TABLE OF CONTENTS

TABLE OF CONTENTS	1
MATERIALS AND METHODS	9
EXPERIMENTAL DATA	10
Syntheses of Labeling Precursors	10
Table S1. Pd-catalyzed fluoroacetophenonation of arenes	10
General procedure of Pd-catalyzed fluoroacetophenonation	11
(Methylenedioxy)phenyl-fluoroacetophenone (2a)	11
(4-N-Boc-methylamino)phenyl-fluoroacetophenone (2b)	12
(3-Cyanocyclopropyl)phenyl-fluoroacetophenone (2c)	12
(3-Hydroxypropanyl)phenyl-fluoroacetophenone (2d)	13
1-Bromo-3-chloro-5-(phenylethynyl)benzene (S11)	14
(3-Chloro-5-phenylacetylenyl)phenyl-fluoroacetophenone (2e)	14
(4-Pyrazolyl)phenyl-fluoroacetophenone (2f)	15
(3-Morpholino)phenyl-fluoroacetophenone (2g)	16
(3-Nitro)phenyl-fluoroacetophenone (2h)	17
Fluoren-9-onyl-fluoroacetophenone (2i)	17
(4-Ethyl-carboxyl)phenyl-fluoroacetophenone (2j)	18
(3-Dioxolanyl)phenyl-fluoroacetophenone (S1)	19
(3-Formyl)phenyl-fluoroacetophenone (2k)	19
(2-Chlorophenyl-methanonyl)phenyl-fluoroacetophenone (2I)	20
Quinoline-6-fluoroacetophenone (2m)	21
(2-Methylbenzo[<i>d</i>]thiazol-5-yl)-fluoroacetophenone (2n)	21
Pyridine-3-fluoroacetophenone (2o)	22
Quinoline-3-fluoroacetophenone (2p)	23
(Morpholinomethyl)phenyl-fluoroacetophenone (2q)	23
Mesitylenyl-fluoroacetophenone (2s)	24
(3-Chloro)phenyl-fluoroacetophenone (S2)	25
(1-Fluoro-2-oxo-2-phenylethyl)-fenofibrate (S3)	25
(1-Fluoro-2-oxo-2-phenylethyl)-DAA1106 (S4)	26
(1-Fluoro-2-oxo-2-phenylethyl)-estrone (S5)	27
(1-Fluoro-2-oxo-2-phenylethyl)-claritin (S6)	28
4-Bromo- <i>N</i> , <i>N</i> -diethyl-3-methoxybenzamide (S12)	29
(1-Fluoro-2-oxo-2-phenylethyl)-analepticon (S7)	29
(1-Fluoro-2-oxo-2-phenylethyl)- <i>N</i> -Boc-fluoxetine (S8)	30

(1-Fluoro-2-oxo-2-phenylethyl)-SC-58125 (S9)	31
Hydroquinidine 4-(1-fluoro-2-oxo-2-phenylethyl)-benzoate (S10)	32
Phenyl-bromo-fluoroacetophenone (2r')	32
Quinoline-6-bromo-fluoroacetophenone (2m')	33
Syntheses of Difluoromethyl-arenes	34
Difluoromethyl-benzodioxole (3a)	34
3-Cyanocyclopropyl-difluoromethylbenzene (3c)	34
3- <i>lso</i> propanolyl-difluoromethylbenzene (3d)	35
3-Chloro-(5-phenylethynyl)-difluoromethylbenzene (3e)	
4-Pyrazolyl-difluoromethylbenzene (3f)	37
3-Morpholino-difluoromethylbenzene (3g)	37
2-Difluoromethylfluoren-9-one (3i)	
2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone (3I)	
5-Difluoromethyl-2-methylbenzo[<i>d</i>]thiazole (3n)	
3-Difluoromethylquinoline (3p)	40
4-Morpholinomethyl-difluoromethylbenzene (3q)	41
Difluoromethyl-fenofibrate	42
Difluoromethyl-DAA1106	42
Difluoromethyl-estrone	43
Difluoromethyl-Claritin	44
Difluoromethyl-N-Boc-Fluoxetine	45
Difluoromethyl-SC-58125	45
Hydroquinidine 4-difluoromethylbenzoate	46
Syntheses of ¹⁸ F-Difluoromethylarenes	48
General Methods for Radioisotope Preparation	48
General Methods for Analysis of Radiofluorination Reactions	48
Table S2. Optimization of ¹⁸ F-Labeling Conditions	49
General Procedure for Syntheses of ¹⁸ F-Difluoromethylarenes	50
Method of the RCY determination by SPE	50
[¹⁸ F]Difluoromethyl-benzodioxole ([¹⁸F]3a)	51
[¹⁸ F] <i>N</i> -Boc- <i>N</i> -methyl-difluoromethylaniline ([¹⁸F]3b)	52
[¹⁸ F]3-Cyanocyclopropyl-difluoromethylbenzene ([¹⁸ F]3c)	53
[¹⁸ F]3- <i>lso</i> propanolyl-difluoromethylbenzene ([¹⁸F]3d)	54
[¹⁸ F]3-Chloro-5-(phenylethynyl)-difluoromethylbenzene ([¹⁸F]3e)	55
[¹⁸ F]4-Pyrazolyl-difluoromethylbenzene ([¹⁸F]3f)	56
[¹⁸ F]3-Morpholino-difluoromethylbenzene ([¹⁸F]3g)	57
[¹⁸ F]3-Nitro-difluoromethylbenzene ([¹⁸F]3h)	58

[¹⁸ F]2-Difluoromethylfluoren-9-one ([¹⁸F]3i)	59
[¹⁸ F]Ethyl 4-difluoromethyl-benzoate ([¹⁸F]3j)	60
[¹⁸ F]3-Difluoromethyl-benzoaldehyde ([¹⁸F]3k)	61
[¹⁸ F]2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone ([¹⁸F]3l)	62
[¹⁸ F]6-Difluoromethylquinoline ([¹⁸F]3m)	63
[¹⁸ F]5-Difluoromethyl-2-methylbenzo[<i>d</i>]thiazole ([¹⁸F]3n)	64
[¹⁸ F]3-Difluoromethylpyridine ([¹⁸F]3o)	65
[¹⁸ F]3-Difluoromethylquinoline ([¹⁸ F]3p)	66
[¹⁸ F]Difluoromethyl-fenofibrate	67
[¹⁸ F]Difluoromethyl-DAA1106	68
[¹⁸ F]Difluoromethyl-estrone	69
[¹⁸ F]Difluoromethyl-claritin	70
[¹⁸ F]Difluoromethyl-analepticon	71
[¹⁸ F]Difluoromethyl-fluoxetine	72
[¹⁸ F]Difluoromethyl-SC-58125	73
[¹⁸ F]4-Morpholinomethyl-difluoromethylbenzene ([¹⁸ F]3q)	74
[¹⁸ F]Hydroquinidine 4-difluoromethylbenzoate	75
HPLC Separation	76
Table S3	77
[¹⁸ F]6-Difluoromethylquinoline ([¹⁸ F]3m)	77
[¹⁸ F]Difluoromethyl-fenofibrate	79
[¹⁸ F]Difluoromethyl-SC-58125	81
Specific Activity of [¹⁸ F]3m (General Method)	83
Improvement of Specific Activity	85
References	87
¹ H NMR of (Methylenedioxy)phenyl-fluoroacetophenone (2a)	88
¹⁹ F NMR of (Methylenedioxy)phenyl-fluoroacetophenone (2a)	89
¹³ C NMR of (Methylenedioxy)phenyl-fluoroacetophenone (2a)	90
¹ H NMR of (4- <i>N</i> -Boc-methylamino)phenyl-fluoroacetophenone (2b)	91
¹⁹ F NMR of (4- <i>N</i> -Boc-methylamino)phenyl-fluoroacetophenone (2b)	92
¹³ C NMR of (4- <i>N</i> -Boc-methylamino)phenyl-fluoroacetophenone (2b)	93
¹ H NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2c)	94
¹⁹ F NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2c)	95
¹³ C NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2c)	96
¹ H NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2d)	97

¹⁹ F NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2d)	
¹³ C NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2d)	
¹ H NMR of 1-Bromo-3-chloro-5-(phenylethynyl)benzene (S11)	
¹³ C NMR of 1-Bromo-3-chloro-5-(phenylethynyl)benzene (S11)	
¹ H NMR of (3-Phenylacetylenyl-5-chlorophenyl)-fluoroacetophenone (2e)	
¹⁹ F NMR of (3-Phenylacetylenyl-5-chlorophenyl)-fluoroacetophenone (2e)	
¹³ C NMR of (3-Phenylacetylenyl-5-chlorophenyl)-fluoroacetophenone (2e)	
¹ H NMR of (4-Pyrazolyl)phenyl-fluoroacetophenone (2f)	
¹⁹ F NMR of (4-Pyrazolyl)phenyl-fluoroacetophenone (2f)	
¹³ C NMR of (4-Pyrazolyl)phenyl-fluoroacetophenone (2f)	
¹ H NMR of (3-Morpholino)phenyl-fluoroacetophenone (2g)	
¹⁹ F NMR of (3-Morpholino)phenyl-fluoroacetophenone (2g)	
¹³ C NMR of (3-Morpholino)phenyl-fluoroacetophenone (2g)	110
¹ H NMR of (3-Nitro)phenyl-fluoroacetophenone (2h)	111
¹⁹ F NMR of (3-Nitro)phenyl-fluoroacetophenone (2h)	112
¹³ C NMR of (3-Nitro)phenyl-fluoroacetophenone (2h)	113
¹ H NMR of Fluoren-9-onyl-fluoroacetophenone (2i)	114
¹⁹ F NMR of Fluoren-9-onyl-fluoroacetophenone (2i)	115
¹³ C NMR of Fluoren-9-onyl-fluoroacetophenone (2i)	116
¹ H NMR of (4-Ethyl-carboxyl)phenyl-fluoroacetophenone (2j)	117
¹⁹ F NMR of (4-Ethyl-carboxyl)phenyl-fluoroacetophenone (2j)	118
¹³ C NMR of (4-Ethyl-carboxyl)phenyl-fluoroacetophenone (2j)	119
¹ H NMR of (3-Dioxolanyl)phenyl-fluoroacetophenone (S1)	120
¹⁹ F NMR of (3-Dioxolanyl)phenyl-fluoroacetophenone (S1)	121
¹³ C NMR of (3-Dioxolanyl)phenyl-fluoroacetophenone (S1)	
¹ H NMR of (3-Formyl)phenyl-fluoroacetophenone (2k)	
¹⁹ F NMR of (3-Formyl)phenyl-fluoroacetophenone (2k)	
¹³ C NMR of (3-Formyl)phenyl-fluoroacetophenone (2k)	125
¹ H NMR of (2-Chlorophenylmethanonyl)phenyl-fluoroacetophenone (2I)	

¹⁹ F NMR of (2-Chlorophenylmethanonyl)phenyl-fluoroacetophenone (2I)	
¹³ C NMR of (2-Chlorophenylmethanonyl)phenyl-fluoroacetophenone (2I)	128
¹ H NMR of Quinoline-6-fluoroacetophenone (2m)	129
¹⁹ F NMR of Quinoline-6-fluoroacetophenone (2m)	130
¹³ C NMR of Quinoline-6-fluoroacetophenone (2m)	131
¹ H NMR of (2-Methylbenzo[<i>d</i>]thiazol-5-yl)-fluoroacetophenone (2n)	132
¹⁹ F NMR of (2-Methylbenzo[<i>d</i>]thiazol-5-yl)-fluoroacetophenone (2n)	133
¹³ C NMR of (2-Methylbenzo[<i>a</i>]thiazol-5-yl)-fluoroacetophenone (2n)	134
¹ H NMR of Pyridine-3-fluoroacetophenone (2o)	135
¹⁹ F NMR of Pyridine-3-fluoroacetophenone (2o)	136
¹³ C NMR of Pyridine-3-fluoroacetophenone (20)	137
¹ H NMR of Quinoline-3-fluoroacetophenone (2p)	138
¹⁹ F NMR of Quinoline-3-fluoroacetophenone (2p)	139
¹³ C NMR of Quinoline-3-fluoroacetophenone (2p)	140
¹ H NMR of (3-Morpholinomethyl)phenyl-fluoroacetophenone (2q)	141
¹⁹ F NMR of (3-Morpholinomethyl)phenyl-fluoroacetophenone (2q)	142
¹³ C NMR of (3-Morpholinomethyl)phenyl-fluoroacetophenone (2q)	143
¹ H NMR of Mesitylenyl-fluoroacetophenone (2s)	144
¹⁹ F NMR of Mesitylenyl-fluoroacetophenone (2s)	145
¹³ C NMR of Mesitylenyl-fluoroacetophenone (2s)	146
¹ H NMR of (3-Chloro)phenyl-fluoroacetophenone (S2)	147
¹⁹ F NMR of (3-Chloro)phenyl-fluoroacetophenone (S2)	148
¹³ C NMR of (3-Chloro)phenyl-fluoroacetophenone (S2)	149
¹ H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-fenofibrate (S2)	150
¹⁹ F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-fenofibrate (S2)	151
¹³ C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-fenofibrate (S2)	152
¹ H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-DAA1106 (S3)	153
¹⁹ F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-DAA1106 (S3)	154
¹³ C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-DAA1106 (S3)	

¹ H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-estrone (S4)	156
¹⁹ F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-estrone (S4)	157
¹³ C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-estrone (S4)	158
¹ H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-claritin (S5)	159
¹⁹ F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-claritin (S5)	160
¹³ C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-claritin (S5)	161
¹ H NMR of 4-Bromo- <i>N</i> , <i>N</i> -diethyl-3-methoxybenzamide (S12)	162
¹³ C NMR of 4-Bromo- <i>N</i> , <i>N</i> -diethyl-3-methoxybenzamide (S12)	163
¹ H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-analepticon (S6)	164
¹⁹ F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-analepticon (S6)	165
¹³ C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-analepticon (S6)	166
¹ H NMR of (1-Fluoro-2-oxo-2-phenylethyl)- <i>N</i> -Boc-fluoxetine (S7)	167
¹⁹ F NMR of (1-Fluoro-2-oxo-2-phenylethyl)- <i>N</i> -Boc-fluoxetine (S7)	168
¹³ C NMR of (1-Fluoro-2-oxo-2-phenylethyl)- <i>N</i> -Boc-fluoxetine (S7)	169
¹ H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-SC-58125 (S8)	170
¹⁹ F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-SC-58125 (S8)	171
¹³ C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-SC-58125 (S8)	172
¹ H NMR of Hydroquinidine 4-(1-Fluoro-2-oxo-2-phenylethyl)-benzoate (S9)	173
¹⁹ F NMR of Hydroquinidine 4-(1-Fluoro-2-oxo-2-phenylethyl)-benzoate (S9)	174
¹³ C NMR of Hydroquinidine 4-(1-Fluoro-2-oxo-2-phenylethyl)-benzoate (S9)	175
¹ H NMR of Phenyl-bromo-fluoroacetophenone (2r ')	176
¹⁹ F NMR of Phenyl-bromo-fluoroacetophenone (2r ')	177
¹³ C NMR of Phenyl-bromo-fluoroacetophenone (2r ')	178
¹ H NMR of Quinoline-6-bromo-fluoroacetophenone (2m ')	179
¹⁹ F NMR of Quinoline-6-bromo-fluoroacetophenone (2m ')	180
¹³ C NMR of Quinoline-6-bromo-fluoroacetophenone (2m')	181
¹ H NMR of Difluoromethyl-benzodioxole (3a)	182
¹⁹ F NMR of Difluoromethyl-benzodioxole (3a)	183
¹³ C NMR of Difluoromethyl-benzodioxole (3a)	184

¹ H NMR of 3-Cyanocyclopropyl-difluoromethylbenzene (3c)	185
¹⁹ F NMR of 3-Cyanocyclopropyl-difluoromethylbenzene (3c)	186
¹³ C NMR of 3-Cyanocyclopropyl-difluoromethylbenzene (3c)	187
¹ H NMR of 3- <i>Iso</i> propanolyl-difluoromethylbenzene (3d)	188
¹⁹ F NMR of 3- <i>Iso</i> propanolyl-difluoromethylbenzene (3d)	189
¹³ C NMR of 3-/ <i>so</i> propanolyl-difluoromethylbenzene (3d)	190
¹ H NMR of 3-Chloro-5-(phenylethynyl)-difluoromethylbenzene (3e)	191
¹⁹ F NMR of 3-Chloro-5-(phenylethynyl)-difluoromethylbenzene (3e)	192
¹³ C NMR of 3-Chloro-5-(phenylethynyl)-difluoromethylbenzene (3e)	193
¹ H NMR of 4-Pyrazolyl-difluoromethylbenzene (3f)	194
¹⁹ F NMR of 4-Pyrazolyl-difluoromethylbenzene (3f)	195
¹³ C NMR of 4-Pyrazolyl-difluoromethylbenzene (3f)	196
¹ H NMR of 3-Morpholino-difluoromethylbenzene (3g)	197
¹⁹ F NMR of 3-Morpholino-difluoromethylbenzene (3g)	198
¹³ C NMR of 3-Morpholino-difluoromethylbenzene (3g)	199
¹ H NMR of 2-Difluoromethylfluoren-9-one (3i)	200
¹⁹ F NMR of 2-Difluoromethylfluoren-9-one (3i)	201
¹³ C NMR of 2-Difluoromethylfluoren-9-one (3i)	202
¹ H NMR of 2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone (3I)	203
¹⁹ F NMR of 2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone (3I)	204
¹³ C NMR of 2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone (3I)	205
¹ H NMR of 5-Difluoromethyl-2-methylbenzo[<i>d</i>]thiazole (3n)	206
¹⁹ F NMR of 5-Difluoromethyl-2-methylbenzo[<i>d</i>]thiazole (3n)	207
¹³ C NMR of 5-Difluoromethyl-2-methylbenzo[<i>d</i>]thiazole (3n)	208
¹ H NMR of 3-Difluoromethylquinoline (3p)	209
¹⁹ F NMR of 3-Difluoromethylquinoline (3p)	210
¹³ C NMR of 3-Difluoromethylquinoline (3p)	211
¹ H NMR of 4-Morpholinomethyl-difluoromethylbenzene (3q)	212
¹⁹ F NMR of 4-Morpholinomethyl-difluoromethylbenzene (3q)	213

¹³ C NMR of 4-Morpholinomethyl-difluoromethylbenzene (3q)	214
¹ H NMR of Difluoromethyl-fenofibrate	215
¹⁹ F NMR of Difluoromethyl-fenofibrate	216
¹³ C NMR of Difluoromethyl-fenofibrate	217
¹ H NMR of Difluoromethyl-DAA1106	218
¹⁹ F NMR of Difluoromethyl-DAA1106	219
¹³ C NMR of Difluoromethyl-DAA1106	
¹ H NMR of Difluoromethyl-estrone	221
¹⁹ F NMR of Difluoromethyl-estrone	
¹³ C NMR of Difluoromethyl-estrone	
¹ H NMR of Difluoromethyl-claritin	
¹⁹ F NMR of Difluoromethyl-claritin	
¹³ C NMR of Difluoromethyl-claritin	
¹ H NMR of Difluoromethyl- <i>N</i> -Boc-fluoxetine	
¹⁹ F NMR of Difluoromethyl- <i>N</i> -Boc-fluoxetine	
¹³ C NMR of Difluoromethyl- <i>N</i> -Boc-fluoxetine	
¹ H NMR of Difluoromethyl-SC-58125	230
¹⁹ F NMR of Difluoromethyl-SC-58125	231
¹³ C NMR of Difluoromethyl-SC-58125	232
¹ H NMR of Hydroquinidine 4-difluoromethylbenzoate	233
¹⁹ F NMR of Hydroquinidine 4-difluoromethylbenzoate	234
¹³ C NMR of Hydroquinidine 4-difluoromethylbenzoate	

MATERIALS AND METHODS

All manipulations were performed using flame-dried glassware and standard Schlenk techniques under an atmosphere of nitrogen, unless otherwise stated.

