
S1 Appendix  
   

A.   Data Analysis  
 

This S1 Appendix (Section A of Appendix) contains details on data analysis of the new results 

presented in the main text. For analysis of published data as discussed in the text to support 

robustness of the index IC see S3 Appendix. Data analysis of single-cell qPCR transcript expression 

was performed, if not stated otherwise, using R version 2.15.0 with several packages listed below.    

 

 

A.1. Data pre-processing overview 

In brief, pre-processing of single-cell RT-qPCR data involved multiple steps including data 

arrangement, false positives elimination, missing and off scale data corrections, calculation of 

median for 3 qPCR technical replicates, calculation of transcripts copy numbers relative to the 

background, and linear transformation of relative quantities of the transcripts. 

To allow for maximal comparability and compensation for potential readout variability, the 

material of individual cells originating from distinct subpopulations regarding treatments and time 

points was assigned in a systematic way to the spots on the BioTrove OpenArray (Life 

Technologies) plates to avoid local clustering. On each plate, additional negative template control 

(NTC), inter-run calibrator (IRC) controls and sorted 100-pooled cell samples were loaded (S8 

Fig). The resulting single-cell qPCR data (Cq values) were exported from the OpenArray qPCR 

analysis software as csv files and subsequently organized in Microsoft Excel spreadsheets with 

single-cell samples in rows and genes in columns. The amplification curves of all PCR reactions 

were first manually analyzed to remove anomalous curves and false positives. Next, the values of 

the three technical replicates were inspected and when not available replaced by “NA” (Not 

Available). To determine the offset of the data, we found experimentally that the Cq-value (cutoff 

of amplification signal) was not reliable. We therefore determined the limit of detection (LOD) for 

all investigated 19 genes as the lowest amount of target DNA that can be accurately and 

reproducibly quantified (S3 Table). In the final pre-processing step, the median of each gene in 

single-cell samples was calculated for the three technical replicates (S1 Table) and only consistent 

Cq values between 16-28 estimated from 100-cell sample data were used for the statistical analysis. 

Higher or lower Cq value were only accepted based on examination of the corresponding 

amplification curves where least 2 out of 3 technical replicates must exhibit consistent values.  

 

A.2. Data reassembly and expression conversion 

The pre-processed data (Biomark, Material and Methods) was further processed with R. Based on 

the unique labeling of the samples, first single-cells, controls and 100-cell data were separated and, 

when applicable, subsequently sorted with respect to the Sca1 (the progenitor marker)-based FACS 

classifier, treatment and time point. To convert Cq values into expression values, the measured Cq 

values were subtracted from the experimentally determined LODs resulting in Log2Expression 

(LOD-CqGOI=Gene of Interest). As a result, this calculation leads to a log expression where negative 

entities were set to zero, as suggested by the Fluidigm protocol [1]. To test if this procedure can 

induced artifacts in the correlation analysis, the negative entities were also replaced by small (< 5% 

of gene average) uniformly distributed random numbers. Neither this alternative treatment of 

negative values has shown any noticeable difference in the subsequent correlation analysis nor 

mutual information estimates. Therefore, negative values were set to zero for subsequent analysis. 

The processed data were then reassembled in various ways for the following analysis in accordance 

to the specific investigations. 
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A.3. Quality control 

To analyze inter-plate variability and any potential correlation induced by technical bias, the IRC 

controls of each gene were compared for all plates. The investigation exhibited no significant 

correlations within a plate and the inter-gene differences were up to 2 orders of magnitude larger 

than the inter-plate variability of the same gene (S 8A Fig). As a more rigorous and quantitative 

control for accuracy of the single-cell analysis, the measured expressions of sorted 100-cell samples 

were compared to the average expression of tens of single cells. This approach compares the 

experimental average scenario based on a potentially heterogeneous mixture of 100-cell samples 

to an analytic average of tens of individually quantified single cells. The comparisons agreed very 

well for all different treatments, and the corresponding Pearson’s correlation coefficients were 

always larger than R2 > 0.82 (minimum value of coefficient) with typical values being larger than 

R2 > 0.9 (average value of coefficient) (S 8B Fig). In summary, the quality control confirmed the 

high reproducibility and sensitivity of the single cell RT-qPCR platform, thereby ensuring that the 

expression data were of high quality without experimentally induced bias. In particular, the 

consistent IRC controls and the agreement between the 100-cell and single-cell averages 

demonstrated that (in a large majority of cases) a not-expressed gene within a single-cell is a real 

biological phenomenon and not caused by experimental detection issues. 

