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Our proposed interpretation of the x-ray results involves
two basic assumptions: 1) In the absence of disorder, the
intrinsic electronic correlations favor the formation of a unidi-
rectional, incommensurate CDW, and 2) there are large scale
inhomogeneities in the sample, which we treat schematically
as regions of “More” and “Less” disorder. In this Supporting
Information, we discuss how such assumptions can lead natu-
rally to a sharp crossover in the directionality and correlation
length of the CDW as the magnetic field is increased. Figure
5 in the main text illustrates the basic physics - in the σ − Λ
plane where σ characterizes the strength of disorder and Λ is
the strength of the CDW (an increasing function of increasing
magnetic field), there is a sharp crossover from short ranged
bidirectional CDW correlations to longer ranged, strongly uni-
directional CDW correlations. In a tetragonal cuprate, this
would be associated with a thermodynamic phase transition
to a nematic state, a form of “vestigial” order. We assume
that at low fields both More and Less disordered regions are in
the isotropic phase, while at low temperatures above a critical
field strength the Less disordered regions enter the nematic
phase, thus exhibiting strong unidirectional character.

A classical effective field theory

While many of the major points that underlie our proposal
follow on rather general grounds from the statistical mechan-
ics of disordered systems, the most straightforward way to
illustrate them is by turning to the solution of the effective
model of an incommensurate CDW introduced in Ref. [S1].
We consider a classical effective field theory with two com-
plex fields, ψx(~r) and ψy(~r), representing the slowly varying
amplitude of a CDW at wave vectors ~Qx = qx̂ and ~Qy = qŷ,
respectively. A biquadratic coupling of the form 2∆|ψx|2|ψy|2
appears in the effective action, where we take ∆ > 0 which
favors unidirectional (stripe) over bidirectional (checkerboard)
order. This model can be solved in the self-consistent Gaussian
approximation using the replica trick to treat the disorder.
The results are controlled in a formal N →∞ limit in which
ψx is an O(N) vector; it has been shown to agree qualitatively
with results of Monte-Carlo simulations on the same model
for the physical (N = 2) case in Ref. [S2].

As we are only interested in qualitative results, we will
simplify the problem at the expense of neglecting several
material specific features of YBCO: We consider a model with

one plane per unit cell and assume an interlayer coupling,
Vz > 0, that favors in-phase interplane ordering. Moreover,
we have not included the in-plane anisotropy of the CDW
stiffness constants, i.e. in the notation of Ref. [S1] we have
taken κ‖ = κ⊥ = 1. (The final equality amounts to a particular
choice of units of in-plane length, b = 1.)

For this simplified model, (for in-plane momenta k2
x +k2

y �
q2) the CDW structure factor can be expressed as

S(~k + ~Qx) = TG(~k, µ+N ) + σ2|G(~k, µ+N )|2

S(~k + ~Qy) = TG(~k, µ−N ) + σ2|G(~k, µ−N )|2
[S1]

where

G−1(~k, µ) = µ+ k2
x + k2

y + Vz[1− cos(kzc)]. [S2]

G can be recognized as the simple Ornstein Zernike form of
the order parameter correlations in a generic system in the
disordered phase proximate to a critical point. kz is the out-
of-plane dispersion and c is the c-axis lattice parameter. The
only subtlety is that the effective chemical potential (µ) and
the “nematic order parameter” (N ), are determined from the
self-consistency equations,

Λ(T,H) =
∫

d~k

(2π)3 [S(~k + ~Qx) + S(~k + ~Qy)] [S3]

where Λ is the mean squared amplitude of the CDW order
parameter (assumed to be an otherwise known function of T
and H), and

N = N0 + 2∆
∫

d~k

(2π)3 [S(~k + ~Qy)− S(~k + ~Qx)] [S4]

whereN0 is an intrinsic nematicity (due to the orthorhombicity
of the crystal). Again, for simplicity, we will henceforth report
results in the limit N0 → 0+. In this case, N = 0 is always a
possible solution of the self-consistency equations. However,
if the CDW ordering tendency is sufficiently strong (i.e. for
Λ(T,H) > Λc where the critical value Λc is itself a function of
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T and σ), a second solution with N > 0 is preferred; this is the
nematic phase which spontaneously breaks the point-group
symmetry. Consistent with general theorems, so long as σ > 0,
the CDW order inferred from these equations always has a
finite correlation length, i.e. there is never long-range CDW
order in the presence of even weak quenched randomness.

This set of equations was analyzed under various circum-
stances in Ref. [S1]. Generally, as the system is tuned from
the isotropic to the nematic phase in any fashion (for instance,
by increasing Λ) several changes in the nature of the correla-
tions onset very rapidly at the transition point: The in-plane
correlation length, ξab, grows substantially as does the inter-
plane correlation length, ξc, so long as Vz is not too small.
The degree of directionality, S( ~Qy)/S( ~Qx), which is 1 in the
isotropic phase, becomes rapidly much larger than 1 in the
nematic phase. Simultaneously, the peak intensity, S( ~Qy),
shows the most dramatic increase of all.