Solvents

Dry toluene, tetrahydrofuran, acetonitrile, dichloromethane methanol, chlorobenzene and benzene were purchased from Sigma-Aldrich. Chloroform- d_1 was purchased from Cambridge Isotope Laboratories.

Chromatography

Thin layer chromatography (TLC) was performed using EMD TLC plates pre-coated with 250 μ m thickness silica gel 60 F₂₅₄ plates and visualized by fluorescence quenching under UV light and KMnO₄ stain. Flash chromatography was performed using silica gel (230-400 mesh) purchased from Silicycle Inc.

Spectroscopy and Instruments

NMR spectra were recorded on a Varian Unity/Inova 500 spectrometer operating at 500 MHz, 470 MHz and 125 MHz for ¹H, ¹⁹F and ¹³C acquisitions. Chemical shifts are reported in ppm with the solvent resonance as the internal standard. For ¹H NMR: CDCl₃, δ 7.26; For ¹³C NMR: CDCl₃, δ 77.16. ¹⁹F chemical shifts were externally referenced with 1-fluoro-3-nitrobenzene (δ = -112.0). Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, sep = septet, m = multiplet, br = broad; coupling constants in Hz; integration.

Starting materials

All substrates were used as received from commercial suppliers, unless otherwise stated. XPhos-Pd-G2, Pd(dba)₂, Ad₂^{*n*}BuP-Pd-G2, Ad₂^{*n*}BuP were purchased from Sigma-Aldrich. 2-Fluoroacetophenone was purchased from Combi-Blocks. 2,2-difluoroacetophenone was purchased from Alfa Aesar. 2-Phenyl-2-fluoro-acetophenone¹, *N*-Boc-*N*-methyl-difluoromethylaniline², (6-difluoromethyl)quinoline², and CHF₂-analepticon³ were prepared according to a literature procedure

EXPERIMENTAL DATA

Syntheses of Labeling Precursors

Table S1. Pd-catalyzed fluoroacetophenonation of arenes

General conditions: (a) arene (1 mmol, 1 equiv.), XPhos-Pd-G2 (3 mol%), fluoroacetophenone (1.2 equiv.), Cs_2CO_3 (1.5 equiv.), toluene (0.2 M), 100 °C. (b) 80 °C. (c) $Ad_2^n BuP-Pd-G2$ (3 mol%).

General procedure of Pd-catalyzed fluoroacetophenonation

Arene (1.00 mmol, 1.00 equiv), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 13 to 20 hours, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography afforded the title compound.

(Methylenedioxy)phenyl-fluoroacetophenone (2a)

XPhos-Pd-G2 (47.3 mg, 60.0 μ mol, 3.00 mol%) and Cs₂CO₃ (978 mg, 3.00 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (10 mL), 1-Bromo-3,4-(methylenedioxy)benzene (241 μ L, 2.00 mmol, 1.00 equiv.) and 2-fluoroacetophenone (291 μ L, 2.40 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a preheated oil bath at 100 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 8 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 15:1 to 8:1 v/v) afforded 410 mg of the title compound as an off-white solid (80% yield).

 $\mathbf{R}_f = 0.45$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

1H NMR (500 MHz, CDCl₃, 24 °C, δ): 7.92 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 2H), 6.97 (dt, *J* = 8.0, 2.1 Hz, 1H), 6.93 (s, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.44 (d, *J* = 48.6 Hz, 1H), 5.95 (d, *J* = 1.4 Hz, 1H), 5.94 (d, *J* = 1.4 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 194.1 (d, J = 21.1 Hz), 149.0 (d, J = 3.0 Hz), 148.4, 134.1, 133.9, 129.0 (d, J = 2.3 Hz), 128.8, 127.9 (d, J = 20.3 Hz), 122.4 (d, J = 6.1 Hz), 108.9 (d, J = 1.4 Hz), 108.0 (d, J = 4.6 Hz), 101.6, 93.4 (d, J = 185.9 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): -174.5 (d, *J* = 48.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₅H₁₁FNaO₃ [M+Na]⁺: 281.0584; found: 281.0572.

(4-N-Boc-methylamino)phenyl-fluoroacetophenone (2b)

4-Bromo-*N*-Boc-methylaniline (286 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a preheated oil bath at 100 °C. After 14.7 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 3:1 v/v) afforded 257 mg of the title compound as an orange liquid (75% yield).

 $\mathbf{R}_f = 0.15$ (hexanes/EtOAc = 8:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.94 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.40–7.37 (m, 3H), 7.35–7.33 (m, 1H), 6.50 (d, *J* = 48.5 Hz), 1.74 (dd, *J* = 7.0 Hz, 4.5 Hz, 2H), 1.40 (dd, *J* = 7.0 Hz, 4.5 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 194.2 (d, J = 21.1 Hz), 154.6, 145.1 (d, J = 2.8 Hz), 134.1, 133.9, 130.8 (d, J = 20.2 Hz), 129.2 (d, J = 2.5 Hz), 128.8, 127.9 (d, J = 5.3 Hz), 125.7, 93.5 (d, J = 185.7 Hz), 80.9, 37.1, 28.4.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –180.2 (d, *J* = 48.0 Hz).

HRMS-FIA(m/z) calc'd for C₂₀H₂₂FKNO₃ [M+K]⁺: 382.1215; found: 382.1226.

(3-Cyanocyclopropyl)phenyl-fluoroacetophenone (2c)

1-(3-Bromophenyl)cyclopropanecarbonitrile (222 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-

fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 15.5 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 3:1 v/v) afforded 166 mg of the title compound as an orange solid (59% yield).

 $\mathbf{R}_{f} = 0.40$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 22 °C, δ): 7.94 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.40–7.37 (m, 3H), 7.35–7.33 (m, 1H), 6.50 (d, *J* = 48.5 Hz), 1.74 (dd, *J* = 7.0 Hz, 4.5 Hz, 2H), 1.40 (dd, *J* = 7.0 Hz, 4.5 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 194.1 (d, *J* = 21.5 Hz), 137.3, 135.3 (d, *J* = 20.5 Hz), 134.1, 134.0, 129.8, 129.2 (d, *J* = 3.3 Hz), 128.9, 127.3 (d, *J* = 2.1 Hz), 126.5 (d, *J* = 5.4 Hz), 124.3 (d, *J* = 5.4 Hz), 122.2, 93.6 (d, *J* = 187.4 Hz), 18.6, 18.5, 13.9.

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –180.2 (d, *J* = 48.0 Hz).

HRMS-FIA(m/z) calc'd for C₁₈H₁₄FNNaO [M+Na]⁺: 302.0952; found: 302.0941.

(3-Hydroxypropanyl)phenyl-fluoroacetophenone (2d)

XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). A solution of 2-(3-bromophenyl)propan-2-ol (215 mg, 1.00 mmol, 1.00 equiv.) in toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14.5 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 5:1 v/v to 4/1 v/v) afforded 243 mg of the title compound as a yellow solid (89% yield).

 $\mathbf{R}_{f} = 0.17$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.96 (d, *J* = 7.0 Hz, 2H), 7.65 (s, 1H), 7.56 (t, *J* = 8.0 Hz, 1H),

7.53–7.50 (m, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.39–7.37 (m, 2H), 6.53 (d, *J* = 48.5 Hz, 1H), 1.78 (s, 1H), 1.573 (s, 3H), 1.567 (s, 3H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 194.5 (d, J = 21.3 Hz), 150.4, 134.2 (d, J = 10.1 Hz) 134.2, 133.9, 129.2, 129.1 (d, J = 13.8 Hz) 128.8, 126.0 (d, J = 3.3 Hz), 125.8 (d, J = 5.3 Hz), 123.7 (d, J = 5.4 Hz), 93.7 (d, J = 29.9 Hz), 72.5, 31.8, 31.8.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): -178.4 (d, *J* = 48.0 Hz).

HRMS-FIA(m/z) calc'd for C₁₇H₁₇FNaO₂ [M+Na]⁺: 295.1105; found: 295.1107.

1-Bromo-3-chloro-5-(phenylethynyl)benzene (S11)

1,3-Dibromo-5-chlorobenzene (3.63 g, 13.4 mmol, 2.03 equiv.), $Pd(PPh_3)_4$ (194 mg, 168 µmol, 2.54 mol%) and Cul (61.5 mg, 324 µmol, 4.91 mol%) were added to a flame-dried Schlenk flask. Piperidine (40 mL) and phenylacetylene (725 µL, 6.60 mmol, 1.00 equiv.) were added. The solution was degassed by letting bubbling nitrogen inside for 20 min. The resulting mixture was stirred at room temperature for 24.5 h. The reaction mixture was poured into NH₄Cl aqueous solution (100 mL) and extracted with DCM (3 × 50 mL). The combined organic layers were washed with NH₄Cl aqueous solution (3 × 150 mL) and then dried with MgSO₄. After the solvent was removed in vacuo, purification by flash silica gel column chromatography (hexanes) afforded 650 mg of the title compound as a white solid (34% yield).

 $R_f = 0.68$ (hexanes).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.57 (t, *J* = 1.5 Hz, 1H), 7.54–7.50 (m, 2H), 7.48 (t, *J* = 1.9 Hz, 1H), 7.45 (t, *J* = 1.6 Hz, 1H), 7.40–7.34 (m, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 135.1, 132.7, 131.9, 131.4, 130.3, 129.1, 128.6, 126.6, 122.6, 122.4, 92.0, 86.7.

HRMS-FIA(m/z) calc'd for $C_{14}H_9BrCI [M+H]^+$: 290.9571; found: 290.9566.

(3-Chloro-5-phenylacetylenyl)phenyl-fluoroacetophenone (2e)

Aryl bromide **S11** (320 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 15.5 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 8:1 v/v) afforded 171 mg of the title compound as an orange oil (49% yield).

 $\mathbf{R}_f = 0.45$ (hexanes/EtOAc = 8:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.96 (d, *J* = 7.5 Hz, 2H), 7.59 (t, *J* = 7.0 Hz, 1H), 7.54 (s, 1H), 7.53–7.51 (m, 3H), 7.49–7.45 (m, 3H), 7.38–7.35 (m, 3H), 6.43 (d, *J* = 48.5 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 193.7 (d, J = 22.6 Hz), 136.4 (d, J = 20.4 Hz), 135.1, 134.3, 133.7, 132.4, 131.8, 129.3 (d, J = 3.3 Hz), 129.0, 129.0, 128.5, 128.1 (d, J = 6.4 Hz), 126.7 (d, J = 6.4 Hz), 125.9, 122.4, 93.0 (d, J = 188.4 Hz), 91.7, 87.3.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –181.8 (d, *J* = 48.0 Hz).

HRMS-FIA(m/z) calc'd for C₂₂H₁₄CIFNaO [M+Na]⁺: 371.0609; found: 371.0594.

(4-Pyrazolyl)phenyl-fluoroacetophenone (2f)

1-(4-Bromophenyl)-1*H*-pyrazole (223 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a preheated oil bath at 100 °C. After 18 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 6:1 v/v) afforded 208 mg of the title compound as a yellow solid (74% yield).

 $\mathbf{R}_{f} = 0.63$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.99–7.91 (m, 3H), 7.75 (t, *J* = 8.1 Hz, 3H), 7.62–7.53 (m, 3H),

7.45 (t, J = 7.7 Hz, 2H), 6.57 (d, J = 48.5 Hz, 1H), 6.48 (s, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 194.2 (d, *J* = 21.6 Hz), 141.7, 141.1, 134.1, 132.3 (d, *J* = 20.0 Hz), 129.20 (d, *J* = 2.8 Hz), 128.9, 128.8 (d, *J* = 5.3 Hz), 126.9, 119.7, 108.2, 93.5 (d, *J* = 185.9 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): –178.5 (d, *J* = 47.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₇H₁₄FN₂O [M+H]⁺: 281.1085; found: 281.1091.

(3-Morpholino)phenyl-fluoroacetophenone (2g)

XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). A solution of 4-(3-bromophenyl)morpholine (242 mg, 1.00 mmol, 1.00 equiv.) in toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 15.7 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 4:1 v/v) afforded 166 mg of the title compound as an orange solid (56% yield).

 $\mathbf{R}_f = 0.22$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.94 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 6.99 (s, 1H), 6.98 (d, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.46 (d, *J* = 48.5 Hz, 1H), 3.83 (t, *J* = 5.0 Hz, 4H), 3.15 (t, *J* = 5.0 Hz, 4H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 194.4 (d, J = 21.5 Hz), 151.9, 135.3 (d, J = 20.5 Hz), 134.2, 133.8, 130.0, 129.2 (d, J = 2.1 Hz), 128.8, 118.8 (d, J = 5.3 Hz), 116.6 (d, J = 3.2 Hz), 114.0 (d, J = 6.4 Hz), 94.1 (d, J = 185.2 Hz), 66.9, 49.0.

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –178.9 (d, *J* = 50.4 Hz).

HRMS-FIA(m/z) calc'd for C₁₈H₁₈FNNaO₂ [M+Na]⁺: 322.1214; found: 322.1199.

(3-Nitro)phenyl-fluoroacetophenone (2h)

1-Bromo-3-nitrobenzene (404 mg, 2.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (47.3 mg, 60.0 μ mol, 3.00 mol%) and Cs₂CO₃ (978 mg, 3.00 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (10 mL) and 2-fluoroacetophenone (291 μ L, 2.40 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 8 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 6:1 v/v) afforded 400 mg of the title compound as an orange solid (77% yield).

 $\mathbf{R}_f = 0.28$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.39 (s, 1H), 8.25 (dd, *J* = 8.2, 2.3 Hz, 1H), 7.98 (d, *J* = 7.9 Hz, 2H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.67–7.56 (m, 2H), 7.48 (t, *J* = 7.8 Hz, 2H), 6.57 (d, *J* = 48.0 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 193.5 (d, *J* = 21.4 Hz), 148.5, 136.4 (d, *J* = 20.9 Hz), 134.4, 133.7, 132.8 (d, *J* = 5.9 Hz), 130.2, 129.3 (d, *J* = 3.6 Hz), 129.0, 124.4, 122.0 (d, *J* = 7.2 Hz), 92.7 (d, *J* = 188.5 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –178.9 (d, *J* = 50.4 Hz).

HRMS-FIA(m/z) calc'd for C₁₄H₁₀FNaNO₃ [M+Na]⁺: 282.0537; found: 282.0540

Fluoren-9-onyl-fluoroacetophenone (2i)

2-Bromo-9-fluorenone (518 mg, 2.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (47.3 mg, 60.0 μ mol, 3.00 mol%) and Cs₂CO₃ (977 mg, 3.00 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (10 mL) and 2-fluoroacetophenone (291 μ L, 2.40 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 20 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 8 mL). The filtrate was

evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 8:1 v/v) afforded 456 mg of the title compound as a yellow solid (72% yield).

