
S2 Appendix    
 

B.   Derivations and Explanation 
  

This second Appendix explains the idea behind critical state transitions in a statistical ensemble of 

high-dimensional dynamical systems. Section B1 summarizes the phenomenology and basic 

formalism underlying the index IC; section B2 presents a plausible argumentation to explain the 

index IC based on elementary statistics; and section B3 is a mathematical derivation of the IC from 

the perspective of dynamical systems theory. Experimental biologists should at least read B1, the 

more quantitatively inclined, also B2, while B3 is for theorists. The thinking is still developing and 

feedback, with corrections or extensions are welcome.  

 

 

B.1. Phenomenological signature of critical state transition for a high-dimensional system 
 

We consider here the state Sk of a cell k = 1, 2, ..n as generated by a dynamical system, the gene 

regulatory network (GRN) encompassing the m=17 genes, and that hence the observable state Sk  

of a cell  k, Sk =[ 𝑥1
𝑘 , 𝑥2

𝑘 , . . 𝑥𝑚
𝑘 ], maps to a point in the m-dimensional state space spanned by the 

m=17genes studied, as discussed in conjunction with Fig 1. Herein 𝑥𝑖
𝑘 (i=1,2, ..m=17), referred to 

as “gene expression value” throughout, is the cellular abundance of transcript i in Log2Expression 

units (see B.2), as measured by qPCR  for all the m=17 genes in cell k.   

However, unlike in typical dynamical systems models, we deal with an ensemble of n systems, 

that is, although cells are nominally identical, they differ at any moment in time t in their gene 

expression profiles (m state variables) due to gene expression noise (stochastic fluctuation in x at 

various time scales not further considered here). With regard to experimental reality, we can 

measure the statistical distribution of Sk as population “snapshot” at single-cell resolution but we 

cannot monitor the very same ensemble member (cell) over time.  

While the deterministic dynamics of a cell is still governed by an ODE system �̇�(𝑡) = 𝑭(𝒙(𝑡)) 

that captures the regulatory interactions of the GRN through which xi influence each other 

according to the rule defined by the GRN, we consider the form of F(x) unknown and currently 

unknowable, and is not further discussed. By contrast, we are concerned with the observable Sk(t) 

= xk(t) for the cell k where t is a measurement point of a given (sub)population in a particular culture 

condition treatment at a given time.  

As the multipotent progenitor (untreated EML) cells commit to a lineage, the “quasi-potential 

landscape” U(x) [1], which manifests the regulatory constraints imposed by the GRN on the 

collective change of the gene expression values in each cell, must change such that the attractor of 

the progenitor state is destabilized and undergoes a critical state transition (possibly, a pitch-fork 

type bifurcation [2]. In this process cells exit the destabilized progenitor state, which at some point 

abruptly vanishes, and they gain access to (new or newly accessible) attractor states that establish 

the stable gene expression patterns of the committed erythroid and the myeloid cells, respectively. 

Without knowledge of the systems specification, 𝑭(𝒙(𝑡)), that govern the dynamics of S, hence, 

without knowledge of any bifurcation parameter(s) P, how can one detect a critical state transition 

by measuring Sk for n = 1000s of cells k?   

In the spirit of phenomenological (mechanism-free) analysis of dynamical systems [3], and, 

inspired by the concepts of empirical study of critical state transitions in low-dimensional systems 

[4, 5] we postulate, in analogy to the “early warning signals” which characterize the approach to a 

critical transition point, the following for a higher-dimensional system, namely, that: 
 

the index Ic(t) at sampling time point t increases to a maximum as the cell population 

approaches and undergoes the critical state transition (~bifurcation).   
 