 

A.4. Correlation analysis 

To analyze inter- and intra-population relations between cells and genes (Fig 2 and 3), correlations 

were calculated with the R-function rcorr of the Hmisc package along with asymptotic P-values 

based on the sample size. For visualization and validation purposes, additional correlation 

investigations were performed using the pair.panels R-function of the psych package for scatterplot 

analysis. Final correlation plots were generated with the corrgram function.  

For the temporal analysis of gene-gene correlation behaviour during a differentiation process, 

only significant gene correlation with p-values < 0.01 were considered. The analysis was performed 

for each time point and treatment. The analysis was applied to both the average number of 

significant correlations and the average absolute value of significant correlations. The qualitative 

agreement of these analogous approaches indicates the stability of this analysis method.   

 

A.5. Principal Component Analysis for individual cells as statistical variables 

To visualize the differentiation process in the cell state space, principal component analysis (PCA) 

was performed on the processed single-cell gene expression data using the R-function “princomp”. 

A cell’s state is defined by a gene expression vector, which is composed of the set of the 19 gene 

expression values as its components, and thus would correspond to a point in the 19-dimensional 

state space. In brief, the PCA identifies the directions in this space along which the variation of 

expression is maximal [2]. The resulting directions called principal components (PCs) are linear 

combinations of genes where more informative genes contribute with larger weights to the linear 

combination. PCA leads to new orthogonal reference system where the first PCs (i.e. dimensions) 

explain the majority of observed variation and therefore allows for mapping the data from original 

high-dimensional space (where each gene defines a dimension) onto a new dimension-reduced 

space spanned by fewer variables (PCs). In this way, PCA can help in the visualization and 

interpretation of the high dimensional data. 

Since we are interested here in the transition of cells from the progenitor attractor state into the 

differentiated states, we adapted the classical PCA approach to temporal time series. Therefore, we 

determined the PCs and corresponding weights of genes for the subset of data that contains only 

cells in the assumed attractor states namely cells on day 0 and on day 6 treated with EPO and GM-

CSF/IL-3, respectively. This approach leads to a maximal separation of the assumed attractor states 

and the first three PC explain close to 80% of the variance (S4 Fig). Interestingly, by analyzing the 

resulting gene weights for the first three PCs revealed that this unbiased approach associates 

stemness genes with the progenitor cells, typical erythroid genes with the EPO treated cells and 
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myeloid related genes with the GM-CSF/IL-3 treatment (S4 Fig). Based on this consistent result, 

we then used the resulted attractor state space for the transition analysis by transforming cells of 

day 1 and day 3 into the same reference system. Therefore, the weights 𝑤𝑚
𝑖  of gene m to PC i 

determined by PCA of the attractor data subset were multiplied with the expression value 𝑥𝑚
𝑘  of 

individual cell k and gene m from time point day 1 and 3. This leads to corresponding 3 dimensional 

coordinates 𝐫𝑘 = (𝑟1
𝑘 , 𝑟2

𝑘 , 𝑟3
𝑘) with 𝑟𝑖 = ∑ 𝑤𝑚

𝑖  𝑥𝑚
𝑘

𝑚  for each cell k within the 3 dimensional 

attractor state space defined by the PCs of the attractor data set. Within the resulting Euclidian state 

space we can calculate consistent distances between attractors and corresponding variances that 

can be used for the transition analysis (Fig 2). 

 

A.6. Coefficient of Variation (CV) analysis 

To analyze the population heterogeneity in terms of gene expression variability we computed the 

Coefficient of Variation (CV, i.e., mean-normalized standard deviation) of the all gene expression 

values (across all genes) for each cell’s state vector. This represents an aggregated cell-state 

variable can serve as a quantity to assess the increase in cell-cell variability during a critical 

transition (see S2 Appendix).  

 

A.7.  Comparison between qPCR and RNA-seq for single cell transcript analysis  

The current gold standard method for whole-transcriptome in individual cell is widely assumed to 

be single-cell RNA-seq. However, this technology still suffers from technical limitations that 

makes it unsuited for the analysis of critical transitions that we seek because it demands higher 

accuracy and precision than descriptive studies. Moreover, as shown further below (Section C, and 

explained in the main text) there is no need, neither for statistics nor for formal reasons, to use the 

large number of transcripts the entire transcriptome provided by RNA-seq.  