As an illustrative example, we consider the simplest case of
T = 0 and vanishingly small interplane [S3] coupling, Vz → 0.
In this limit, the various integrals can be evaluated analytically.
The self-consistency equations (which one is to solve for µ and
N ) become

Λ(0, H) =
(
σ2

2π

)[
µ

µ2 −N 2

]
N = 2∆

(
σ2

2π

)[
N

µ2 −N 2

] [S5]

from which it follows that the critical value of Λ for the
occurrence of the nematic phase is

Λc = σ

2
√
π∆

. [S6]

For Λ < Λc, µ = σ2/2πΛ and the in-plane correlation lengths
and intensities of the peaks at ~Qx and ~Qy are

ξab( ~Qx) = ξab( ~Qy) = 1
√
µ

and

S( ~Qx) = S( ~Qy) = 2πΛ|ξab( ~Qy)|4 .

For Λ > Λc, µ = 2∆Λ, N = 2∆
√

[Λ2 − Λ2
c ], and

ξab( ~Qx) = 1√
µ+N

, ξab( ~Qy) = 1√
µ−N

, [S7]

and
S( ~Qy)
S( ~Qx)

=
[
ξab( ~Qy)
ξab( ~Qx)

]4

. [S8]

To address the growth of 3D correlations in the nematic
phase, it is obviously necessary to include explicitly the effects
of non-zero Vz. While the self consistency equations are still
analytically tractable, the solutions are sufficiently complicated
that we only evaluate them numerically. The inter-plane
correlation length can be computed as

ξc = (c/2)
[
arcsinh

(
1/ξab

√
2Vz

)]−1
. [S9]

Clearly, there is strong tendency to increased 3D order when
the in-plane correlations become sufficiently long.

In Fig. S1, we show the evolution of these quantities
computed numerically from the full self-consistency equations
with Vz = 0.1 as a function of Λ for two different values

of σ, one representative of the More and one of the Less
disordered regimes, under the assumption σMore/σLess = 1.5.
To make contact with experiment, one should imagine that
the field dependence of Λ determined by competition with
superconductivity, Λ = Λ0[1− |φ|2], where the amplitude of
the superconducting order φ is (presumably) a decreasing
function of increasing H. There is clearly a sharp increase in
the in-plane correlation lengths and peak intensities at the
nematic phase transition.

Subtleties and ambiguities: One implication of “random-
field-type” disorder is slow dynamics which inevitably result in
the system falling out of equilibrium upon cooling before the
point of the transition is reached. A rather subtle experimental
protocol is necessary to establish the existence of a broken
symmetry phase experimentally [S4]. However, YBCO is
weakly orthorhombic, which in the current context means
that there is effectively always a small symmetry breaking
field; this rounds the transition to the nematic state, but
at the same time reduces the tendency to the formation of a
metastable nematic domain structure. (From a complementary
perspective, it is possible to look for a growing thermodynamic
correlation length by detecting [S5] the telltale hysteresis and
noise characteristic of the random-field-Ising model in this
limit [S6].)

One might still worry that the time-scales involved in a
pulsed field experiment could exacerbate non-equilibrium ef-
fects. However, since the slow dynamics are associated with
reorientation of growing domains [S7, S8], the characteristic
relaxation rates depend exponentially on domain size. There-
fore, once the experimental time scales are large compared to
microscopic time scales (as they are in our experiment), an
enormous increase in the time scale only permits one to probe
the equilibrium physics of slightly larger domains.

Finally, it is tempting to try to estimate the volume frac-
tions of the More and Less disordered regions from the relative
strengths of their contributions to the x-ray scattering inten-
sity, I(~k). However, making connection between the calculated
and measured quantities carries with additional uncertainties.
I(~k) is generally dominated by scattering of the atomic cores,
and so is a measure of the atomic displacements. A periodic
pattern of atomic displacements proportional to the CDW
order parameter, ψ, is generic. However, while positions and
widths of the observable peaks in I(~k) reflect the pattern
of translation symmetry breaking and the CDW correlation
length, the variation of intensity from one Brillouin zone to the
other encodes the precise pattern of induced lattice distortion.
Crudely,

I(~k) = I( ~K + ~Q) ≈ I0( ~K)S( ~Q) [S10]

where ~K is a reciprocal lattice vector, and I0(K) is a compli-
cated structure factor.

If the scattering intensities were measured in sufficiently
many different Brillouin zones, one could work backwards to
the actual lattice displacements induced by the CDW. This
has been undertaken for the low field diffraction data in Ref.
[S9]. Because of the constraints of the high field experiment,
our data is limited to little over one Brillouin zone, so such
a refinement is not possible. Even in the one Brillouin zone
we study, we have not directly measured the peak width in all
directions — our estimates of the correlation volume involve
the implicit assumption that the correlation length is not much
different in the a and b directions. For all these reasons, there
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is considerable unavoidable uncertainty in any estimate we
might make of the relative volume fractions of the two regions.
These worries aside, in the ortho-VIII sample at 25 T [S10],

we find the integrated intensity in the 2D peaks is roughly 5
times that in the 3D peak suggesting that something between
10% and 20% of the sample is Less disordered.
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