Herein, the index Ic(t) is defined as follows: 
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𝐼𝐶(𝑡) =  
〈|𝑅(𝑔𝑖,𝑔𝑗)|〉

〈𝑅(𝑆𝑘, 𝑆𝑙)〉
      (1) 

 

where R is Pearson’s correlation coefficient between the two observed cell state vectors Sk and Sl 

or between the two “gene” vectors gi and gj respectively, from the gene expression data matrix of 

the state of a “cell ensemble” 𝑿(𝑡) (a (sub)population of cells in a given treatment/condition at a 

given time point t):  

𝑿(𝑡) = [
𝑥1

1 ⋯ 𝑥𝑚
1

⋮ ⋱ ⋮
𝑥1

𝑛 ⋯ 𝑥𝑚
𝑛

]      (2) 

 

𝑿(𝑡) thus represents the data of a “measurement point” in traditional whole-cell population 

experiments but here we have access to a finer-grained layer of information due to single-cell 

measurement: each row vector represents a cell in its state k within the cell-ensemble 𝑿(𝑡) of n 

cells in m-dimensional gene state space: Sk =[ 𝑥1
𝑘 , 𝑥2

𝑘 , . . 𝑥𝑚
𝑘 ] and each column vector represents a 

gene i ‘s expression values across the n cells of said cell-ensemble 𝑿(𝑡):  gi =[ 𝑥𝑖
1, 𝑥𝑖

2, . . 𝑥𝑖
𝑛].  The 

brackets <...> in (1) denote the average of all the correlation coefficients R between all the pairs of 

state vectors S or the gene vectors g in the matrix 𝑿(𝑡), respectively. 

Below we provide two explanations for our postulate on the meaning of Ic(T): one based on 

linear approximation (section B.2), considering the Pearson’s correlation coefficient and variability 

of gene expression values (see the Fig B-1 below), without usage of dynamical systems concepts, 

and the other based on non-linear dynamical systems theory (B.3.). 

 

 

B.2. Plausibility argument for 𝑰𝑪(𝒕) as indicator of state transition based on linear statistics  
 

A first (intuitive) way to understand why a local/transient increase of 𝐼𝐶(𝑡) in which the 

denominator and numerator contain the Pearson coefficients computed from the same but 

transposed data matrix, marks a critical transition rests in the interpretation of Pearson’s correlation 

coefficient. Here we need to first consider the different nature of variability of expression values. 

From a gene-centric point of view we distinguish between, on the one hand, the variability of gene 

expression (x) across distinct genes within a given cell (“between-gene variability”) and on the 

Figure B-1. Schematic explanation of the relationship between ‘within-gene’ and ‘between-gene’ variation and 
between ‘gene-gene’ and ‘cell-cell’ correlation –  in the context of whether the cell populations ins in an attractor 
state of in transition. Large arrows indicate increase of decrease of the respective quantities. 
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other hand, the variability of a given gene across distinct cells (“within-gene variability”). Note that 

the presence of only positive correlations allows us to use direct Pearson metrics. 

 Generally speaking, the Pearson’s correlation coefficient builds upon the intuitive idea that the 

degree of association (coupling) of two statistical variables X and Y (for this consideration, X and 

Y stand for cell state vectors Sk and Sl, or alternatively, gene vector gi and gj) can be measured by 

the departure from the pure symmetry of the “bigger than mean” and “lower than mean” deviations 

of the XY-couple relative to the different statistical units (attributes of a given statistical variable). 

The Pearson correlation coefficient has the following formula: 
 

𝑅(𝑋, 𝑌) =
𝑋. 𝑌

|𝑋||𝑌|
=

∑ (𝑥𝑖 − �̅�)𝑛
𝑖=1 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2 ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 

 

The formula exposes the leading role that deviations from the mean play in the determination of 

the correlation: for a significant correlation to be scored, X and Y variables must vary on a relatively 

large range (numerator of the R), otherwise the lack of a sufficient amount of variance will obscure 

the presence of any coupling between X and Y. This effect is well known to statisticians as the 

“range restriction effect” [6]. For small random fluctuations, the presence of a correlation is 

obscured by the symmetric character of noise-driven deviations from the mean, making the 

numerator going to zero. 