Figure A-1. Comparison of scRNA-seq and sc-qPCR in the analysis of 48 genes. Two sets of 96 Individual cells were 
separately analysed using either method for the same set of 48 genes. X-axis is the expression value in qPCR and Y-axis 
is the expression value in RNA-seq. Each dot is a cell. For each gene, cells were ranked within each method to allow for 
direct comparison and values of cells of the same rank in each method graphed as dot plot based in the standard units 
for expression level in the respective method. a. Compilation of data of 46 (of the 48) genes in which qPCR 
outperformed scRNA-seq. Axis are in the units used routinely in the respective technologies (for qPCR, background was 
set at qt=25 cycles.)  b. Top-left panel: the case of genes for w hich scRNA-seq performed better; other panels: three 
random samples in which qPCR was more sensitive. Histograms of frequencies of cells in the respective ranks shown 
along the two axes. 
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The main limitation of RNA-seq is its low sensitive compared to qPCR when used for single-

cell transcript measurement. Published studies suggest that only ~10%, at best 40% of transcripts 

of a cell are captured –most likely due to the low efficiency of single-cell handling, lysis and reverse 

transcription (RT) [3-5]. This explains the vast blocks of ‘zero’-entries in the data matrix which 

can cause problems in integrated analyses of entire transcriptomes.  While qPCR suffers from part 

of the sane problems (sharing the steps up to RT) it has much less zero-entries due to higher 

sensitivity in detecting low-level transcripts. We performed a direct comparison by measuring 48 

transcripts in two sets of 100 iPS cells using either sc-RNAseq (transcriptome-wide cDNA library 

preparation using SMART-seq [4] in Fluidigm C1 followed by Illumina NextSeq for sequencing) 

or single-cell qPCR (FACS, pooled pre-amplification and qPCR in Biomark using Fluidigm’s 

VILO protocols). The Fig A-1 above shows that for 46 of the 48 genes examined, qPCR offered a 

substantially broader dynamic range that is approximately twice that of sc-RNA-seq, covering low 

level expression that is below detection in sc-RNA-seq (at 3-6M reads per cell). In one case qPCR 

did not perform and in another case (shown as subpanels in the Figure above) it exhibited saturation 

at high level expression where RNA-seq was still quantitative. Thus, given that the correlation 

depends upon the ‘range effect’ (see S2 Appendix, B.2.) and the dynamic range of transcript levels 

in scRNA-seq is narrow, it is clear that the latter is an inferior technology compared to sc-qPCR 

for our purpose. 

One reason for the higher sensitivity of qPCR for low-abundance transcripts may lie in the 

targeted preamplification that compensates for the low efficiency of the RT reaction which is 

further accentuated by the template-switch protocol used in current scRNA-seq library prep. In fact, 

internal tests of RNA-seq that employ a targeted amplification as used in qPCR achieved similar 

levels of sensitivity (unpublished observations).  

 

A.8. Statistical robustness of the index IC  (see also special analysis section C on other data) 

The following is a pedagogical dissection of one subset of the single-cell transcript data to 

demonstrate the statistics-based argument behind index IC and its robustness, as explained in 

Section B.2. of this Suppl. Information (Appendix S2).  

We focus on the time point when the cell population is in the attractor (=d0, untreated) to 

explain the data structure. This is an equilibrium state and the behavior of cells is straightforward: 

each cell’s gene expression is only exposed to random fluctuations around an expected steady-state 

gene expression level for each gene.  

In this state we expect that the numerator of IC (which summarizes the GENE-GENE 

correlations) is low because each gene fluctuates symmetrically around its characteristic “set point” 

due to gene expression noise, and thus it is uncorrelated to any other gene. As a consequence, the 

GENE-GENE correlations (positive and negative) have low absolute values [6]. In contrary, since 

each gene has a typical (state-defining) average expression value across all the cells, we do expect 

that, by the action of this BETWEEN-GENES variability in expression, the various cells will be 

very much (and only positively) correlated. The above condition corresponds to the elementary 

definition of the strength of correlation in linear models as the ratio of the variability between traits 

(e.g. gene expression values) and their variability within a group (e.g., of cells). 