 $\mathbf{R}_{f} = 0.21$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.96 (d, J = 7.5 Hz, 2H), 7.79 (s, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.58–7.40 (m, 6H), 7.32 (t, J = 7.1 Hz, 1H), 6.52 (d, J = 48.0 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 193.8 (d, J = 21.5 Hz), 192.9, 145.6 (d, J = 2.1 Hz), 143.6, 135.4 (d, J = 20.1 Hz), 135.0, 134.9, 134.3, 134.1, 133.8, 133.6 (d, J = 6.6 Hz), 129.7, 129.1 (d, J = 2.1 Hz), 128.9, 124.6, 123.2 (d, J = 5.4 Hz), 121.0, 120.8, 93.3 (d, J = 187.2 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –180.0 (d, *J* = 48.0 Hz).

HRMS-FIA(m/z) calc'd for C₂₂H₁₄FO₂ [M+H]⁺: 317.0972; found: 317.0975.

(4-Ethyl-carboxyl)phenyl-fluoroacetophenone (2j)

XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), ethyl 4-iodobenzoate (276 mg, 1.00 mmol, 1.00 equiv.) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 17.3 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 5:1 v/v) afforded 221 mg of the title compound as a white solid (77% yield).

 $\mathbf{R}_{f} = 0.40$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.06 (d, *J* = 8.6 Hz, 2H), 7.93 (d, *J* = 7.2 Hz, 2H), 7.63–7.50 (m, 3H), 7.42 (t, *J* = 7.5 Hz, 2H), 6.53 (d, *J* = 48.4 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 194.0 (d, J = 21.1 Hz), 166.0, 138.9 (d, J = 19.6 Hz), 134.1, 133.9, 131.6 (d, J = 2.1 Hz), 130.3, 129.3 (d, J = 3.1 Hz), 128.9, 126.9 (d, J = 6.1 Hz), 93.8 (d, J = 187.6 Hz), 61.3, 14.4.

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –182.6 (d, *J* = 48.9 Hz).

HRMS-FIA(m/z) calc'd for $C_{17}H_{16}FO_3 [M+H]^+$: 287.1078; found: 287.1087.

(3-Dioxolanyl)phenyl-fluoroacetophenone (S1)

XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), 2-(3-bromophenyl)-1,3-dioxolane (152 mL, 1.00 mmol, 1.00 equiv.) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 6:1 v/v) afforded 220 mg of the title compound as a yellow liquid (77% yield).

 $\mathbf{R}_f = 0.25$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.93 (d, *J* = 8.0 Hz, 2H), 7.63 (s, 1H), 7.58–7.46 (m, 3H), 7.46– 7.38 (m, 3H), 6.52 (d, *J* = 48.5 Hz, 1H), 5.80 (s, 1H), 4.20–3.92 (m, 4H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 194.2 (d, J = 21.5 Hz), 139.2, 134.5 (d, J = 20.2 Hz), 134.0, 133.9, 129.3, 129.2 (d, J = 2.9 Hz), 128.8, 128.1 (d, J = 5.5 Hz), 127.9 (d, J = 2.5 Hz), 125.6 (d, J = 5.8 Hz), 103.2 (d, J = 4.6 Hz), 93.9 (d, J = 187.3 Hz), 65.4.

¹⁹F NMR (470 MHz, CDCl₃, 25 °C, δ): –179.3 (d, *J* = 48.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₇H₁₆FO₃ [M+H]⁺: 287.1078; found: 287.1091.

(3-Formyl)phenyl-fluoroacetophenone (2k)

(3-Dioxolanyl)phenyl-fluoroacetophenone, x, (100 mg, 0.350 mmol) was dissolved in THF (5 mL). HCl aqueous solution (2 N, 1.2 mL) was added. The reaction mixture was stirred at room temperature for 2 h. EtOAc (30 mL) was added. The mixture was washed with NaOH aqueous solution (1 N, 5 mL) and brine (5 mL). The organic layer was dried over Na₂SO₄, filtered and evaporated. Purification by flash silica gel column chromatography (hexanes/EtOAc = 4:1 v/v) afforded 65.0 mg of the title compound as a white solid

(77% yield).

 $\mathbf{R}_{f} = 0.61$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 10.01 (d, *J* = 0.8 Hz, 1H), 8.02 (s, 1H), 7.96 (d, *J* = 7.7 Hz, 2H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.63–7.52 (m, 2H), 7.45 (t, *J* = 7.7 Hz, 2H), 6.58 (d, *J* = 48.2 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): δ 194.0 (d, J = 21.4 Hz), 191.6 (d, J = 7.0 Hz), 137.1, 135.7 (d, J = 20.6 Hz), 134.3, 133.9, 132.8 (d, J = 5.6 Hz), 130.8 (d, J = 2.1 Hz), 130.0, 129.3 (d, J = 3.4 Hz), 129.0, 128.24 (d, J = 6.3 Hz), 93.4 (dd, J = 187.3, 2.7 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –181.3 (d, *J* = 48.4 Hz).

HRMS-FIA(m/z) calc'd for C₁₅H₁₂FO₂ [M+H]⁺: 243.0816; found: 243.0807.

(2-Chlorophenyl-methanonyl)phenyl-fluoroacetophenone (2I)

2-Chlorophenyl-4-chlorophenyl-methanone (243 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 15.8 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 5:1 v/v) afforded 176 mg of the title compound as an orange oil (50% yield).

 $\mathbf{R}_{f} = 0.33$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.97 (d, *J* = 8.1 Hz, 2H), 7.85 (d, *J* = 8.1 Hz, 2H), 7.64–7.56 (m, 3H), 7.50–7.42 (m, 4H), 7.40–7.34 (m, 2H), 6.56 (d, J = 48.4 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 194.6, 193.9 (d, J = 21.4 Hz), 139.7 (d, J = 19.8 Hz), 138.2, 137.3 (d, J = 2.0 Hz), 134.2, 133.9, 131.5, 131.5, 130.7, 130.3, 129.3 (d, J = 3.5 Hz), 129.3, 128.9, 127.0 (d, J = 6.3 Hz), 126.9, 93.8 (d, J = 188.2 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –183.3 (d, *J* = 47.9 Hz).

HRMS-FIA(m/z) calc'd for $C_{21}H_{15}CIFO_2 [M+H]^+$: 353.0739; found: 353.0730.

Quinoline-6-fluoroacetophenone (2m)

XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). A solution of 6-bromoquinoline (135 μ L, 1.00 mmol, 1.00 equiv.) in toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 13.7 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 3:1 v/v) afforded 201 mg of the title compound as a white solid (76% yield).

 $\mathbf{R}_f = 0.10$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 24 °C, δ): 8.94 (d, *J* = 4.2 Hz, 1H), 8.16 (t, *J* = 9.4 Hz, 2H), 8.01–7.94 (m, 3H), 7.82 (d, *J* = 8.7 Hz, 1H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.46–7.39 (m, 3H), 6.69 (d, *J* = 48.5 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 194.2 (d, *J* = 21.4 Hz), 151.6, 148.5 (d, *J* = 2.0 Hz), 136.5, 134.1, 134.1, 132.7 (d, *J* = 19.9 Hz), 130.8, 129.3 (d, *J* = 3.1 Hz), 128.9, 128.2, 127.8 (d, *J* = 4.9 Hz), 127.0 (d, *J* = 6.9 Hz), 121.9, 93.9 (d, *J* = 187.1 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): -179.8 (d, *J* = 47.9 Hz).

HRMS-FIA(m/z) calc'd for $C_{17}H_{13}FNO[M+H]^+$: 266.0976; found: 266.0966.

(2-Methylbenzo[d]thiazol-5-yl)-fluoroacetophenone (2n)

5-Bromo-2-methylbenzothiazole (228 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.28 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a preheated oil bath at 100 °C. After 16 h, the oil bath was removed, and the Schlenk tube was allowed to cool to

room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3×4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 3:1 v/v) afforded 142 mg of the title compound as a yellow-white solid (50% yield).

 $\mathbf{R}_f = 0.35$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.10 (s, 1H), 7.98 (d, *J* = 7.0 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 2H), 6.66 (d, *J* = 49.0 Hz, 1H), 2.84 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 193.0 (d, 21.5 Hz), 168.5, 153.7, 137.1, 134.0, 133.9, 132.4 (d, *J* = 20.4 Hz), 129.2 (d, *J* = 2.3 Hz), 128.8, 123.5 (d, *J* = 5.4 Hz), 122.3, 121.7 (d, *J* = 5.3 Hz), 93.8 (d, *J* = 187.4 Hz), 20.3.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –177.7 (d, *J* = 49.4 Hz).

HRMS-FIA(m/z) calc'd for C₁₆H₁₃FNOS [M+H]⁺: 286.0696; found: 286.0687.

Pyridine-3-fluoroacetophenone (20)

$$\begin{array}{c}
 & & \\ & &$$

XPhos-Pd-G2 (47.3 mg, 60.0 μ mol, 3.00 mol%) and Cs₂CO₃ (978 mg, 3.00 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (10 mL), 3-bromo-pyridine (193 μ L, 2.00 mmol, 1.00 equiv.) and 2-fluoroacetophenone (291 μ L, 2.40 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 8 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 4:1 v/v to 3:2 v/v) afforded 220 mg of the title compound as a yellow liquid (51% yield).

 $\mathbf{R}_f = 0.25$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.77 (s, 1H), 8.63 (d, J = 4.8 Hz, 1H), 7.95 (s, 1H), 7.79 (dd, J = 8.0, 1.8 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 15.7 Hz, 1H), 7.34 (dd, J = 8.0, 4.8 Hz, 1H), 6.57 (d, J = 48.0 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 193.6 (d, *J* = 21.5 Hz), 150.8, 148.7, 135.0 (d, *J* = 5.0 Hz), 134.5, 133.8, 130.5 (d, *J* = 20.7 Hz), 129.2 (d, *J* = 3.2 Hz), 129.0, 124.0, 91.8 (dd, *J* = 187.2, 2.3 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –182.1 (d, *J* = 48.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₃H₁₁FNO [M+H]⁺: 216.0819; found: 216.0824.

Quinoline-3-fluoroacetophenone (2p)

XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 2.80 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.40 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). A solution of 3-bromoquinoline (157 μ L, 1.07 mmol, 1.00 equiv.) in toluene (5 mL) and 2-fluoroacetophenone (223 mg, 1.28 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 13.7 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 4:1 v/v) afforded 136 mg of the title compound as a yellow-white solid (51% yield).

 $\mathbf{R}_f = 0.17$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 22 °C, δ): 9.05 (s, 1H), 8.26 (s, 1H), 8.11 (d, *J* = 9.0 Hz, 1H), 7.98 (d, *J* = 7.5 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.75 (t, *J* = 8.5 Hz, 1H), 7.59–7.55 (m, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 6.76 (d, *J* = 48.0 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 193.6 (d, *J* = 21.4 Hz), 149.0 (d, *J* = 4.3 Hz), 148.5, 135.1 (d, *J* = 6.4 Hz), 134.3, 133.8, 130.8, 129.5, 129.2, 129.0, 128.3, 127.6, 127.5, 127.3 (d, *J* = 20.5 Hz), 92.1 (d, *J* = 187.4 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): -180.4 (d, *J* = 48.5 Hz).

HRMS-FIA(m/z) calc'd for $C_{17}H_{13}FNO[M+H]^{+}$: 266.0976; found: 266.0988.

(Morpholinomethyl)phenyl-fluoroacetophenone (2q)

XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). A solution of 4-(4-bromobenzyl)morpholine (256 mg, 1.00 mmol, 1.00 equiv.) in toluene (5 mL) and 2-

fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 18 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 2:1 v/v with 1% Et₃N) afforded 250 mg of the title compound as a colorless liquid (80% yield).

 $\mathbf{R}_{f} = 0.40$ (hexanes/EtOAc = 1:1 v/v with 1% Et₃N).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.94 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.45–7.41 (m, 4H), 7.36 (d, *J* = 7.9 Hz, 2H), 6.50 (d, *J* = 48.6 Hz, 1H), 3.68 (t, *J* = 4.6 Hz, 4H), 3.47 (s, 2H), 2.41 (t, *J* = 4.5 Hz, 4H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 194.3 (d, *J* = 21.4 Hz), 139.8, 134.2, 133.9, 133.2 (d, *J* = 20.4 Hz), 129.9, 129.2 (d, *J* = 3.0 Hz), 128.8, 127.5 (d, *J* = 6.0 Hz), 93.9 (d, *J* = 181.7 Hz), 67.1, 63.0, 53.7.

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): –178.0 (d, *J* = 48.0 Hz).

HRMS-FIA(m/z) calc'd for $C_{19}H_{21}FNO_2[M+H]^+$: 314.1551; found: 314.1549.

Mesitylenyl-fluoroacetophenone (2s)

XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), 2-Bromomesitylene (153 mL, 1.00 mmol, 1.00 equiv.) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 20:1 v/v) afforded 209 mg of the title compound as a white solid (82% yield).

 $\mathbf{R}_f = 0.56$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.85 (dd, *J* = 8.2, 1.0 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 6.89 (s, 2H), 6.69 (d, *J* = 45.9 Hz, 1H), 2.35 (d, *J* = 2.1 Hz, 6H), 2.28 (d, *J* = 2.6 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 196.6 (d, *J* = 21.4 Hz), 139.7 (d, *J* = 3.5 Hz), 137.9 (d, *J* = 3.3 Hz),

135.0, 133.5, 130.3 (d, *J* = 2.4 Hz), 129.5 (d, *J* = 17.6 Hz), 128.67, 128.65 (d, *J* = 3.1 Hz), 91.9 (d, *J* = 183.6 Hz), 21.1, 20.4.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –180.9 (d, *J* = 45.6 Hz).

HRMS-FIA(m/z) calc'd for C₁₇H₁₇FNaO [M+Na]⁺: 279.1156; found: 279.1149.

(3-Chloro)phenyl-fluoroacetophenone (S2)

4-Chloro-bromobenzene (191 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 15 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 15:1 v/v) afforded 170 mg of the title compound as an off-white solid (68% yield).

 $\mathbf{R}_f = 0.48$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.92 (d, *J* = 6.9 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46–7.40 (m, 4H), 7.37 (dd, *J* = 8.8, 1.0 Hz, 2H), 6.48 (d, *J* = 48.4 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 195.1 (d, J = 21.6 Hz), 136.9 (d, J = 3.2 Hz), 135.1, 134.9, 133.9 (d, J = 20.3 Hz), 130.5, 130.2 (d, J = 3.0 Hz), 129.9, 129.7 (d, J = 5.6 Hz), 94.3 (d, J = 186.4 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –179.6 (d, *J* = 48.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₄H₁₀CIFNaO [M+Na]⁺: 271.0296; found: 271.0307.

(1-Fluoro-2-oxo-2-phenylethyl)-fenofibrate (S3)

Fenofibrate (361 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was

evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 18 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 8:1 v/v) afforded 320 mg of the title compound as an orange liquid (69% yield).

 $\mathbf{R}_{f} = 0.23$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.97 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 9.0 Hz, 2H), 7.61–7.56 (m, 3H), 7.45 (t, J = 8.0 Hz, 2H), 6.84 (d, J = 7.0 Hz, 2H), 6.56 (d, J = 48.5 Hz, 1H), 5.07 (sep, J = 6.3 Hz, 1H), 1.65 (s, 6H), 1.19 (d, J = 6.0 Hz, 6H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 194.8, 194.1 (d, *J* = 22.6 Hz), 173.2, 159.9, 139.2 (d, *J* = 2.3 Hz), 137.9 (d, *J* = 19.3 Hz), 134.2, 134.0, 132.2, 130.4, 130.2, 129.3 (d, *J* = 3.2 Hz), 128.9, 126.9 (d, *J* = 6.6 Hz), 117.3, 93.8 (d, *J* = 187.4 Hz), 79.5, 69.5, 25.5, 21.6.

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): –181.9 (d, *J* = 48.5 Hz).

HRMS-FIA(m/z) calc'd for C₂₈H₂₈FO₅ [M+H]⁺: 463.1915; found: 463.1910.

(1-Fluoro-2-oxo-2-phenylethyl)-DAA1106 (S4)

N-(5-Chloro-2-phenoxyphenyl)-*N*-(2,5-dimethoxybenzyl)acetamide⁴ (412 mg, 1.00 mmol, 1.00 equiv.), Ad₂^{*n*}BuP-Pd-G2 (20.1 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 18 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 2:1 v/v) afforded 315 mg of the title compound as a yellow liquid (61% yield).

 $\mathbf{R}_f = 0.20$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 55 °C, compound exists as a 1:1 mixture of rotamers δ): 7.86 (d, *J* = 7.8 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.30–7.22 (m, 1H), 7.20–7.10 (m, 2H), 6.98–6.86 (m, 3H), 6.81 (d, *J* = 8.5 Hz, 1H), 6.72–6.61 (m, 1H), 6.56 (dd, *J* = 22.7, 9.0 Hz, 1H), 6.32 (d, *J* = 48.6 Hz, 1H), 5.24–5.03 (m, 1H), 4.79–4.63 (m, 1H), 3.65 (s, 3H), 3.44 (d, *J* = 11.3 Hz, 3H), 1.88 (d, *J* = 11.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, compound exists as a 1:1 mixture of rotamers, δ): 193.9 (d, J = 22.7 Hz), 193.7 (d, J = 22.7 Hz), 170.7, 170.7, 155.3, 155.3, 155.2 (d, J = 2.6 Hz), 155.1 (d, J = 2.2 Hz), 153.5 (d, J = 4.0 Hz), 151.9 (d, J = 7.2 Hz), 134.0, 134.0, 133.2 (d, J = 5.5 Hz), 130.1, 129.1 (d, J = 2.8 Hz), 129.1 (d, J = 2.6 Hz), 128.9, 128.9, 128.4 (d, J = 4.9 Hz), 128.3 (d, J = 5.1 Hz), 126.2, 126.1, 124.8, 119.9, 118.04, 117.99, 116.7, 116.7, 113.9, 111.5, 111.4, 92.9 (d, J = 186.4 Hz), 92.8 (d, J = 186.4 Hz), 55.79, 55.75, 55.7, 46.0, 45.8, 22.4.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, compound exists as a 1:1 mixture of rotamers, δ): –176.6 (d, *J* = 48.9 Hz), –176.7 (d, *J* = 47.5 Hz).