Now, let us first consider the denominator 〈𝑅(𝑆𝑘, 𝑆𝑙)〉 in (1). It is easy to see why it is high for 

an ensemble in the attractor state and decreases towards the transition: In the stable attractor state 

each cell has the nominally the same distinct gene expression pattern except for random near-

symmetrical deviations from it due to stochastic fluctuations – the population is relatively 

homogeneous (“compact cloud” of cells in state space, Fig 1B). The average of the Pearson 

correlation coefficients 〈𝑅(𝑆𝑘 , 𝑆𝑙)〉 between all possible pairs of state vectors S in a cell ensemble 

𝑿(𝑡)is a general measure of the ‘homogeneity’ of said cell ensemble, a measure we have used in 

Fig 2A, since 𝑅(𝑆𝑘 , 𝑆𝑙) reflects the similarity of two cell states Sk and Sl. An alternative view is 

that we rely on a relatively high variation range corresponding to the high between-gene variability, 

because each gene (as the statistical unit of a cell as a variable) has a distinct characteristic 

expression value that defines the attractor state and is similarly expressed in each cell. We thus 

expect high values of cell-cell correlations. But as the attractor “flattens” towards the bifurcation 

[2], that is, the attracting force decreases [1,7], the dispersion of cells increases which results in an 

overall decrease of cell-cell correlation (loss of the characteristic cell state *). 

Second, why is the numerator 〈|𝑅(𝑔𝑖, 𝑔𝑗)|〉 low in the attractor and increases with its 

destabilization towards the transition? On contrary to the above, the gene-gene correlation R 

computed on the transposed space with gene couples as the statistical variables and the cell states 

as the statistical units, relies on within-gene variability to produce a high value. This deviation from 

the mean of one gene across various cells is a manifestation of the symmetric random fluctuations 

of each gene around the characteristic expression value of the attractor state. Thus, in the attractor 

the gene-gene coupling is dominated by noise, which results in a strong range restriction effect [6] 

and consequently, 〈|𝑅(𝑔𝑖, 𝑔𝑗)|〉 is low. Therefore, in a homogenous situation within a stable 

attractor (“compact cloud” in gene expression state space), we expect a relatively low gene-gene 

correlation going hand-in-hand with the high cell-cell correlation. By contrast, as the attractor 

flattens during the transition, cells within the same population can (in a simplified view) be 

considered occupying nominally more different states. Biologically this is due to the coordinated 

(regulated) change in expression of subsets of genes, that is, a non-random shift of gene expression 

patterns that overrides the symmetric noise. Even if gene expression noise still abounds, between-

gene variability of gene expression is not anymore solely due to random independent fluctuations 

of individual genes as it is around the attractor state (the case of homogenous cultures) but due to 

the onset of nominally distinct states inside the same culture. Thus a cell ensemble exposed to state 
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destabilization and transition is expected to be marked not only by a decrease in cell-cell correlation 

〈𝑅(𝑆𝑘, 𝑆𝑙)〉   and but also a contemporary increase in gene-gene correlation〈𝑅(𝑔𝑖 , 𝑔𝑗)〉.  

This explains the behavior of the index 𝐼𝐶(𝑇)  as the cell population undergoes an abrupt state 

transition asynchronously. It is worth recalling, as discussed in section A8, that this behavior is a 

universal feature of systems under stress [See ref.  6-8 in S1 Appendix (A)].  

 

 

B.3. Dynamical systems-based derivation of the index 𝑰𝑪(𝒕) as indicator for approaching 

bifurcation  
 

Here we derive 𝐼𝐶(𝑡) (Eq. 1) from dynamical systems theory.  We will do so separately for the 

numerator and denominator. First we show that overall “gene-gene correlation”, taken as the 

average over all absolute correlation 〈𝑅(𝑔𝑖, 𝑔𝑗)〉 increases and reaches a maximum at the critical 

transition point. Second we will show that the transpose quantity on the same data matrix 𝑿(𝑡), the 

overall “cell-cell correlation” 〈𝑅(𝑆𝑘,  𝑆𝑙)〉 reaches a minimum. The latter is intuitively plausible as 

manifestation of the dispersion of individual cells.  

