 [§]	0.0060	-1.1 [§]	S	0.7 [§]	2.25	0.0012	-6.9 [§]
	Fe	0.7 [§]	3.08 [§]	0.0050		S	0.7 [¶]	3.44	0.0066	
	Si	0.6 [§]	3.26	0.0065		Fe	1.3¶	3.82	0.0100	
Pyrite:	0	3.5 [§]	2.01 [§]	0.0072	-0.3 [§]	S	0.9 [§]	2.25	0.0012	-3.8 [§]
Illite	Al	1.7 [§]	3.02 [§]	0.0088		S	0.9¶	3.44	0.0032	
50:50	Fe	0.6 [§]	3.02 [§]	0.0059		Fe	1.8 [¶]	3.82	0.0027	
$\chi^2 = 0.68$	Si	2.3 [§]	3.26	0.0045						

Table 3. Iron K-edge EXAFS fit results^{*}

*EXAFS fit results for iron spectra shown in Fig. 1*c*; variables are as in Table 2. [†]For sediment samples, the nonsulfide component represents a composite of Fe-bearing phyllosilicate and oxide minerals. Values for σ^2 were fixed for all shells based on empirical fits to reference compounds of similar composition and structure; *R* and *N* were varied, except for the Fe-Si shell, which will covary with Fe shells if floated independently. This shell was fixed on a typical crystallographic distance for Fe-Si in phyllosilicates (see ref. 1).

[‡]Sulfide component: Interatomic distances (*R*) were fixed on crystallographic values from pyrite and σ^2 was fixed on values determined from fits to several reference sulfide compounds; *N* for each shell was floated as a linked variable in proportions based on the known coordination in pyrite (see ref. 1).

[§]Parameter varied in least-squares fit.

[¶]Parameter linked to the above variable in a constant ratio.

1. O'Day, P. A., Rivera, N., Root, R. & Carroll, S. A. (2004) Am. Mineral. 89, 572-585.