HRMS-FIA(m/z) calc'd for $C_{31}H_{29}FNO_5 [M+H]^+$: 514.2024; found: 514.2043.

(1-Fluoro-2-oxo-2-phenylethyl)-estrone (S5)

Estrone-triflate (402 mg, 1.00 mmol, 1.00 equiv.)⁵, XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. Afte 17 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 6:1 v/v) afforded 262 mg of the title compound as a yellow-white solid (67% yield).

 $\mathbf{R}_{f} = 0.31$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.95 (d, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.31 (d, *J* = 6.5 Hz, 1H), 7.2, 7.20 (s, 1H), 6.47 (d, *J* = 48.5 Hz, 1H), 2.91–2.87 (m, 2H), 2.52–2.46 (m, 1H), 2.41–2.36 (m, 1H), 2.24–2.30 (m, 1H), 2.17–2.09 (m, 1H), 2.07–1.98 (m, 2H), 1.97–1.93 (m, 1H), 1.65–1.37 (m, 6H), 0.88 (d, *J* = 2.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 220.7, 194.3 (d, *J* = 21.5 Hz), 141.6, 137.6, 134.1, 133.8, 131.6 (d,

J = 20.4 Hz), 129.1, 128.7, 128.0 (d, *J* = 5.4 Hz), 126.2, 125.0 (d, *J* = 5.3 Hz), 93.7 (d, *J* = 185.2 Hz), 50.5, 47.9, 44.4, 37.9, 35.9, 31.6, 29.3, 26.3, 25.6, 21.6, 13.9.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –177.2 (d, *J* = 49.9 Hz).

HRMS-FIA(m/z) calc'd for C₂₆H₂₇FNaO₂ [M+Na]⁺: 413.1887; found: 413.1895.

(1-Fluoro-2-oxo-2-phenylethyl)-claritin (S6)

Claritin (383 mg, 1.00 mmol, 1.00 equiv.), $PAd_2^n Bu-Pd-G2$ (20.1 mg, 30.0 µmol, 3.00 mol%) and Cs_2CO_3 (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), and 2-fluoroacetophenone (145 µL, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 1:2 v/v) afforded 398 mg of the title compound as a yellow solid (82% yield).

 $\mathbf{R}_{f} = 0.25$ (hexanes/EtOAc = 1:2 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 24 °C, δ): 8.38 (d, *J* = 4.9 Hz, 1H), 7.99–7.91 (m, 2H), 7.60–7.50 (m, 1H), 7.46–7.39 (m, 3H), 7.33–7.27 (m, 2H), 7.22 (d, *J* = 7.8 Hz, 1H), 7.13–7.04 (m, 1H), 6.46 (d, *J* = 48.6 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.79 (brs, 2H), 3.48–3.27 (m, 2H), 3.20–3.04 (m, 2H), 2.90–2.74 (m, 2H), 2.55–2.41 (m, 1H), 2.38–2.24 (m, 3H), 1.24 (t, *J* = 7.1 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, compound exists as a 1:1 mixture of rotamers, δ): 194.2 (d, *J* = 21.7 Hz), 194.2 (d, *J* = 21.8 Hz), 157.2, 155.6, 146.8, 140.8, 138.8, 137.7 (d, *J* = 4.2 Hz), 137.6 (d, *J* = 3.2 Hz), 134.8, 134.7, 134.2, 134.2, 134.0, 133.7, 133.5, 133.3, 130.21, 130.19, 129.34 (d, *J* = 2.7 Hz), 129.31 (d, *J* = 2.7 Hz), 128.9, 128.1 (d, *J* = 5.0 Hz), 125.5 (d, *J* = 5.5 Hz), 125.4, 122.4, 93.7 (d, *J* = 185.6 Hz), 93.6 (d, *J* = 185.5 Hz), 61.5, 45.0, 44.9, 32.0, 31.7, 30.9, 30.7, 14.8.

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): –178.2 (d, *J* = 48.9 Hz).

HRMS-FIA(m/z) calc'd for C₃₀H₂₉FNaN₂O₃ [M+Na]⁺: 507.2054; found: 507.2070.

4-Bromo-N,N-diethyl-3-methoxybenzamide (S12)

To a solution of 4-bromo-3-methoxybenzoic acid (1.00 g, 4.33 mmol, 1.00 equiv.) in DMF (20 mL) were added CDI (1.05 g, 6.50 nnol, 1.50 equiv.), DMAP (793 mg, 6.50 mmol, 1.50 equiv.) and Et₃N (0.899 mL, 8.66 mmol, 2 equiv.). The reaction mixture was stirred at room temperature overnight. Water (40 mL) was added and extracted with EtOAc (3×30 mL). The combined organic layer was washed with water (30 mL) and brine (30 mL). The solution was dried with MgSO₄. After the solvent was removed in vacuo, purification by flash silica gel column chromatography (hexanes/EtOAc = 2:1 v/v) afforded 1.05 g of the title compound as a white solid (85% yield).

 $R_f = 0.19$ (hexanes/EtOAc = 12:1 v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, -15 °C, compound exists as a 1:1 mixture of rotamers, δ): 7.55 (d, J = 7.9 Hz, 1H), 6.92 (s, 1H), 6.83 (d, J = 7.9 Hz, 1H), 3.92 (s, 3H), 3.53 (q, J = 7.1 Hz, 2H), 3.24 (q, J = 7.1 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.0 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃, -15 °C, compound exists as a 1:1 mixture of rotamers, δ): 170.2, 155.8, 137.5, 133.2, 119.20, 119.17, 112.4, 110.0, 109.9, 56.4, 56.3, 43.3, 39.3, 14.43, 14.39, 13.0, 12.9.

HRMS-FIA(m/z) calc'd for C₁₂H₁₆BrNaNO₂ [M+Na]⁺: 308.0257; found: 308.0271.

(1-Fluoro-2-oxo-2-phenylethyl)-analepticon (S7)

4-Bromo-*N*,*N*-diethyl-3-methoxybenzamide (286 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 3:2 v/v) afforded 315 mg of the title compound as a colorless liquid (92% yield).

 $\mathbf{R}_{f} = 0.37$ (hexanes/EtOAc = 1:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, -15 °C, compound exists as a 1:1 mixture of rotamers, δ): 7.90 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 47.3 Hz, 1H), 6.97 (s, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 3.96 (s, 3H), 3.51 (q, *J* = 7.2 Hz, 2H), 3.22 (q, *J* = 7.1 Hz, 2H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.10 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, -15 °C, compound exists as a 1:1 mixture of rotamers, δ): 194.0 (d, J = 20.5 Hz), 170.3, 156.7 (d, J = 3.4 Hz), 140.2 (d, J = 4.4 Hz), 134.1, 133.4, 129.4, 128.8, 128.5, 123.1 (d, J = 19.6 Hz), 118.5, 109.5, 86.7 (d, J = 180.6 Hz), 56.0, 55.9, 43.3, 39.2, 14.4, 14.3, 12.90, 12.87.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –181.9 (d, *J* = 47.5 Hz).

HRMS-FIA(m/z) calc'd for C₂₀H₂₃FNO₃ [M+H]⁺: 344.1656; found: 344.1663.

(1-Fluoro-2-oxo-2-phenylethyl)-N-Boc-fluoxetine (S8)

t-Butyl (3-(4-bromophenoxy)-3-phenylpropyl)(methyl)carbamate⁶ (420 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 18 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 5:1 v/v) afforded 341 mg of the title compound as a yellow liquid (71% yield).

 $\mathbf{R}_{f} = 0.28$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 55 °C, δ): 7.91 (d, J = 7.7 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.36–7.30 (m, 6H), 7.29–7.22 (m, 1H), 6.87 (d, J = 8.3 Hz, 2H), 6.40 (d, J = 48.9 Hz, 1H), 5.13 (dd, J = 8.7, 4.2 Hz, 1H), 3.48–3.30 (m, 2H), 2.84 (s, 3H), 2.26–2.13 (m, 1H), 2.13–2.02 (m, 1H), 1.38 (s, 9H).

¹³**C NMR** (125 MHz, CDCl₃, 55 °C, compound exists as a 1:1 mixture of diastereoisomers, δ): 194.4 (d, J = 22.0 Hz), 194.4 (d, J = 22.0 Hz), 159.4, 155.8, 141.4, 134.6, 133.6, 129.27 (d, J = 4.9 Hz), 129.25 (d, J

= 4.9 Hz), 129.2, 129.1, 128.9, 128.7, 127.9, 126.8 (d, *J* = 20.7 Hz), 125.9, 116.6, 93.6 (d, *J* = 185.3 Hz), 79.5, 78.3, 45.9, 37.1, 34.6, 28.5.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –174.4 (brs).

HRMS-FIA(m/z) calc'd for C₂₉H₃₂FNaNO₄ [M+Na]⁺: 500.2208; found: 500.2229.

(1-Fluoro-2-oxo-2-phenylethyl)-SC-58125 (S9)

Aryl iodide⁷ (492 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 15 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 3:1 v/v) afforded 350 mg of the title compound as a yellow solid (70% yield).

 $\mathbf{R}_{f} = 0.23$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.96 (d, *J* = 7.4 Hz, 2H), 7.94–7.88 (m, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.56–7.43 (m, 6H), 7.28 (d, *J* = 7.8 Hz, 2H), 6.78 (s, 1H), 6.51 (d, *J* = 48.3 Hz, 1H), 3.07 (s, 3H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 194.0 (d, J = 22.1 Hz), 144.6 (d, J = 38.7 Hz), 144.3, 143.2, 140.3, 136.0 (d, J = 20.3 Hz), 134.3, 134.0, 129.8 (d, J = 2.3 Hz), 129.5, 129.3 (d, J = 3.7 Hz), 129.0, 128.8, 127.8 (d, J = 6.1 Hz), 125.8, 121.0 (q, J = 269.2 Hz), 107.2, 93.5 (d, J = 187.5 Hz), 44.6.

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –65.9, –182.0 (d, *J* = 48.4 Hz).

HRMS-FIA(m/z) calc'd for $C_{25}H_{19}F_4N_2O_3S[M+H]^+$: 503.1047; found: 503.1045.

Hydroquinidine 4-(1-fluoro-2-oxo-2-phenylethyl)-benzoate (S10)

Hydroquinidine 4-chlorobenzoate (465 mg, 1.00 mmol, 1.00 equiv.), XPhos-Pd-G2 (23.6 mg, 30.0 μ mol, 3.00 mol%) and Cs₂CO₃ (489 mg, 1.50 mmol, 1.50 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), and 2-fluoroacetophenone (145 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 18 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc/DCM/Et₃N = 4:1:1:1 v/v/v/v to 2:1:1:1 v/v/v/v) afforded 362 mg of the title compound as an off-white solid (64% yield).

 $R_f = 0.26$ (hexanes/EtOAc/DCM/Et₃N = 3:1:1:1 v/v/v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 55 °C, δ): 8.70 (d, *J* = 4.6 Hz, 1H), 8.12 (d, *J* = 8.1 Hz, 2H), 8.01 (d, *J* = 9.2 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.66–7.51 (m, 5H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.40–7.34 (m, 2H), 6.91 (brs, 1H), 6.50 (d, *J* = 48.5 Hz, 1H), 3.99 (s, 3H), 3.44 (q, *J* = 8.6 Hz, 1H), 3.14–2.57 (m, 4H), 2.11–1.85 (m, 1H), 1.79 (s, 1H), 1.72–1.43 (m, 5H), 0.89 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, compound exists as a 1:1 mixture of diastereoisomers, δ): 193.9 (d, J = 21.3 Hz), 193.9 (d, J = 21.4 Hz), 164.9, 158.2, 147.4, 144.8, 143.5, 139.6 (d, J = 20.3 Hz), 134.2, 133.8, 131.9, 130.7, 130.4, 129.3 (d, J = 1.4 Hz), 129.2 (d, J = 1.4 Hz), 128.9, 127.1 (d, J = 6.3 Hz), 127.0 (d, J = 6.3 Hz), 122.1, 118.6, 101.4, 93.6 (d, J = 187.9 Hz), 93.6 (d, J = 187.8 Hz), 74.2, 59.4, 55.9, 50.8, 49.9, 37.2, 26.9, 26.1, 25.5, 23.7, 11.9.

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, compound exists as a 1:1 mixture of diastereoisomers, δ): –183.2 (d, J = 47.9 Hz), –183.4 (d, J = 47.5 Hz)

HRMS-FIA(m/z) calc'd for $C_{35}H_{36}FN_2O_4$ [M+H]⁺: 567.2654; found: 567.2677.

Phenyl-bromo-fluoroacetophenone (2r')

Phenyl-fluoroacetophenone¹ (428 mg, 2.00 mmol, 1.00 equiv.) was dissolved in dry THF (16 mL), and then the solution was cooled to -78 °C. LiHMDS (1.0 M in THF, 2.10 mL, 2.10 mmol, 1.05 equiv.) was added dropwise. The reaction mixture was stirred at for 50 min. NBS (392 mg, 1.10 mmol, 1.10 equiv.) was added in one portion. After 3 h, a saturated aqueous solution of NH₄Cl (15 mL) was added and the mixture was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried over anhydrous NaSO₄ and concentrated in vacuo to give a crude residue. Purification by flash silica gel column chromatography (hexanes/EtOAc = 40:1 v/v) afforded 354 mg of the title compound as a colorless liquid (60% yield).

 $R_f = 0.52$ (hexanes/EtOAc = 10:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.04 (d, *J* = 7.6 Hz, 2H), 7.75–7.67 (m, 2H), 7.60 (td, *J* = 7.5, 1.1 Hz, 1H), 7.51–7.41 (m, 5H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 89.3 (d, *J* = 28.5 Hz), 137.4 (d, *J* = 21.4 Hz), 133.9, 132.2 (d, *J* = 3.1 Hz), 130.8 (d, *J* = 4.9 Hz), 130.4, 128.7, 128.5, 126.2 (d, *J* = 7.7 Hz), 104.8 (d, *J* = 267.1 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –112.3.

HRMS-FIA(m/z) calc'd for C₁₄H₁₀BrFNaO [M+Na]⁺: 314.9791; found: 314.9784.

Quinoline-6-bromo-fluoroacetophenone (2m')

Quinoline-6-fluoroacetophenone (265 mg, 1.00 mmol, 1.00 equiv.) was dissolved in dry THF (10 mL), and then the solution was cooled to -78 °C. LiHMDS (1.0 M in THF, 1.20 mL, 1.20 mmol, 1.20 equiv.) was added dropwise. The reaction mixture was stirred at for 45 min. NBS (214 mg, 1.20 mmol, 1.20 equiv.) was added in one portion. After 45 min, a saturated solution of NH₄Cl (6 mL) and a saturated solution of Na₂S₂O₃ (6 mL) were added and the mixture was extracted with EtOAc (3 × 12 mL). The combined organic layers were dried over anhydrous NaSO₄, and then concentrated in vacuo to give a crude residue. Purification by flash silica gel column chromatography (hexanes/EtOAc = 6:1 v/v) afforded 173 mg of the title compound as an off-white solid (50% yield).

 $\mathbf{R}_f = 0.30$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.98 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.20 (t, *J* = 8.5 Hz, 2H), 8.14 (d, *J* = 2.2 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 2H), 7.99 (dd, *J* = 8.9, 2.2 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.53–7.38 (m, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 189.1 (d, *J* = 28.5 Hz), 152.0, 148.5, 137.1, 135.6 (d, *J* = 21.3 Hz), 134.2, 132.1 (d, *J* = 3.6 Hz), 130.8 (d, *J* = 5.4 Hz), 130.1, 128.7, 127.5 (d, *J* = 6.0 Hz), 127.5, 125.5 (d, *J* = 9.5 Hz), 122.2, 104.0 (d, *J* = 268.4 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –114.5.

HRMS-FIA(m/z) calc'd for C₁₇H₁₂BrFNO [M+H]⁺: 344.0081; found: 344.0080.

Syntheses of Difluoromethyl-arenes

Difluoromethyl-benzodioxole (3a)

Piperonal (150 mg, 1.00 mmol, 1.00 equiv.) was dissolved in dry DCM (10 mL). DAST (396 μ L, 3.00 mmol, 3.00 equiv.) was added to the solution at 0 °C. The reaction mixture was stirred at room temperature for 35 h. Cold water (8 mL) was added. The mixture was extracted with DCM (3 × 4 mL). The combined organic layers were washed with brine (5 mL), dried over Na₂SO₄ and concentrated in vacuo to give a crude residue. Purification by flash silica gel column chromatography (hexanes/EtOAc = 10/1 v/v) afforded 110 mg of the title compound as a colorless liquid (64% yield).