The central idea is that instead of having one deterministic dynamical system and its state 

S(t), single-cell analysis of the state transition of an entire population of nominal replicates of 

“deterministically identical” but due stochastic fluctuations distinct cells, provides data for a 

statistical ensemble that explores the state space around the deterministic trajectory and whose 

distribution will reflect the change of the vector field as a parameter P that is a characteristic of the 

dynamical system (e.g. strength of regulatory  interactions between genes) changes.  One tacit 

assumption, as in recent work on critical phase transitions and “early warning signs” [8] is that the 

physical process of state transition (here, the cell fate switch) is driven by a gradual, monotonical 

change of the bifurcation parameter P in “real time” [2, 9]. 

Our data matrix 𝑿(𝑡)  represents the ensemble of individual dynamical systems each of which 

is a row vector in the data matrix (a cell). We ask how aggregate quantities of X, namely the 

coefficients for row-by-row and column-by-column correlation that is here of interest, change as 

the system X undergoes a bifurcation-driven state transition as one bifurcation parameter P changes. 

Since each row is a statistical replicate of the same deterministic dynamical system, we first 

collapse 𝑿 to a single state vector representing a dynamical system 𝑿(𝑡)  in 𝑚 dimensions (𝑚 

genes) and discretize time to obtain the following difference equation for an m-dimensional 

dynamical system:   

 𝑿(𝑡 + 1) = 𝑭(𝑿(𝑡); 𝑷(𝜏)) . (4)  

 

The state of a cell at time 𝑡 is represented by 𝑿(𝑡) which is now a state vector, 𝑿(𝑡) =

(𝑥1 (𝑡), 𝑥2 (𝑡), ⋯ , 𝑥𝑚 (𝑡)).  𝑷(𝜏) is a parameter vector 𝑷(𝜏) = (𝑝1(𝜏), 𝑝2(𝜏), ⋯ , 𝑝𝑠(𝜏)) which 

represents the factors which monotonically change with time 𝜏 and drive the dynamical system 

from an attractor state 𝑿∗ to an unstable state through a bifurcation. (𝑿∗ is the stable state of 

untreated cells prior to placing them in differentiating condition upon which P begins to change.) 

Recently Chen, Liu and colleagues [4, 10] have solved a similar problem for microarray data 

in which naturally only the ensemble average of the system state is available and thus, the stochastic 

exploration of the state space is achieved by the use of measurement replicates (e.g. in distinct 

samples or in repeats in time). Another difference is that in Liu et al. (2012) [10], because of use of 

microarrays, the dimensionality m is immense (genome-scale) and it was assumed that a subset of 

genes 𝑥𝑖 do not contribute to the dynamics. Hence genes were partitioned into two groups, only a 

subset of which form a (sub)network that drives the state change. Here all genes are expected to 

participate in the state transition because they were selected for it. Therefore, the a priori distinction 

is not made here and all genes are expected to contribute to some (however small) degree to the 

dynamics.  
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We assume that 𝑿∗(𝑷) (later we will drop 𝑷 for simplicity) is a hyperbolic fixed-point 

attractor, thus, 𝑿∗ = 𝑭(𝑿∗(𝑷); 𝑷). We further assume, in loose analogy to the quasi-equilibrium 

approach in chemical thermodynamics, that during fate decision as 𝑷 changes in real time, the 

system 𝑿(𝑡) stays in the hyperbolic attractor. Thus, according to the Hartman-Grobman theorem 

the dynamics of the original system can, at any time during our differentiation process (up to the 

bifurcation), be approximated by the linearized system near the fixed point attractor [11].  (We do 

not consider more complex attractors, although it has been suggested, notably in conjunction of 

cell diversification, that cell types could be represented by strange attractors [12].) 

