Table 2. Maximal variable fluorescence (F_v/F_m) and electron-transfer rates (τ) from the primary electron acceptor in photosystem II, Q_A , to the secondary quinone, Q_B | | Temperature, | n | F_{ν}/F_{m} | Electron turnover | τ | |---------------|--------------|---|-----------------|-------------------|--------------| | | °C | | | time, μs | | | Clone name | | | | | | | CCMP no. 828 | 26 | 3 | 0.60 ± 0.02 | 311 ± 17 | | | CCMP no. 828 | 32 | 3 | 0.62 ± 0.01 | 330 ± 17 | | | CCMP no. 830 | 26 | 3 | 0.58 ± 0.01 | 331 ± 37 | | | CCMP no. 830 | 32 | 3 | 0.53 ± 0.01 | 352 ± 11 | | | CCMP no. 421 | 26 | 5 | 0.49 ± 0.01 | 287 ± 27 | | | CCMP no. 421 | 32 | 3 | 0.44 ± 0.06 | 338 ± 37 | | | EIL2 | 26 | 3 | 0.59 ± 0.01 | 344 ± 15 | | | EIL2 | 32 | 5 | 0.62 ± 0.01 | 347 ± 14 | | | CCMP no. 1633 | 26 | 3 | 0.49 ± 0.01 | 290 ± 6 | | | CCMP no. 1633 | 32 | 3 | 0.38 ± 0.01 | 246 ± 33 | | | CCMP no. 827 | 26 | 5 | 0.48 ± 0.04 | 279 ± 12 | | | CCMP no. 827 | 32 | 3 | 0.30 ± 0.01 | 141 ± 19 | | | CCMP no. 831 | 26 | 3 | 0.52 ± 0.01 | 344 ± 8 | | | CCMP no. 831 | 32 | 3 | 0.24 ± 0.01 | 214 ± 16 | | | Averages | | | | | | | Tolerant | 26 | | 0.57 ± 0.05 | | 318 ± 24 | | Tolerant | 32 | | 0.55 ± 0.01 | | 341 ± 9 | | Sensitive | 26 | | 0.50 ± 0.07 | | 304 ± 54 | | Sensitive | 32 | | 0.31 ± 0.03 | | 200 ± 46 | The data were obtained with a custom-built tabletop fast repetition-rate fluorometer, and the data were analyzed as described [Kolber, Z. S., Prasil, O. & Falkowski, P. G. (1998) *Biochim. Biophys. Acta* **1367**, 88–106]. All cultures were grown in F/2 medium; cultures were incubated for 168 h under a 10/14-h light/dark cycle at 26 and 32°C for each species tested. The average variable fluorescence (F_v/F_m) and electron-transfer rates (τ) from both tolerant and sensitive species are summed under "Averages." CCMP, Provasoli-Guillard National Center for Culture of Marine Phytoplankton West Boothbay Harbor, ME); EIL, Elat clone 2.