 $\mathbf{R}_f = 0.52$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 24 °C, δ): 7.01–6.94 (m, 2H), 6.84 (d, *J* = 7.8 Hz, 1H), 6.54 (t, *J* = 56.6 Hz, 1H), 6.01 (s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 149.7, 148.2, 128.4 (t, *J* = 22.8 Hz), 120.3 (t, *J* = 7.1 Hz), 114.8 (t, *J* = 236.8 Hz), 108.4, 105.9 (t, *J* = 5.5 Hz), 101.7.

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): -110.9 (d, *J* = 55.9 Hz).

HRMS-FIA(m/z) calc'd for $C_8H_7F_2O_2[M+H]^+$: 173.0409; found: 173.0406.

3-Cyanocyclopropyl-difluoromethylbenzene (3c)

Based on a reported procedure²: 1-(3-Bromophenyl)cyclopropanecarbonitrile (222 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and

 $K_3PO_4 \cdot H_2O$ (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 µL, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 30.3 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 µL) were added to the mixture. After 2.7 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 15:1 v/v to 10/1 v/v) afforded 114 mg of the title compound as an orange liquid (38% yield).

 $\mathbf{R}_{f} = 0.29$ (hexanes/EtOAc = 5:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.49–7.42 (m, 4H), 6.65 (t, *J* = 56.5 Hz, 1H), 1.79 (dd, *J* = 8.0 Hz, 5.5 Hz, 2H), 1.46 (dd, *J* = 8.0 Hz, 5.5 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 137.1, 135.3 (t, *J* = 22.6 Hz), 129.6, 128.3, 125.0 (t, 5.4 Hz), 122.9 (t, *J* = 6.4 Hz), 122.2, 114.3 (t, *J* = 240.1 Hz), 18.5, 13.9.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): -114.0 (d, *J* = 55.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₁H₉F₂NaN [M+Na]⁺: 216.0595; found: 216.0595.

3-/sopropanolyl-difluoromethylbenzene (3d)

Based on a reported procedure²: Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), 2-(3-bromophenyl)propan-2-ol (215 mg, 1.00 mmol, 1.00 equiv.) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 36 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 7:1 v/v) afforded 147 mg of the title compound as a yellow liquid (79% yield).

 $\mathbf{R}_f = 0.40$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.65 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.45–7.38 (m, 2H), 6.65 (t, *J* = 56.5 Hz, 1H), 1.82 (s, 1H), 1.60 (s, 6H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 150.0, 134.4 (t, *J* = 22.6 Hz), 128.8, 127.0, 124.0 (t, *J* = 5.4 Hz), 121.8 (t, *J* = 6.4 Hz), 115.0 (t, *J* = 239.0 Hz), 72.6, 31.9.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): -113.1 (d, *J* = 56.5 Hz).

HRMS-FIA(m/z) calc'd for C₁₀H₁₂F₂NaO [M+Na]⁺: 209.0748; found: 209.0755.

3-Chloro-(5-phenylethynyl)-difluoromethylbenzene (3e)

Based on a reported procedure³: In a N₂-filled glove box, aryl bromide **S11** (117 mg, 0.400 mmol, 1.00 equiv), Pd(dba)₂ (16.1 mg, 28.0 μ mol, 7.00 mol%), DPPF (31.0 mg, 56.0 μ mol, 14.0 mol%), (SIPr)AgCl (42.7 mg, 80.0 μ mol, 20 mol%), and NaO^tBu (96.1 mg, 1.0 mmol, 2 equiv) were combined in a 20 mL vial. To this vial was added 5.0 mL of anhydrous toluene, followed by trimethyl(difluoromethyl)silane (148.8 mg, 1.2 mmol, 2.4 equiv). The vial was sealed and moved out from the glove box. The mixture was stirred at 80 °C for 6 hours. The dark solution was diluted with H₂O (12 mL). The mixture was filtered through a short plug of Celite, and washed with DCM (3 ×15 mL). The organic layer was combined, dried over Na₂SO₄, and concentrated under vacuum. Purification by flash silica gel column chromatography (hexanes) afforded 12.0 mg of the title compound as a colorless liquid (11% yield).

 $R_f = 0.23$ (hexanes).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.62 (s, 1H), 7.57–7.50 (m, 3H), 7.46 (s, 1H), 7.41–7.32 (m, 3H), 6.61 (t, *J* = 56.1 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 136.3 (t, *J* = 23.0 Hz), 135.0, 133.6, 131.9, 129.1, 128.6, 127.1 (t, J = 6.3 Hz), 125.9, 125.6 (t, *J* = 6.1 Hz), 122.4, 113.4 (t, *J* = 239.4 Hz), 91.8, 87.1.

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): -115.1 (d, *J* = 55.9 Hz).

HRMS-FIA(m/z) calc'd for $C_{15}H_{10}CIF_2[M+H]^+$: 263.0434; found: 263.0430.
4-Pyrazolyl-difluoromethylbenzene (3f)

Based on a reported procedure²: Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), 1-(4-Bromophenyl)-1*H*-pyrazole (223 mg, 1.00 mmol, 1.00 equiv.) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 30 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture. After 3 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 12:1 v/v) afforded 145 mg of the title compound as a white solid (75% yield).

 $\mathbf{R}_f = 0.48$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.97 (d, *J* = 2.5 Hz, 1H), 7.86–7.69 (m, 3H), 7.60 (d, *J* = 8.2 Hz, 2H), 6.69 (t, *J* = 56.4 Hz, 1H), 6.51 (t, *J* = 2.2 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 141.9, 141.8, 132.3 (t, *J* = 22.7 Hz), 127.0 (t, *J* = 6.1 Hz), 126.9, 119.1, 114.4 (td, *J* = 238.7, 3.2 Hz), 108.3.

¹⁹**F NMR** (470 MHz, CDCl₃, 21 °C, δ): -113.4 (d, *J* = 55.9 Hz).

HRMS-FIA(m/z) calc'd for $C_{10}H_9F_2N_2[M+H]^+$: 195.0729; found: 195.0732.

3-Morpholino-difluoromethylbenzene (3g)

Based on a reported procedure²: Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), 4-(3-bromophenyl)morpholine (242 mg, 1.00 mmol, 1.00 equiv.) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at

100 °C. After 30 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H_2O (250 µL) were added to the mixture. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 10:1 v/v to 8/1 v/v) afforded 109 mg of the title compound as an yellow liquid (51% yield).

 $\mathbf{R}_{f} = 0.45$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.35 (t, J = 7.5 Hz, 1H), 7.03 (s, 1H), 7.02–6.98 (m, 2H), 6.60 (t, J = 57.0 Hz, 1H), 3.87 (t, J = 5.0 Hz, 4H), 3.20 (t, J = 5.0 Hz, 4H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 151.6, 135.4 (t, J = 21.4 Hz), 129.7, 117.8, 117.0 (t, J = 6.6 Hz), 115.0 (t, J = 240.2 Hz), 112.3 (t, J = 6.4 Hz), 66.9, 49.1.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): -113.5 (d, *J* = 55.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₁H₁₄F₂NO₂ [M+H]⁺: 214.1038; found: 214.1047.

2-Difluoromethylfluoren-9-one (3i)

Based on a reported procedure²: 2-Bromofluoren-9-one (259 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 37 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 40:1 v/v) afforded 104 mg of the title compound as a yellow solid (42% yield).

 $R_f = 0.20$ (hexanes/EtOAc = 40:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.78 (s, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 6.65 (t, *J* = 56.0 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 190.3, 144.2, 141.1, 133.0 (t, J = 22.6 Hz), 132.7, 132.2, 132.0, 129.6 (t, J = 6.6 Hz), 127.5, 122.3, 119.3 (t, J = 5.4 Hz), 118.6, 118.2, 111.7 (t, J = 240.0 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): -114.1 (d, *J* = 56.5 Hz).

HRMS-FIA(m/z) calc'd for $C_{14}H_8F_2NaO[M+Na]^+$: 253.0435; found: 253.0433.

2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone (3I)

Based on a reported procedure²: 2-Chlorophenyl-4-chlorophenyl-methanone (243 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μmol, 3.00 mol%), PAd₂ⁿBu (14.3 mg, 40.0 μmol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 \times). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 110 °C. After 37.2 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 µL) were added to the mixture and the temperature of the oil bath was decreased to 100°C. After 2.3 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3×4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/DCM = 3:1 v/v) afforded 11.0 mg of the title compound as a colorless liquid (4% yield).

 $\mathbf{R}_f = 0.50$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 24 °C, δ): 7.89 (d, J = 7.9 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.51–7.43 (m, 2H), 7.43–7.36 (m, 2H), 6.70 (t, J = 56.0 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 194.7, 139.1 (t, *J* = 22.4 Hz), 138.6, 138.2, 131.7, 131.5, 130.4, 130.4, 129.4, 127.0, 126.1 (t, *J* = 6.1 Hz), 114.0 (t, *J* = 240.1 Hz).

¹⁹F NMR (470 MHz, CDCl₃, 24 °C, δ): -115.5 (d, J = 55.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₄H₉ClF₂NaO [M+Na]⁺: 289.0202; found: 289.0207.

5-Difluoromethyl-2-methylbenzo[d]thiazole (3n)

Based on a reported procedure²: 5-Bromo-2-methylbenzothiazole (228 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄•H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 30 h 10 min, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture. After 2.5 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (cyclohexane/EtOAc = 6:1 v/v) afforded 25 mg of the title compound as an off-white solid (13% yield).

 $\mathbf{R}_f = 0.22$ (cyclohexane/EtOAc = 5:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.07 (s, 1H), 7.91 (d, *J* = 8.3 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 1H), 6.78 (t, *J* = 56.4 Hz, 1H), 2.86 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 168.8, 153.3, 138.2, 132.7 (t, *J* = 22.6 Hz), 122.1, 121.7 (t, *J* = 5.6 Hz), 120.0 (t, *J* = 6.8 Hz), 114.8 (t, *J* = 239.3 Hz), 20.4.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –112.3 (d, *J* = 56.4 Hz).

HRMS-FIA(m/z) calc'd for $C_9H_8F_2NS[M+H]^+$: 200.0340; found: 200.0349.

3-Difluoromethylquinoline (3p)

Based on a reported procedure²: Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL), 3-bromoquinoline (208 mg, 1.00 mmol, 1.00 equiv.) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 37.4 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture. After 2.3 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 6:1 v/v) afforded 31.9 mg of the title compound as a yellow liquid (18% yield).

 $\mathbf{R}_{f} = 0.35$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 9.05 (s, 1H), 8.32 (s, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.83 (t, *J* = 8.0 Hz, 1H), 7.64 (t, *J* = 7.3 Hz, 1H), 6.90 (t, *J* = 55.9 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 149.1, 147.2, 134.2 (t, *J* = 6.7 Hz), 131.3, 129.6, 128.5, 127.8, 127.3 (t, *J* = 25.0 Hz), 127.0, 113.8 (t, *J* = 240.1 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): -114.6 (d, J = 55.9 Hz).

HRMS-FIA(m/z) calc'd for $C_{10}H_8F_2N[M+H]^+$: 180.0620; found: 180.0628.

4-Morpholinomethyl-difluoromethylbenzene (3q)

Based on a reported procedure²: 4-(4-Bromobenzyl)morpholine (256 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 40 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture. After 2.5 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 3:1 v/v, 1% Et₃N) afforded 185 mg of the title compound as a yellow liquid (81% yield).

 $R_f = 0.33$ (hexanes/EtOAc = 2:1 v/v, 1% Et₃N).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.46 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 6.63 (t, *J* = 57.0 Hz, 1H), 3.71 (t, *J* = 4.5 Hz, 4H), 3.53 (s, 2H), 2.44 (t, *J* = 4.5 Hz, 4H).

¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 141.0, 133.4 (t, *J* = 21.5 Hz), 129.4, 125.6 (t, *J* = 5.3 Hz), 114.8 (t, *J* = 239.1 Hz), 67.1, 63.1, 53.7.

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): -113.1 (d, *J* = 57.3 Hz).

HRMS-FIA(m/z) calc'd for $C_{12}H_{16}F_2NO[M+H]^+$: 228.1192; found: 228.1204.

Difluoromethyl-fenofibrate

Based on a reported procedure²: Fenofibrate (361 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 110 °C. After 30 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture and the temperature of the oil bath was decreased to 100°C. After 2.3 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 15:1 v/v) afforded 104 mg of the title compound as an off-white solid (28% yield).

 $\mathbf{R}_{f} = 0.40$ (hexanes/EtOAc = 6:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.81 (d, *J* = 7.8 Hz, 2H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 6.72 (t, *J* = 56.5 Hz, 1H), 5.09 (sep, *J* = 6.5 Hz, 1H), 1.66 (s, 6H), 1.20 (d, *J* = 6.5 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 194.7, 173.2, 160.0, 140.5, 137.5 (t, *J* = 22.6 Hz), 132.2, 130.2, 130.0, 125.6 (t, *J* = 5.4 Hz), 117.4, 114.2 (t, *J* = 240.0 Hz), 79.6, 69.5, 25.5, 21.6.

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): -114.8 (d, *J* = 56.0 Hz).

HRMS-FIA(m/z) calc'd for $C_{21}H_{22}F_2NaO_4$ [M+Na]⁺: 399.1378; found: 399.1380.

Difluoromethyl-DAA1106

Based on a reported procedure²: Aryl chloride (412 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 1.20 mmol, 1.20 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 110 °C. After 38 h, KOH (500 mg,

8.91 mmol, 8.91 equiv.) and H_2O (250 µL) were added to the mixture and the temperature of the oil bath was decreased to 100°C. After 2.5 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/ EtOAc = 4:1 v/v) afforded 198 mg of the title compound as a yellow liquid (46% yield).

 $\mathbf{R}_{f} = 0.30$ (hexanes/EtOAc = 3:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 55 °C, δ): 7.35 (t, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 8.6 Hz, 1H), 7.19 (d, *J* = 7.9 Hz, 2H), 6.99 (d, *J* = 3.1 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 1H), 6.73 (dd, *J* = 8.9, 3.1 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 1H), 6.50 (t, *J* = 56.5 Hz, 1H), 5.13 (d, *J* = 14.2 Hz, 1H), 4.77 (d, *J* = 14.4 Hz, 1H), 3.67 (s, 3H), 3.50 (s, 3H), 1.96 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 170.9, 156.0, 155.2, 153.6, 151.9, 133.1, 130.2, 129.0 (t, *J* = 23.3 Hz), 128.2, 126.4 (t, *J* = 5.9 Hz), 126.2, 124.9, 120.0, 117.6, 116.8, 114.0 (d, *J* = 238.5 Hz), 113.9, 111.3, 55.8, 55.7, 46.1, 22.4.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, compound exists as a 1:1 mixture of rotamers, δ): –112.3 (d, J = 55.9 Hz), –112.4 (d, J = 55.9 Hz).

HRMS-FIA(m/z) calc'd for $C_{24}H_{24}F_2NO_4 [M+H]^+$: 428.1668; found: 428.1682.

Difluoromethyl-estrone

To a solution of difluorormethyl-estrone-ketal³ (60.0 mg, 0.172 mmol) in THF (2.5 mL) was added HCI aqueous solution (2 M, 1 mL). The resulting mixture was stirred at room temperature. After 2.5 h, the reaction mixture was poured into saturated NaHCO₃ aqueous solution (6 mL) and extracted with DCM (3×5 mL). The combined organic layer was dried with MgSO₄. After the solvent was removed in vacuo, purification by flash silica gel column chromatography (hexanes/EtOAc = 12:1 v/v) afforded 42.0 mg of the title compound as a white solid (80% yield).

 $\mathbf{R}_f = 0.27$ (hexanes/EtOAc = 10:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.38 (d, J = 8.1 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1 H), 7.24 (s, 1H), 6.59 (t, J = 56.6 Hz, 1H), 3.01–2.89 (m, 2H), 2.52 (dd, J = 19.0, 8.5 Hz, 1H), 2.47–2.40 (m, 1H), 2.39–2.28 (m, 1H), 2.21–2.01 (m, 3H), 2.01–1.94 (m, 1H), 1.70–1.44 (m, 6H), 0.92 (s, 3H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 220.7, 142.7, 137.2, 132.0 (t, *J* = 22.4 Hz), 126.2 (t, *J* = 5.9 Hz),

125.9, 123.0, 115.0 (t, *J* = 238.2 Hz), 50.6, 48.0, 44.6, 38.0, 35.9, 31.7, 29.4, 26.4, 25.8, 21.7, 13.9.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –112.9 (dd, *J* = 56.9 Hz, 8.9 Hz).

HRMS-FIA(m/z) calc'd for C₁₉H₂₂F₂NaO [M+Na]⁺: 327.1531; found: 327.1521.

Difluoromethyl-Claritin

Based on a reported procedure²: Claritin (383 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 110 °C. After 30 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture and the temperature of the oil bath was decreased to 100°C. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/dioxane/dichloromethane = 6:1:1 v/v/v) afforded 195 mg of the title compound as an orange solid (49% yield).

 $\mathbf{R}_f = 0.33$ (hexanes/EtOAc = 1:2 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.40 (d, J = 4.5 Hz, 1H), 7.44 (d, J = 7.5 Hz, 1H), 7.34–7.26 (m, 3H), 7.11–7.08 (m, 1H), 6.70 (t, J = 56.5 Hz, 1H), 4.12 (q, J = 7.0 Hz, 2H), 3.81 (brs, 2H), 3.50–3.43 (m, 1H), 3.41–3.35 (m, 1H), 3.18–3.12 (m, 2H), 2.91–2.84 (m, 2H), 2.53–2.47 (m, 1H), 2.40–2.30 (m, 3H), 1.25 (t, J = 7.0 H, 3H).

¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 156.9, 155.6, 146.9, 142.1, 138.5, 137.8, 137.7, 134.7, 133.5 (t, J = 21.4 Hz), 133.5, 129.7, 126.2 (t, J = 5.3 Hz), 123.5 (t, J = 5.4 Hz), 122.4, 114.8 (t, J = 239.0 Hz), 61.4, 44.9, 44.9, 32.0, 31.7, 30.9, 30.6, 14.8.

¹⁹**F NMR** (470 MHz, CDCl₃, 24 °C, δ): -113.2 (d, *J* = 56.0 Hz).

HRMS-FIA(m/z) calc'd for C₂₃H₂₅F₂N₂O₂ [M+H]⁺: 399.1879; found: 399.1887.

Difluoromethyl-N-Boc-Fluoxetine

Based on a reported procedure²: Aryl bromide (420 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂ⁿBu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 30 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 4:1 to 3:1 v/v) afforded 54.3 mg of the title compound as a yellow liquid (14% yield).

 $\mathbf{R}_f = 0.30$ (hexanes/EtOAc = 4:1 v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 50 °C, δ): 7.29–7.23 (m, 5H), 7.21–7.17 (m, 2H), 6.82 (d, J = 8.4 Hz, 2H),
6.45 (t, J = 56.8 Hz, 1H), 5.10 (dd, J = 8.6, 4.2 Hz, 1H), 3.50–3.20 (m, 2H), 2.78 (s, 3H), 2.19–2.07 (m, 1H), 2.07–1.98 (m, 1H), 1.34 (s, 9H).

¹³**C NMR** (125 MHz, CDCl₃, 50 °C, δ): 160.1, 155.9, 141.3, 129.0, 128.0, 127.1 (t, *J* = 6.0 Hz), 125.9, 116.1, 115.0 (t, *J* = 237.1 Hz), 80.0, 78.3, 46.0, 37.2, 34.7, 28.6.

¹⁹**F NMR** (470 MHz, CDCl₃, 21 °C, δ): -111.5 (d, *J* = 57.3 Hz).

HRMS-FIA(m/z) calc'd for C₂₂H₂₇F₂NaNO₃ [M+Na]⁺: 414.1851; found: 414.1859.

Difluoromethyl-SC-58125

Based on a reported procedure²: Aryl iodide (492 mg, 1.00 mmol, 1.00 equiv.), Pd(dba)₂ (17.3 mg, 30.0 μ mol, 3.00 mol%), PAd₂^{*n*}Bu (14.3 mg, 40.0 μ mol, 4.00 mol%) and K₃PO₄·H₂O (921 mg, 4.00 mmol, 4.00 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen (3 ×). Toluene (5 mL) and 2,2-difluoroacetophenone (264 μ L, 2.00 mmol, 2.00 equiv.) were added to the

mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 35.8 h, KOH (500 mg, 8.91 mmol, 8.91 equiv.) and H₂O (250 μ L) were added to the mixture. After 2.8 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc = 7:2 v/v) afforded 214 mg of the title compound as a white-orange solid (51% yield).

 $\mathbf{R}_{f} = 0.37$ (hexanes/EtOAc = 2:1 v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.96 (d, *J* = 8.5 Hz, 2H), 7.58–7.49 (m, 4H), 7.34 (d, *J* = 7.9 Hz, 2H), 6.83 (s, 1H), 6.67 (t, *J* = 56.2 Hz, 1H), 3.25–2.86 (m, 3H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 144.6 (q, J = 38.7 Hz), 144.2, 143.2, 140.4, 135.7 (t, J = 22.6 Hz), 131.0, 129.3, 128.8, 126.6 (t, J = 6.0 Hz), 125.9, 121.0 (q, J = 269.2 Hz), 114.0 (t, J = 239.5 Hz), 107.4, 44.6.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C, δ): –65.5, –114.8 (d, *J* = 56.9 Hz).

HRMS-FIA(m/z) calc'd for $C_{18}H_{13}F_5NaN_2O_2S$ [M+Na]⁺: 439.0510; found: 439.0498.

Hydroquinidine 4-difluoromethylbenzoate

Hydroquinidine (326 mg, 1.00 mmol, 1.00 equiv.), 2-(difluoromethyl)benzoic acid (189 mg, 1.10 mmol, 1.10 equive.) were dissolved in dry DCM (5 mL). DCC (227 mg, 1.10 mmol, 1.10 mol) and DMAP (12.2 mg, 0.10 mmol, 0.01 equiv.) were added. The reaction mixture was stirred at room temperature for 16 h. Then the suspension was filtered through Celite and eluted with DCM (2×4 mL). The filtrate was evaporated under reduced pressure. Purification by flash silica gel column chromatography (hexanes/EtOAc/DCM/Et₃N = 4:1:1:1 v/v/v/v) afforde 144 mg of the title compound as a white solid (30% yield).

 $R_f = 0.60$ (hexanes/EtOAc/DCM/Et₃N = 2:1:1:1 v/v/v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25°C, δ): 8.73 (d, *J* = 4.6 Hz, 1H), 8.20 (d, *J* = 8.1 Hz, 2H), 8.03 (d, *J* = 9.2 Hz, 1H), 7.64 (d, *J* = 8.1 Hz, 2H), 7.59 (brs, 1H), 7.47–7.36 (m, 2H), 7.01 (s, 1H), 6.72 (t, *J* = 56.0 Hz, 1H), 4.04 (s, 3H), 3.47 (q, *J* = 8.8 Hz, 1H), 3.19–2.71 (m, 4H), 2.15–1.95 (m, 1H), 1.85 (s, 1H), 1.74–1.49 (m, 6H), 0.93 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 25°C, δ): 164.56, 158.4, 147.4, 144.9, 143.2, 139.2 (t, *J* = 22.5 Hz), 132.00, 131.95, 130.2, 127.0, 126.1 (t, *J* = 6.0 Hz), 122.4, 118.4, 113.9 (t, *J* = 240.4 Hz), 101.4, 74.0, 59.5, 56.2, 50.7, 50.0, 37.0, 26.6, 26.1, 25.45, 23.0, 11.9.

¹⁹**F NMR** (470 MHz, CDCl₃, 25°C, δ): –115.4 (d, *J* = 55.9 Hz).

HRMS-FIA(m/z) calc'd for C₂₈H₃₁F₂N₂O₂ [M+H]⁺: 481.2297; found: 481.2317.

Syntheses of ¹⁸F-Difluoromethylarenes

General Methods for Radioisotope Preparation

A GE PETtrace 16.5 MeV cyclotron was used for [¹⁸F]fluoride production by the ¹⁸O(p,n)¹⁸F nuclear reaction to irradiate ¹⁸O-enriched water. [¹⁸F]fluoride was delivered to a lead-shielded hot cell in ¹⁸O-enriched water by nitrogen gas pressure. [¹⁸F]Fluoride was prepared for radiofluorination by the following method: a solution of TEAB (2 mg) in acetonitrile and water (1 mL, v/v 7:3) was added to an aliquot of target water (\leq 1 mL) containing the appropriate amount of [¹⁸F]fluoride (2–4 mCi) in a V-shaped vial sealed with a Teflon-lined septum. The vial was heated to 110 °C while nitrogen gas was passed through a P₂O₅-DrieriteTM column followed by a vented needle. When no liquid was visible in the vial, it was removed from heat, anhydrous acetonitrile (1 mL) was added, and the heating was resumed until dryness. This step was repeated an additional two times. The vial was then cooled to room temperature under nitrogen flow (10 mL/min). The contents were redissolved in the anhydrous acetonitrile (80 µL, solution A).

General Methods for Analysis of Radiofluorination Reactions

RadioTLC: EMD TLC Silica gel 60 plates (10 x 2 cm) were spotted with an aliquot (1–5 μ L) of crude reaction mixture approximately 1 cm from the bottom of the plate (baseline). TLC plates were developed in a chamber containing ethyl acetate until within 1 cm of the top of the plate (front). Analysis was performed using a Bioscan AR-2000 radio-TLC imaging scanner and WinScan software.

RadioHPLC: A Phenomenex Luna C18, 250 x 4.6 mm, 5 μ m HPLC column was used with a Waters 1515 Isocratic HPLC Pump equipped with a Waters 2487 Dual λ Absorbance Detector, a Bioscan Flow-Count equipped with a Nal crystal, and Breeze software.

r ∧ ∧ ↓	[¹⁸ F ⁻], b "Ph	b ase, 0.9 equiv	v. oxidant	¹⁸ F F .Ph	
2m 0.01 mmol	й —	solvent, T,	t	[¹⁸ F]2m"	
base	oxidant	т	t	solvent	RCC (TLC)
TEAB (3.5 mg)	NBS (1.6 mg)	80 °C	10 min	MeCN (0.22 mL)	10%
TEAB (3.5 mg)	NBS (1.6 mg)	80 °C	10 min	MeCN/PhH (20 µL/0.2 mL)	36%
TEAB (3.5 mg)	NBS (1.6 mg)	80 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	42%
TEAB (3.5 mg)	NBS (1.6 mg)	80 °C	10 min	MeCN/THF (20 µL/0.2 mL)	4%
TEAB (3.5 mg)	NBS (1.6 mg)	80 °C	10 min	MeCN/Bu₂O (20 μL/0.2 mL)	37%
TEAB (3.5 mg)	NBS (1.6 mg)	100 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	68%
TEAB (3.5 mg)	NBS (1.6 mg)	120 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	55%
K ₂ CO ₃ /18-C-6 (2 mg/10 mg)	NBS (1.6 mg)	100 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	53%
TEAB (5.5 mg)	NBS (1.6 mg)	100 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	66%
TEAB (1.5 mg)	NBS (1.6 mg)	100 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	53%
TEAB (3.5 mg)	NIS (2.0 mg)	100 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	26%
TEAB (3.5 mg)	NCS (1.2 mg)	100 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	13%
TEAB (3.5 mg)	NBP (2.0 mg)	100 °C	10 min	MeCN/PhCI (20 μL/0.2 mL)	73%
TEAB (3.5 mg)	NBP (2.0 mg)	100 °C	5 min	MeCN/PhCI (20 µL/0.2 mL)	72%

Table S2. Optimization of ¹⁸F-Labeling Conditions

A 1-dram (4 mL) glass vial loaded with base, precursor 2m (2.7 mg, 10 μ mol) and oxidant (9 μ mol) were added solvent (0.2 mL) and the solution A (20 μ L). The radioactivity of the mixture was measured. Then the reaction vessel was heated at given temperature. After the reaction time was over, the reaction vessel was cooled down to room temperature. MeCN (2 mL) was added to the reaction mixture. An aliquot from combined solution was removed and analyzed by radio TLC for radiochemical conversion and radio HPLC for product identity.

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq) Flow rate: 1 mL/min

Figure S1. Co-injection radio-HPLC chromatogram of [¹⁸F]2m"

General Procedure for Syntheses of ¹⁸F-Difluoromethylarenes

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2** (10 µmol) and N-bromophthalimide (2 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 x 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio-TLC and radio-HPLC (column: Luna 5u C18 100 Å 250 × 4.6 mm. UV wavelength: 230, 254, or 290 nm for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, whichever lower number form radio-TLC or radio-HPLC results. Each radiochemical labeling was conducted three times (n = 3).

Method of the RCY determination by SPE

All the radiolabeled compounds were purified by flash chromatography (a short silica cartridge purchased from Waters, Inc Catalog # WAT023537), which removed precipitates and unreacted ¹⁸F-fluoride. The overall radioactivity of filtrate was measured and an aliquot was removed and analyzed by radio-TLC and radio-HPLC. The radiochemical purity was determined by the ratio of peak area between [¹⁸F]difluoromethylarene and all radioactive peaks. The radiochemical yield of [¹⁸F]difluoromethylarene was calculated by the following equation.

RCY = $\frac{[radiochemical purity] X [all collected activity by silica cartridge method]}{[starting radioactivity as 18F fluoride]}$

[¹⁸F]Difluoromethyl-benzodioxole ([¹⁸F]3a)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2a** (2.9 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	625 µCi	213 µCi	98%	95%	32%
2	831 µCi	227 µCi	98%	98%	27%
3	740 µCi	202 µCi	98%	100%	27%

RCY = $29 \pm 2\%$ (*n* = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 50% CH₃CN, 50% 0.1 M NH_4 ·HCO₂ (aq) Flow rate: 1 mL/min

Figure S2. Co-injection radio HPLC chromatogram of [18F]3a

[¹⁸F]*N*-Boc-*N*-methyl-difluoromethylaniline ([¹⁸F]3b)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2b** (3.4 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	546 µCi	222 µCi	100%	72%	29%
2	392 µCi	146 µCi	100%	75%	28%
3	432 µCi	176 µCi	100%	76%	31%

RCY = 29 ± 1% (*n* = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 60% CH₃CN, 40% 0.1 M NH_4 ·HCO₂ (aq) Flow rate: 1 mL/min

Figure S3. Co-injection radio HPLC chromatogram of [¹⁸F]3b

[¹⁸F]3-Cyanocyclopropyl-difluoromethylbenzene ([¹⁸F]3c)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2c** (2.8 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	629 µCi	384 µCi	95%	96%	58%
2	700 µCi	407 µCi	95%	94%	55%
3	560 µCi	293 µCi	95%	96%	50%

RCY = $54 \pm 3\%$ (*n* = 3) Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq) Flow rate: 1 mL/min

Figure S4. Co-injection radio HPLC chromatogram of [¹⁸F]3c

[¹⁸F]3-/sopropanolyl-difluoromethylbenzene ([¹⁸F]3d)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2d** (2.7 mg, 10 μ mol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 μ L) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 μ L) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	797 µCi	323 µCi	99%	98%	40%
2	615 µCi	210 µCi	99%	96%	33%
3	543 µCi	195 µCi	97%	98%	35%

RCY = $36 \pm 3\%$ (*n* = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 50% CH₃CN, 50% 0.1 M NH_4 ·HCO₂ (aq) Flow rate: 1 mL/min

Figure S5. Co-injection radio HPLC chromatogram of [18F]3d

[¹⁸F]3-Chloro-5-(phenylethynyl)-difluoromethylbenzene ([¹⁸F]3e)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2e** (3.5 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	510 µCi	326 µCi	100%	100%	64%
2	470 µCi	272 µCi	100%	100%	58%
3	460 µCi	275 µCi	100%	100%	60%

RCY = $61 \pm 2\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 80% CH₃CN, 20% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

[¹⁸F]4-Pyrazolyl-difluoromethylbenzene ([¹⁸F]3f)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2f** (2.8 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	574 µCi	298 µCi	100%	100%	52%
2	501 µCi	251 µCi	100%	100%	50%
3	710 µCi	350 µCi	100%	99%	49%

RCY = 50 ± 1% (n = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 60% CH₃CN, 40% 0.1 M NH_4 ·HCO₂ (aq) Flow rate: 1 mL/min

Figure S7. Co-injection radio HPLC chromatogram of [18F]3f

[¹⁸F]3-Morpholino-difluoromethylbenzene ([¹⁸F]3g)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **1d** (3.0 mg, 10 µmol) and *N*bromophthalimide (4.2 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, $Na_2S_2O_3 \cdot 5H_2O$ (5 mg) and aqueous KOH solution (45 w%, 40 µL) were added. The mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entrv	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
- ··· J	activity	radio-activity	purity	purity	_
1	383 µCi	100 µCi	78%	60%	16%
2	394 µCi	105 µCi	75%	50%	13%
3	520 µCi	155 µCi	75%	60%	18%

RCY = 16 ± 2% (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 50% CH₃CN, 50% 0.1 M NH₄·HCO₂ (aq)

Figure S8. Co-injection radio HPLC chromatogram of [¹⁸F]3g

[¹⁸F]3-Nitro-difluoromethylbenzene ([¹⁸F]3h)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2h** (2.6 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
,	activity	radio-activity	purity	purity	
1	356 µCi	156 µCi	99%	99%	43%
2	541 µCi	268 µCi	99%	99%	49%
3	474 µCi	230 µCi	99%	99%	48%

RCY = $47 \pm 3\%$ (*n* = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 60% CH₃CN, 40% 0.1 M NH_4 ·HCO₂ (aq) Flow rate: 1 mL/min

Figure S9. Co-injection radio HPLC chromatogram of [¹⁸F]3h

[¹⁸F]2-Difluoromethylfluoren-9-one ([¹⁸F]3i)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2i** (3.2 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entrv	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	160 µCi	66 µCi	99%	97%	40%
2	112 µCi	48 µCi	100%	100%	43%
3	375 µCi	150 µCi	100%	100%	40%

RCY = 41 ± 1% (*n* = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 70% CH₃CN, 30% 0.1 M NH₄·HCO₂ (aq) Flow rate: 1 mL/min

Figure S10. Co-injection radio HPLC chromatogram of [18F]3i

[¹⁸F]Ethyl 4-difluoromethyl-benzoate ([¹⁸F]3j)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2j** (2.9 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 60 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	492 µCi	175 µCi	93%	80%	28%
2	757 µCi	205 µCi	98%	89%	24%
3	767 µCi	233 µCi	99%	81%	25%

RCY = $26 \pm 2\%$ (*n* = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 60% CH₃CN, 40% 0.1 M NH_4 ·HCO₂ (aq) Flow rate: 1 mL/min