To consider the stochastic exploration of the state space near the curve of 𝑿∗(𝑷) we define 

∆𝑿 = 𝑿 − 𝑿∗ then substitute 𝑿 = ∆𝑿 + 𝑿∗ into Eq. (4) [10]: 

 

 

∆𝑿(𝒕 + 𝟏) + 𝑿∗ = 𝑭(𝑿∗ + ∆𝑿(𝒕))  
= 𝑭(𝑿∗) + 𝑱∆𝑿(𝑡) + 𝑶(∆𝑿𝟐) 

 

(5)  

with the Jacobian matrix 𝑱 =
𝝏𝑭(𝑿;𝑷)

𝝏𝑿
|
𝑿=𝑿∗

  evaluated at the attractor state 𝑿∗. Neglecting the higher 

order terms 𝑶(∆𝑿𝟐) and with 𝑭(𝑿∗) = 𝑿∗ for the quasi-equilibrium condition we have  

 

 ∆𝑿(𝒕 + 𝟏) = 𝑱∆𝑿(𝒕)  (6)  

 

Since 𝑿∗  is a hyperbolic fixed-point attractor up to the bifurcation, there must exist a critical 𝑷𝒄 

for this discrete dynamical system such that one of the eigenvalues of Jacobian matrix 

𝑱 =
𝝏𝑭(𝑿;𝑷)

𝝏𝑿
|
𝑿=𝑿∗

equals 1 while for 𝑷 ≠ 𝑷𝒄, no eigenvalues of Jacobian matrix equals 1. 

 

We now need to expand our state vector back to the gene expression data matrix 𝑿(𝑡) (n 

rows = n cells, m columns = m genes) as in (1), representing the gene expression values 𝑥 of a cell 

ensemble in a given condition at a given time 𝑡.  Since we deal with a statistical ensemble we 

convert the deterministic system to a stochastic system by adding the random perturbation 𝜻(𝑡) to 

each cell state variable. With this framework we now first consider the gene-gene correlation and 

subsequently the cell-cell correlation. 

 

(a) Gene-gene correlation  〈𝑹(𝒈𝒊, 𝒈𝒋)〉 

Since Jacobian matrix 𝑱 is of full rank, there exists a full-rank normal matrix 𝑆 satisfying𝑱 =

𝑺𝚲𝑺−𝟏, where 𝚲 is a diagonal matrix with 𝑚 eigenvalues as the entries. We define 𝒀(𝒕) =

𝑺−𝟏∆𝑿(𝒕)  to express the data matrix in terms of eigenvalues. With Eq. (6) and introducing here 

the random perturbation 𝜻(𝑡) we obtain:  
 

 

 
𝒀(𝑡 + 1) = 𝚲𝒀(𝑡) + 𝜻(𝑡) 

 
(7)  

where 𝒀(𝑡) = (𝑦1 (𝑡), 𝑦2 (𝑡), ⋯ , 𝑦𝑚 (𝑡)). 𝜻(𝑡) represents Gaussian noise with zero mean and 

covariance 𝐶𝑜𝑣(𝜁𝑖, 𝜁𝑗) = 𝜅𝑖𝑗.  Since ∆𝑿 are small symmetric perturbations of gene expression 

values, expectation 𝑬(∆𝑿 ) = 0 and 𝑬(𝒀 ) = 0. 

With the stationarity condition, we calculate the variance of the 𝑖𝑡ℎ component of 𝒀(𝑡): 

 

 

𝑉𝑎𝑟(𝑦𝑖) = 𝑉𝑎𝑟(𝑦𝑖(𝑡 + 1))

= 𝑬 (𝑦𝑖
2(𝑡 + 1)) − 𝑬 (𝑦𝑖 (𝑡 + 1))

2
= 𝑬([𝜆𝑖𝑦𝑖(𝑡) + 𝜁𝒊(𝒕)]𝟐)