It is then evident that the central influence on the index IC is NOT the NUMBER OF GENES 

taken into consideration but the fact that the differences of distinct genes in their values averaged 

over all cells (variability BETWEEN genes) are higher than their internal variance, i.e.  the same 

gene across all N cells (variability WITHIN genes). This is in fact the case, as the descriptive 

statistics over the 17 genes at equilibrium (for t = day 0) shows: 
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GENES #CELLS MEAN 
 

VARIANCE 

Gata1 150  5.7497  9.3804 

EpoR 150  1.807  10.629 

Eklf 150  3.2716  15.177 

Fog1 150  7.9945  14.469 

Hba-a1 150  5.9451  8.0083 

Scl 150  11.813  2.2295 

Fli1 150  5.5103  18.552 

Runx1 150  10.332  5.866 

Gata2 150  12.34  3.6827 

cMyb 150  11.034  5.6037 

ckit 150  11.224  5.826 

sfpi1 150  8.7699  7.0705 

CEBPa 150  0.2276  1.5689 

Gfi1 150  1.6146  9.5376 

cJun 150  0.6756  5.0336 

CD11b 150  1.7553  10.962 

Egr2 150  1.3159  8.3395 

   

Variance: 

18.95 

 Average: 

3.3491 

 

 

The BETWEEN-GENES variance for all genes (=variance of the ‘Mean’ column in the above 

table –the mean of a gene across all cells) is 18.95; on the other hand, the “WITHIN-GENE” 

variance averaged over all genes (=average of the ‘Variance’ column –the variance of a given gene 

across all cells) is 8.35. The ratio of variance ‘BETWEEN’ and variance ‘WITHIN’ the GENES, 

18.95/8.35, is sufficiently high (far away form 1.0) and is the basis of the high “CELL-CELL” 

correlation (building on the high BETWEEN-GENES variance) and the low “GENE-GENE” 

correlation (building on the low WITHIN-GENES variance) in the attractor state that serves as a 

starting point of the index IC.  

The statistical significance can be understood as follows: Given that a correlation depends on 

the range of explored variation and few genes spanning a high variation of expression give rise to 

higher correlation than many genes with very similar expression values, it is evident from the above 

that a range spanning a huge expression space going from 0.23 to 12.3 (in qt = log2 units, see Table 

above) affords optimal condition for estimating the profile of cell-cell correlations. This well-

known strict dependence of correlation from variance is the ‘range (restriction) effect’ and is 

explained in more detail in [7] (see paragraph ‘basic pillars of linear correlation’) and used in [8].  

The data in the table above tells us that these 17 genes, not because they are 17 but because 

they have a very high BETWEEN-GENES variability with respect to WITHIN-GENE variability 

provide a solid basis for the analysis of correlations and their changes. (The reason for these 

changes is formally demonstrated in Supplementary text S2.). Thus, from this elementary 

consideration alone there is no need to analyze more genes because the 17 genes covered sufficient 

variability. On the other hand, for random noise to produce the results it would have to meet the 

two orthogonal requirements at once: increasing BETWEEN-GENES variability (in each cell) 

while at the same time decreasing the WITHIN-GENE variability (across all the cells). 

We can show now that this leads to statistically robust correlation coefficients for IC.  As 

expected from the above discussion and the main text, in the stable attractor (day = 0) the average 

CELLS-CELL correlation (correlation coefficients for all pairs of cells, then averaged) was 

maximal with a value of r = 0.70, while the average GENE-GENE correlation was minimal, at r = 

0.10. To get a ‘probabilistic’ appreciation of the ratio as defined by IC we used the data matrix X(T) 

of the same time point and generated 30 randomly shuffled versions of it. We shuffled the internal 

order of the columns (genes), an operation that maintained both mean and standard deviation of 

GENES but destroyed any CELL-CELL correlation not dependent from the pure effect of 

BETWEEN GENES variability. The maintaining of the average value of expression of each gene 

(column) is the only ‘biologically motivated’ constraint and permissive given the ubiquitously 

observed near-unity correlation between genome-wide expression profiles of independent samples 

of the same kind of tissue (but see discussion the example in Section C. for heterogeneous tumor 
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cells). The 30 different simulations were evaluated for both average GENES-GENE correlation 

and CELL-CELLS correlation, across the 30 samples, revealed very robust results: 

 
    Average Std. Dev. Std. Err. 

CELL-CELL Correlation:    0.691  0.004  0.0008 

GENE-GENE Correlation:    0.063 0. 0016  0.0003 
 

This implies that at in the attractor state we have an average value of the index IC equal to 

0.063/0.691 = 0.09 –similar to the one obtained for the entire set of data at day 0 in Fig. 2 of main 

text.  In the results we found an increase of IC to 0.4 (Fig. 2 of the manuscript) and thus a signature 

of a critical transition; this value is far outside the Standard Error for IC and corresponds to a p < 

10-10. (This is analysis is equivalent to the bootstrap analysis performed in the manuscript.) 
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