Figure S11. Co-injection radio HPLC chromatogram of [¹⁸F]3j

[¹⁸F]3-Difluoromethyl-benzoaldehyde ([¹⁸F]3k)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2k** (3.5 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 60 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
.	activity	radio-activity	purity	purity	
1	501 µCi	115 µCi	85%	65%	15%
2	875 µCi	216 µCi	80%	40%	10%
3	784 µCi	175 µCi	85%	62%	14%

RCY = 13 ± 2% (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 50% CH₃CN, 50% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

[¹⁸F]2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone ([¹⁸F]3l)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2I** (3.5 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	410 µCi	218 µCi	90%	100%	48%
2	449 µCi	210 µCi	92%	100%	43%
3	401 µCi	210 µCi	88%	100%	46%

RCY = 46 ± 2% (*n* = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 70% CH₃CN, 30% 0.1 M NH₄·HCO₂ (aq) Flow rate: 1 mL/min

Figure S13. Co-injection radio HPLC chromatogram of [¹⁸F]3I

[¹⁸F]6-Difluoromethylquinoline ([¹⁸F]3m)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2m** (2.7 mg, 10 μ mol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 μ L) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 μ L) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	PhCl	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
		activity	radio-activity	purity	purity	
1	anhydrous	203 µCi	95 µCi	95%	100%	45%
2	anhydrous	343 µCi	175 µCi	100%	100%	51%
3	anhydrous	293 µCi	152 µCi	99%	100%	51%

RCY = 49 ± 3% (*n* = 3)

entry	PhCl	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
Jan 19			radio-activity	purity	purity	
1	water saturated	478 µCi	234 µCi	100%	100%	49%
2	water saturated	551 µCi	266 µCi	95%	91%	44%
3	water saturated	490 µCi	235 µCi	99%	100%	47%

RCY = $47 \pm 2\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

[¹⁸F]5-Difluoromethyl-2-methylbenzo[*d*]thiazole ([¹⁸F]3n)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2n** (2.9 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
,	activity	radio-activity	purity	purity	
1	491 µCi	195 µCi	94%	95%	37%
2	444 µCi	173 µCi	96%	97%	37%
3	421 µCi	160 µCi	95%	95%	36%

RCY = 37 ± 1% (*n* = 3)

Radio HPLC chromatogram: Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 60% CH₃CN, 40% 0.1 M NH_4 ·HCO₂ (aq) Flow rate: 1 mL/min

Figure S15. Co-injection radio HPLC chromatogram of [¹⁸F]3n

[¹⁸F]3-Difluoromethylpyridine ([¹⁸F]3o)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2o** (2.2 mg, 10 μ mol) and *N*bromophthalimide (2 mg) was added chlorobenzene (0.2 mL). Then solution A (20 μ L) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 μ L) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridgeand eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	465 µCi	212 µCi	99%	100%	45%
2	524 µCi	200 µCi	99%	100%	38%
3	640 µCi	244 µCi	99%	100%	38%

RCY = $40 \pm 3\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 30% CH₃CN, 70% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S16. Co-injection radio HPLC chromatogram of [¹⁸F]30

The radioactivity balance of ¹⁸F-labeling was measured. No significant volatile byproducts were detected.

entry	Initial radio-	[¹⁸ F]30	Radioactivity	Total	Activity decay-
	activity		remained in	measured	corrected to
	(t=0 min)		vial, cartridge	radioactivity	t=0 min
			and syringe		
1	140 µCi	58 µCi	60 µCi	118 µCi	138 µCi
2	744 µCi	268 µCi	362µCi	630 µCi	738 µCi
3	671 µCi	249 µCi	318 µCi	567 µCi	664 µCi

[¹⁸F]3-Difluoromethylquinoline ([¹⁸F]3p)

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **2p** (2.7 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
y	activity	radio-activity	purity	purity	
1	209 µCi	109 µCi	99%	100%	52%
2	214 µCi	100 µCi	99%	100%	46%
3	215 µCi	95 µCi	100%	100%	44%

RCY = $47 \pm 3\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 50% CH₃CN, 50% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S17. Co-injection radio HPLC chromatogram of [¹⁸F]3p

[¹⁸F]Difluoromethyl-fenofibrate

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **S2** (4.6 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	554 µCi	285 µCi	100%	100%	51%
2	489 µCi	216 µCi	100%	100%	44%
3	602 µCi	270 µCi	100%	100%	45%

RCY = $47 \pm 3\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 70% CH₃CN, 30% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S18. Co-injection radio HPLC chromatogram of [¹⁸F]CHF₂-fenofibrate

[¹⁸F]Difluoromethyl-DAA1106

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **S3** (5.1 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	542 µCi	171 µCi	100%	96%	30%
2	498 µCi	215 µCi	97%	98%	42%
3	442 µCi	158 µCi	99%	100%	35%

RCY = $36 \pm 5\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S19. Co-injection radio HPLC chromatogram of [18F]CHF2-DAA1106

[¹⁸F]Difluoromethyl-estrone

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **S4** (3.9 mg, 10 µmol) and *N*bromophthalimide (2 mg) was added benzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 60 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridgeand eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	616 µCi	122 µCi	94%	60%	12%
2	643 µCi	130 µCi	94%	53%	11%
3	670 µCi	122 µCi	90%	55%	10%

RCY = 11 ± 1% (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 80% CH₃CN, 20% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S20. Co-injection radio HPLC chromatogram of [¹⁸F]CHF₂-estrone

[¹⁸F]Difluoromethyl-claritin

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **S5** (4.8 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 60 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	515 µCi	190 µCi	94%	55%	20%
2	729 µCi	243 µCi	98%	72%	24%
3	647 µCi	173 µCi	98%	75%	20%

RCY = $21 \pm 2\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S21. Co-injection radio HPLC chromatogram of [18F]CHF2-claritin

[¹⁸F]Difluoromethyl-analepticon

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **S6** (3.4 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
cy	activity	radio-activity	purity	purity	
1	880 µCi	115 µCi	99%	90%	12%
2	885 µCi	90.5 µCi	98%	87%	9%
3	768 µCi	98.4 µCi	99%	86%	11%

RCY = $11 \pm 1\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S22. Co-injection radio HPLC chromatogram of [¹⁸F]CHF₂-analepticon

[¹⁸F]Difluoromethyl-fluoxetine

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **S7** (4.6 mg, 10 µmol) and *N*bromophthalimide (2.0 mg) was added benzene (0.2 mL). Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 60 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical purity and product identity. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.
entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	482 µCi	145 µCi	96%	65%	20%
2	410 µCi	120 µCi	98%	60%	18%
3	739 µCi	175 µCi	96%	58%	14%

RCY = $17 \pm 2\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 80% CH₃CN, 20% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S23. Co-injection radio HPLC chromatogram of [¹⁸F]CHF₂-fluoxetine

[¹⁸F]Difluoromethyl-SC-58125

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **S8** (5.0 mg, 10 μ mol) and *N*bromophthalimide (2.0 mg) was added chlorobenzene (0.2 mL). Then solution A (20 μ L) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 μ L) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical yield, purity and product identity respectively. The

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
entry	activity	radio-activity	purity	purity	
1	770 µCi	379 µCi	99%	100%	49%
2	732 µCi	346 µCi	99%	100%	47%
3	700 µCi	315 uCi	99%	100%	45%

radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

RCY = 47 ± 2% (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 70% CH₃CN, 30% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S24. Co-injection radio HPLC chromatogram of [18F]CHF2-SC-58125

[¹⁸F]4-Morpholinomethyl-difluoromethylbenzene ([¹⁸F]3q)

Compound **2q** (mg, 10 µmol, 1.0 equiv.) was dissolved in dry THF (0.25 mL). LiHMDS (1.0 M in THF, 12 µL, 12 µmol, 1.2 equiv.) was added at -78 °C, and then the reaction mixture was stirred for 45 min. A solution of NBS (1.8 mg, 10 µmol, 1.0 equiv.) in THF (0.1 mL) was added. The reaction mixture was stirred at -78 °C for 45 min, and evaporated under vacuum at room temperature. Toluene (0.4 mL) was added and the mixture was filtered through glass microfibre into a 1-dram (4 mL) glass vial and eluted with toluene (2 × 0.4 mL). The filtrate was evaporated under reduced pressure. TEAB (3.0 mg) and chlorobenzene (0.2 mL) were added into the vial. Then solution A (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added,

and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2×0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical yield, purity and product identity respectively. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	
1	765 µCi	205 µCi	90%	75%	20%
2	802 µCi	202 µCi	93%	72%	18%
3	642 µCi	163 µCi	91%	71%	18%

RCY = 19 ± 1% (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S25. Co-injection radio HPLC chromatogram of [¹⁸F]3q

[¹⁸F]Hydroquinidine 4-difluoromethylbenzoate

Compound S9 (5.7 mg, 10 µmol, 1.0 equiv.) was dissolved in dry THF (0.25 mL). LiHMDS (1.0 M in THF, 12

 μ L, 12 µmol, 1.2 equiv.) was added at -78 °C, and then the reaction mixture was stirred for 45 min. A solution of NBS (1.8 mg, 10 µmol, 1.0 equiv.) in THF (0.1 mL) was added. The reaction mixture was stirred at -78 °C for 45 min, and evaporated under vacuum at room temperature. Toluene (0.4 mL) was added and the mixture was filtered through glass microfibre into a 1-dram (4 mL) glass vial and eluted with toluene (2 × 0.4 mL). The filtrate was evaporated under reduced pressure. TEAB (3.0 mg) and chlorobenzene (0.2 mL) were added into the vial. Then solution A (20 μ L) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 μ L) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled down to room temperature and added MeCN (0.4 mL). The mixture was filtered through light silica cartridge and eluted with MeCN (2 × 0.8 mL). The radioactivity of the combined filtrate was measured to calculate the radiochemical yield. An aliquot from combined filtrate was removed and analyzed by radio TLC and HPLC for radiochemical yield, purity and product identity respectively. The radiochemical yield was corrected by the radiochemical purity, the lower one of radio TLC or HPLC.

entry	Initial radio-	Collected	Radio-TLC	Radio-HPLC	RCY
	activity	radio-activity	purity	purity	_
1	636 µCi	214 µCi	90%	95%	30%
2	571 µCi	147 µCi	88%	90%	23%
3	544 µCi	166 µCi	85%	91%	26%

RCY = $26 \pm 3\%$ (*n* = 3)

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S26. Co-injection radio HPLC chromatogram of [¹⁸F]CHF₂-hydroquinidine-benzoate

HPLC Separation

[¹⁸F]Fluoride was prepared for radiofluorination by the following method: ¹⁸F-fluoride aqueous solution was

loaded onto a Sep-Pak[®] QMA cartridge. The cartridge was eluted with a solution of tetraethylammonium bicarbonate (TEAB, 2 mg) in acetonitrile and water (1 mL, v/v 7:3). The [¹⁸F]TEAF/TEAB solution was collected in a V-shaped vial and sealed with a teflon-lined septum. The vial was heated to 110 °C while nitrogen gas was passed through a P_2O_5 -DrieriteTM column followed by a vented needle. When no liquid was visible in the vial, it was removed from heat, anhydrous acetonitrile (1 mL) was added, and the heating was resumed until dryness. This step was repeated an additional two times. The vial was then cooled down to room temperature under nitrogen flow (10 mL/min). The contents were redissolved in the anhydrous acetonitrile (20 μ L, solution B).

To a 1-dram (4 mL) glass vial containing TEAB (1.5 mg), precursor **2** (10 µmol) and *N*-bromophthalimide (2 mg) was added chlorobenzene (0.2 mL). Then solution B (20 µL) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled to room temperature. The reaction mixture was loaded on a light silica cartridge. Hexane (0.5 mL) was added into the reaction vessel, and the formed mixture was used to wash the silica cartridge. The silica cartridge was dried by nitrogen gas for 10 seconds, and then eluted with MeCN (2 x 1 mL). 0.1 M NH₄·HCO₂ aqueous solution (1 mL) was added into the combined MeCN filtrate, and the formed solution was collected to purification by semi-preparative HPLC. The fraction corresponding to radiolabeled product was collected and was measured to calculate the radiochemical yield.

Compound	Decay-corrected RCY (SPE)	Decay-corrected RCY (HPLC)
[¹⁸ F]Difluoromethyl-SC-58125	55%	51%
[¹⁸ F]6-Difluoromethylquinoline	57%	57%
[¹⁸ F]Difluoromethyl-fenofibrate	55%	54%

Table S3

[¹⁸F]6-Difluoromethylquinoline ([¹⁸F]3m)

To a 1-dram (4 mL) glass vial containing TEAB (1.5 mg), precursor **2m** (10 µmol, 2.7 mg) and *N*bromophthalimide (2 mg) was added chlorobenzene (0.2 mL). Then solution B (20 µL, 2.08 mCi) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled to room temperature. The reaction mixture was loaded on a light silica cartridge. Hexane (0.5 mL) was added into the reaction vessel, and the formed mixture was used to wash the silica cartridge. The silica cartridge was dried by nitrogen gas for 10 seconds, and then eluted with MeCN $(2 \times 1 \text{ mL})$. 0.1 M NH₄·HCO₂ aqueous solution (1 mL) was added into the combined MeCN filtrate, and the formed solution was subjected to purification by semi-preparative HPLC. The fraction corresponding to radiolabeled product was collected and was measured to contain 0.892 mCi.

Initial radio- activity	[¹⁸ F]3m	RCY (HPLC)	Time in total	Decay-corrected RCY (HPLC)
2.08 mCi	0.89 mCi	43%	45 min	57%

Radio HPLC chromatogram:

Column: XBridge Shield RP 18 3.5 µm 100 × 4.6 mm

```
Mobile phase: 25% CH_3CN, 75% 0.1 M \rm NH_4{\cdot}HCO_2\,(aq)
```

Flow rate: 1 mL/min

Figure S27. HPLC chromatogram (XBridge) of [¹⁸F]6-difluoromethylquinoline

Radio HPLC chromatogram:

Column: Synergi 4u Hydro-RP 80A 4 μ m 150 × 4.6 mm Mobile phase: 40% CH₃CN, 60% 0.1 M NH₄·HCO₂ (aq) Flow rate: 1 mL/min

Figure S28. HPLC chromatogram (Synergi) of [¹⁸F]6-difluoromethylquinoline

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 50% CH₃CN, 50% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

[¹⁸F]Difluoromethyl-fenofibrate

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor **S2** (10 μ mol, 4.6 mg) and *N*bromophthalimide (2 mg) was added chlorobenzene (0.2 mL). Then solution A (20 μ L, 3.37 mCi) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 μ L) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled to room temperature. The reaction mixture was loaded on a light silica cartridge. Hexane (0.5 mL) was added into the reaction vessel, and the formed mixture was used to wash the silica cartridge. The silica cartridge was dried by nitrogen gas for 10 seconds, and then eluted with MeCN (2 x 1 mL). 0.1 M NH₄·HCO₂ aqueous solution (1 mL) was added into the combined MeCN filtrate, and the formed solution was subjected to purification by semi-preparative HPLC. The fraction corresponding to radiolabeled product was collected and was measured to contain 1.32 mCi.

Initial radio-	[¹⁸ F]Difluoromethyl-	RCY (HPLC)	Time in total	Decay-corrected
activity	fenofibrate			RCY (HPLC)
3.37 mCi	1.32 mCi	39%	50 min	54%

Radio HPLC chromatogram:

Column: XBridge Shield RP 18 3.5 µm 100 × 4.6 mm

Mobile phase: 45% CH₃CN, 55% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S30. HPLC chromatogram (XBridge) of [¹⁸F]difluoromethyl-fenofibrate

Radio HPLC chromatogram:

Column: Synergi 4u Hydro-RP 80A 4 μ m 150 × 4.6 mm Mobile phase: 65% CH₃CN, 35% 0.1 M NH₄·HCO₂ (aq) Flow rate: 1 mL/min

Figure S31. HPLC chromatogram (Synergi) of [¹⁸F]difluoromethyl-fenofibrate

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 70% CH₃CN, 30% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S32. HPLC chromatogram (Luna) of [¹⁸F]difluoromethyl-fenofibrate

[¹⁸F]Difluoromethyl-SC-58125

To a 1-dram (4 mL) glass vial containing TEAB (3.0 mg), precursor S8 (10 µmol, 5 mg) and N-

bromophthalimide (2 mg) was added chlorobenzene (0.2 mL). Then solution A (20 μ L, 3.77 mCi) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 μ L) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled to room temperature. The reaction mixture was loaded on a light silica cartridge. Hexane (0.5 mL) was added into the reaction vessel, and the formed mixture was used to wash the silica cartridge. The silica cartridge was dried by nitrogen gas for 10 seconds, and then eluted with MeCN (2 x 1 mL). 0.1 M NH₄·HCO₂ aqueous solution (1 mL) was added into the combined MeCN filtrate, and the formed solution was subjected to purification by semi-preparative HPLC. The fraction corresponding to radiolabeled product was collected and was measured to contain 1.39 mCi.

Initial radio- activity	[¹⁸ F]Difluoromethyl- SC-58125	RCY (HPLC)	Time in total	Decay-corrected RCY (HPLC)
3.77 mCi	1.39 mCi	37%	50 min	51%

Radio HPLC chromatogram:

Column: XBridge Shield RP 18 3.5 µm 100 × 4.6 mm

Mobile phase: 50% CH₃CN, 50% 0.1 M NH₄·HCO₂ (aq)

Flow	rate:	1	mL	/min
------	-------	---	----	------

Radio HPLC chromatogram:

Column: Synergi 4u Hydro-RP 80A 4 μ m 150 × 4.6 mm Mobile phase: 50% CH₃CN, 50% 0.1 M NH₄·HCO₂ (aq) Flow rate: 1 mL/min

Figure S34. HPLC chromatogram (Synergi) of [18F]difluoromethyl-SC-58125

Radio HPLC chromatogram:

Column: Luna 5u C18 100 Å 250 × 4.6 mm

Mobile phase: 60% CH₃CN, 40% 0.1 M NH₄·HCO₂ (aq)

Flow rate: 1 mL/min

Figure S35. Luna HPLC chromatogram of [¹⁸F]difluoromethyl-SC-58125

Specific Activity of [¹⁸F]3m (General Method)

To a 1-dram (4 mL) glass vial containing TEAB (1.5 mg), precursor **2m** (10 μ mol, 2.7 mg) and *N*bromophthalimide (2 mg) was added chlorobenzene (0.2 mL). Then solution B (20 μ L, 2.08 mCi) was added and radioactivity of the mixture was measured. The reaction vessel was heated at 100 °C for 5 min. After that, aqueous KOH solution (45 w%, 40 μ L) was added, and the mixture was heated at 100 °C for 15 min. The reaction vessel was cooled to room temperature. The reaction mixture was loaded on a light silica cartridge. Hexane (0.5 mL) was added into the reaction vessel, and the formed mixture was used to wash the silica cartridge. The silica cartridge was dried by nitrogen gas for 10 seconds, and then eluted with MeCN (2 x 1 mL). 0.1 M NH₄·HCO₂ aqueous solution (1 mL) was added into the combined MeCN filtrate, and the formed solution was subjected to purification by semi-preparative HPLC. The fraction corresponding to radiolabeled product was collected and was measured to contain 0.892 mCi. An aliquot (20 μ L) was injected to analytical radio-HPLC and specific activity (0.49 mCi/µmol) was calculated based on mass calibration curve.

Analytical HPLC conditions:

Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 50% CH₃CN, 50% 0.1 M NH_4 ·HCO₂ (aq) Flow rate: 1 mL/min

Figure S36. HPLC chromatogram of [¹⁸F]6-difluoromethylquinoline

Figure S37. Calibration curve of 6-difluoromethylquinoline (3m)

Improvement of Specific Activity

 $[^{18}$ F]Fluoride was prepared for radiofluorination by the following method: Sep-Pak[®] QMA cartridge was washed with an aqueous KOMs solution (0.2 M, 1 mL) and water (10 mL). ¹⁸F-fluoride aqueous solution was loaded onto the cartridge. The cartridge was washed with dry MeOH (1 mL), and then eluted with a solution of tetrabutylammonium methanesulfonate (TBAOMs, 10 mg) in methanol (0.6 mL). The $[^{18}$ F]TBAF/TBAOMs methanol solution was collected in a V–shaped vial and sealed with a teflon-lined septum. The vial was heated to 100 °C while nitrogen gas was passed through a P_2O_5 -DrieriteTM column followed by a vented needle. When no liquid was visible in the vial, it was removed from heat. The vial was then cooled down to room temperature under nitrogen flow (10 mL/min). The contents were dissolved in the anhydrous chlorobenzene (0.2 mL, solution c).

To a 1-dram (4 mL) glass vial containing precursor **2m'** (0.17 mg, 0.5 µmol) was added the solution c (0.2 mL) and DIPEA (5.0 µL). The radioactivity of the mixture was measured. The reaction vessel was heated at 80 °C for 10 min. After that, aqueous KOH solution (45 w%, 40 µL) was added, and the mixture was heated at 100 °C for 10 min. The reaction vessel was cooled to room temperature. The reaction mixture was loaded on a light silica cartridge. Hexane (0.5 mL) was added into the reaction vessel, and the formed mixture was used to wash the silica cartridge. The silica cartridge was dried by nitrogen gas for 10 seconds, and then eluted with MeCN (2 x 1 mL). 0.1 M NH₄·HCO₂ aqueous solution (1 mL) was added into the combined MeCN filtrate, and the formed solution was subjected to purification by semi-preparative HPLC. An aliquot (20 µL or

40 µL) was injected to analytical radio-HPLC and specific activity was calculated based on mass calibration curve.

entry	Initial radio-activity	[¹⁸ F]3m	RCY (HPLC)	SA
1	12 mCi	1.9 mCi	16%	38 mCi/µmol
2	18 mCi	1.3 mCi	7%	64 mCi/µmol
3	39 mCi	3.1 mCi	8%	81 mCi/µmol

Analytical HPLC conditions:

Column: Luna 5u C18 100 Å 250 × 4.6 mm Mobile phase: 45% CH₃CN, 55% 0.1 M NH₄·HCO₂(aq) Flow rate: 1.0 mL/min

Figure S38. HPLC chromatogram of [¹⁸F]6-difluoromethylquinoline (entry 3)

References

- 1. Yin, J.; Zarkowsky, D. S.; Thomas, D. W.; Zhao, M. M.; Huffman, M. A. Org. Lett. 2014, 6, 1465.
- 2. Ge, S.; Chaładaj, W.; Hartwig, J. J. Am. Chem. Soc. 2014, 136, 4149.
- 3. Gu, Y.; Leng, X.; Shen, Q. Nat. Commun. 2014, 5, 5405.
- 4. Rahman, O.; Långström, B. J. Labelled Comp. Radiopharm. 2007, 50, 1192.
- 5. Zhao, Y.; Hu, J. Angew. Chem. Int. Ed. 2012, 51, 1033.
- 6. Ivashkin, P.; Lemonnier, G.; Cousin, J.; Grégoire, V.; Labar, D.; Jubault, P.; Pannecoucke, X. *Chem.–Eur. J.* **2014**, *20*, 9514.

7. Uddin, Md. J.; Crewst, B. C.; Ghebreselasiet, K.; Tantawy, M. N.; Marnett, L. J. ACS Med. Chem. Lett. 2011, *2*, 160.

¹H NMR of (Methylenedioxy)phenyl-fluoroacetophenone (2a)

¹⁹F NMR of (Methylenedioxy)phenyl-fluoroacetophenone (2a)

¹³C NMR of (Methylenedioxy)phenyl-fluoroacetophenone (2a)

¹⁹F NMR of (4-*N*-Boc-methylamino)phenyl-fluoroacetophenone (2b)

¹³C NMR of (4-*N*-Boc-methylamino)phenyl-fluoroacetophenone (2b)

¹H NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2c)

¹⁹F NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2c)

				7	

¹³C NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2c)

¹H NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2d)

¹⁹F NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2d)

¹³C NMR of (3-Hydroxypropanyl)phenyl-fluoroacetophenone (2d)

¹H NMR of 1-Bromo-3-chloro-5-(phenylethynyl)benzene (S11)

¹³C NMR of 1-Bromo-3-chloro-5-(phenylethynyl)benzene (S11)

¹H NMR of (3-Phenylacetylenyl-5-chlorophenyl)-fluoroacetophenone (2e)

¹⁹F NMR of (3-Phenylacetylenyl-5-chlorophenyl)-fluoroacetophenone (2e)

													_
-	*****	prima.tate				1			*****		Trateria	141+1-parreete	
20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	DDE

¹³C NMR of (3-Phenylacetylenyl-5-chlorophenyl)-fluoroacetophenone (2e)

¹H NMR of (4-Pyrazolyl)phenyl-fluoroacetophenone (2f)

¹⁹F NMR of (4-Pyrazolyl)phenyl-fluoroacetophenone (2f)

¹³C NMR of (4-Pyrazolyl)phenyl-fluoroacetophenone (2f)

¹⁹F NMR of (3-Morpholino)phenyl-fluoroacetophenone (2g)

¹³C NMR of (3-Morpholino)phenyl-fluoroacetophenone (2g)

¹H NMR of (3-Nitro)phenyl-fluoroacetophenone (2h)

¹⁹F NMR of (3-Nitro)phenyl-fluoroacetophenone (2h)

¹³C NMR of (3-Nitro)phenyl-fluoroacetophenone (2h)

¹H NMR of Fluoren-9-onyl-fluoroacetophenone (2i)

¹⁹F NMR of Fluoren-9-onyl-fluoroacetophenone (2i)

	 hundare	ta da ta da ta	 	 translaum 	 	1919017111	tratcheau	dara daranda	

¹³C NMR of Fluoren-9-onyl-fluoroacetophenone (2i)

¹H NMR of (4-Ethyl-carboxyl)phenyl-fluoroacetophenone (2j)

¹⁹F NMR of (4-Ethyl-carboxyl)phenyl-fluoroacetophenone (2j)

¹³C NMR of (4-Ethyl-carboxyl)phenyl-fluoroacetophenone (2j)

¹H NMR of (3-Dioxolanyl)phenyl-fluoroacetophenone (S1)

¹⁹F NMR of (3-Dioxolanyl)phenyl-fluoroacetophenone (S1)

¹³C NMR of (3-Dioxolanyl)phenyl-fluoroacetophenone (S1)

¹H NMR of (3-Formyl)phenyl-fluoroacetophenone (2k)

¹⁹F NMR of (3-Formyl)phenyl-fluoroacetophenone (2k)

¹³C NMR of (3-Formyl)phenyl-fluoroacetophenone (2k)

¹H NMR of (2-Chlorophenylmethanonyl)phenyl-fluoroacetophenone (2I)

¹⁹F NMR of (2-Chlorophenylmethanonyl)phenyl-fluoroacetophenone (2I)

¹³C NMR of (2-Chlorophenylmethanonyl)phenyl-fluoroacetophenone (2I)

¹H NMR of Quinoline-6-fluoroacetophenone (2m)

¹⁹F NMR of Quinoline-6-fluoroacetophenone (2m)

¹³C NMR of Quinoline-6-fluoroacetophenone (2m)

¹H NMR of (2-Methylbenzo[*d*]thiazol-5-yl)-fluoroacetophenone (2n)

¹⁹F NMR of (2-Methylbenzo[*d*]thiazol-5-yl)-fluoroacetophenone (2n)

¹³C NMR of (2-Methylbenzo[*d*]thiazol-5-yl)-fluoroacetophenone (2n)

¹H NMR of Pyridine-3-fluoroacetophenone (20)

¹⁹F NMR of Pyridine-3-fluoroacetophenone (20)

¹³C NMR of Pyridine-3-fluoroacetophenone (20)

¹H NMR of Quinoline-3-fluoroacetophenone (2p)

¹⁹F NMR of Quinoline-3-fluoroacetophenone (2p)

			1	

¹³C NMR of Quinoline-3-fluoroacetophenone (2p)

¹H NMR of (3-Morpholinomethyl)phenyl-fluoroacetophenone (2q)

¹⁹F NMR of (3-Morpholinomethyl)phenyl-fluoroacetophenone (2q)

¹³C NMR of (3-Morpholinomethyl)phenyl-fluoroacetophenone (2q)

¹H NMR of Mesitylenyl-fluoroacetophenone (2s)

¹⁹F NMR of Mesitylenyl-fluoroacetophenone (2s)

¹³C NMR of Mesitylenyl-fluoroacetophenone (2s)

¹H NMR of (3-Chloro)phenyl-fluoroacetophenone (S2)

¹⁹F NMR of (3-Chloro)phenyl-fluoroacetophenone (S2)

¹³C NMR of (3-Chloro)phenyl-fluoroacetophenone (S2)

¹⁹F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-fenofibrate (S2)

¹³C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-fenofibrate (S2)

¹H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-DAA1106 (S3)

¹⁹F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-DAA1106 (S3)

¹³C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-DAA1106 (S3)

¹H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-estrone (S4)

¹⁹F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-estrone (S4)

¹³C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-estrone (S4)

¹H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-claritin (S5)

¹⁹F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-claritin (S5)

¹H NMR of 4-Bromo-*N*,*N*-diethyl-3-methoxybenzamide (S12)

¹³C NMR of 4-Bromo-*N*,*N*-diethyl-3-methoxybenzamide (S12)

¹H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-analepticon (S6)

¹⁹F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-analepticon (S6)

¹³C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-analepticon (S6)

¹H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-*N*-Boc-fluoxetine (S7)

¹⁹F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-*N*-Boc-fluoxetine (S7)

¹³C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-*N*-Boc-fluoxetine (S7)

¹H NMR of (1-Fluoro-2-oxo-2-phenylethyl)-SC-58125 (S8)

¹⁹F NMR of (1-Fluoro-2-oxo-2-phenylethyl)-SC-58125 (S8)

¹³C NMR of (1-Fluoro-2-oxo-2-phenylethyl)-SC-58125 (S8)

¹H NMR of Hydroquinidine 4-(1-Fluoro-2-oxo-2-phenylethyl)-benzoate (S9)

CDCl₃, 55 °C

¹⁹F NMR of Hydroquinidine 4-(1-Fluoro-2-oxo-2-phenylethyl)-benzoate (S9)

¹³C NMR of Hydroquinidine 4-(1-Fluoro-2-oxo-2-phenylethyl)-benzoate (S9)

¹H NMR of Phenyl-bromo-fluoroacetophenone (2r')

¹⁹F NMR of Phenyl-bromo-fluoroacetophenone (2r')

¹³C NMR of Phenyl-bromo-fluoroacetophenone (2r')

¹H NMR of Quinoline-6-bromo-fluoroacetophenone (2m')

¹⁹F NMR of Quinoline-6-bromo-fluoroacetophenone (2m')

¹³C NMR of Quinoline-6-bromo-fluoroacetophenone (2m')

¹H NMR of Difluoromethyl-benzodioxole (3a)

¹⁹F NMR of Difluoromethyl-benzodioxole (3a)

¹³C NMR of Difluoromethyl-benzodioxole (3a)

¹H NMR of 3-Cyanocyclopropyl-difluoromethylbenzene (3c)

¹⁹F NMR of 3-Cyanocyclopropyl-difluoromethylbenzene (3c)

CDCl₃, 25 °C

a charachta a sta a s 20 -20 -100 -160 -220 -60 -80 -120 -140 -180 -200 ppm -40 0

¹³C NMR of 3-Cyanocyclopropyl-difluoromethylbenzene (3c)

CDCl₃, 25 °C

_CHF₂

¹⁹F NMR of 3-*Iso*propanolyl-difluoromethylbenzene (3d)

			-			

¹⁹F NMR of 3-Chloro-5-(phenylethynyl)-difluoromethylbenzene (3e)

¹³C NMR of 3-Chloro-5-(phenylethynyl)-difluoromethylbenzene (3e)

¹H NMR of 4-Pyrazolyl-difluoromethylbenzene (3f)

¹⁹F NMR of 4-Pyrazolyl-difluoromethylbenzene (3f)

¹³C NMR of 4-Pyrazolyl-difluoromethylbenzene (3f)

¹H NMR of 3-Morpholino-difluoromethylbenzene (3g)

¹⁹F NMR of 3-Morpholino-difluoromethylbenzene (3g)

¹³C NMR of 3-Morpholino-difluoromethylbenzene (3g)

¹H NMR of 2-Difluoromethylfluoren-9-one (3i)

¹⁹F NMR of 2-Difluoromethylfluoren-9-one (3i)

		d			

¹³C NMR of 2-Difluoromethylfluoren-9-one (3i)

¹H NMR of 2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone (3I)

¹⁹F NMR of 2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone (3I)

¹³C NMR of 2-Chlorophenyl-(4-difluoromethyl)phenyl-methanone (3I)

¹H NMR of 5-Difluoromethyl-2-methylbenzo[*d*]thiazole (3n)

¹⁹F NMR of 5-Difluoromethyl-2-methylbenzo[*d*]thiazole (3n)

¹³C NMR of 5-Difluoromethyl-2-methylbenzo[*d*]thiazole (3n)

¹H NMR of 3-Difluoromethylquinoline (3p)

¹⁹F NMR of 3-Difluoromethylquinoline (3p)

¹³C NMR of 3-Difluoromethylquinoline (3p)

¹H NMR of 4-Morpholinomethyl-difluoromethylbenzene (3q)

¹⁹F NMR of 4-Morpholinomethyl-difluoromethylbenzene (3q)

¹³C NMR of 4-Morpholinomethyl-difluoromethylbenzene (3q)

¹H NMR of Difluoromethyl-fenofibrate

¹⁹F NMR of Difluoromethyl-fenofibrate

¹³C NMR of Difluoromethyl-fenofibrate

¹H NMR of Difluoromethyl-DAA1106

¹⁹F NMR of Difluoromethyl-DAA1106

240

¹H NMR of Difluoromethyl-estrone

¹⁹F NMR of Difluoromethyl-estrone

¹³C NMR of Difluoromethyl-estrone

¹H NMR of Difluoromethyl-claritin

¹⁹F NMR of Difluoromethyl-claritin

¹³C NMR of Difluoromethyl-claritin

¹H NMR of Difluoromethyl-*N*-Boc-fluoxetine

¹⁹F NMR of Difluoromethyl-*N*-Boc-fluoxetine

¹³C NMR of Difluoromethyl-*N*-Boc-fluoxetine

¹H NMR of Difluoromethyl-SC-58125

¹⁹F NMR of Difluoromethyl-SC-58125

¹³C NMR of Difluoromethyl-SC-58125

¹H NMR of Hydroquinidine 4-difluoromethylbenzoate

¹⁹F NMR of Hydroquinidine 4-difluoromethylbenzoate