= 𝜆𝑖
𝟐𝑬 (𝑦𝑖

2(𝑡)) + 𝜅𝑖𝑖 = 𝜆𝑖
𝟐𝑉𝑎𝑟(𝑦𝑖) + 𝜅𝑖𝑖

 (8)  
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Since 𝑬 (𝑦𝑖
2(𝑡)) ≠ 0 and 𝜅𝑖𝑖 > 0 

 𝑉𝑎𝑟(𝑦𝑖) =
𝜅𝑖𝑖

1 − 𝜆𝑖
2 (9)  

 

When 𝜆1 → 1 (bifurcation in discrete dynamics) and 𝜅𝑖𝑖  holding constant, 𝑉𝑎𝑟(𝑦𝑖) →∞.  Thus, 

when a dynamical system approaches the critical transition, the variances of genes related to 𝜆1 →
1 will significantly increase. As the other eigenvalues 𝜆𝑖(𝑖 = 2,3, ⋯ 𝑚) satisfy0 ≤ |𝜆𝑖| < 1, the 

variances of other genes approach positive finite values. 

The covariance of 𝑦𝑖 and 𝑦𝑗 is:  
 

 

 𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗) = 𝑬(𝑦𝑖𝑦𝑗) − 𝑬(𝑦𝑖)𝑬(𝑦𝑗) = 𝑬(𝑦𝑖𝑦𝑗). (10)  

 

Using the diagonalised matrix 𝚲 with the eigenvalues we have 

 

 

𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗) = 𝐶𝑜𝑣(𝑦𝑖(𝑡 + 1), 𝑦𝑗(𝑡 + 1))

= 𝑬 (𝑦𝑖 (𝑡 + 1)𝑦𝑗 (𝑡 + 1)) = 𝑬((𝜆𝑖𝑦𝑖(𝑡) + 𝜁𝒊(𝒕)) (𝜆𝑗𝑦𝑗(𝑡) + 𝜁𝒋(𝒕)) )

= 𝜆𝑖 𝜆𝑗 𝑬(𝑦𝑖 𝑦𝑗) + 𝜅𝑖𝑗 = 𝜆𝑖 𝜆𝑗 𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗) + 𝜅𝑖𝑗

  

 

Since 𝑬(𝑦𝑖 , 𝑦𝑗) ≠ 0 and 𝜅𝑖𝑗 > 0 

 𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗) =
𝜅𝑖𝑗

1 − 𝜆𝑖𝜆𝑗
 (11)  

For calculating the Pearson correlation coefficient 𝑅 between the original gene expression vectors 

𝒙(𝑡)  (columns in 𝑿(𝑡)) 

 𝑅(𝑥𝑖 , 𝑥𝑗) =
𝐶𝑜𝑣(𝑥𝑖 , 𝑥𝑗)

√𝑉𝑎𝑟(𝑥𝑖)𝑉𝑎𝑟(𝑥𝑗)
 (12)  

 

we use the transformation 𝑿 − 𝑿∗ = ∆𝑿 = 𝑺𝒀 from above: 

 
𝒙𝑖 = 𝑠𝑖1𝑦1 + ⋯ + 𝑠𝑖𝑚𝑦𝑚 + 𝒙𝑖

∗

𝒙𝑗 = 𝑠𝑗1𝑦1 + ⋯ + 𝑠𝑗𝑚𝑦𝑚 + 𝒙𝑗
∗ (13)  

 

Here we calculate the variance of original gene expression 𝑿 column-wise: 

 

 𝑉𝑎𝑟(𝒙𝑖) = ∑ 𝑠𝑖1
2 𝑉𝑎𝑟(𝑦𝑖)

𝑚

𝑖=1

+ ∑ 𝑠𝑖𝑘𝑠𝑖𝑙 𝐶𝑜𝑣(𝑦𝑘 , 𝑦𝑙)

𝑚

𝑘,𝑙=1,𝑘≠𝑙

 (14)  

 

 

 

 

 

 

 

 

𝐶𝑜𝑣(𝒙𝑖 , 𝒙𝒋) = 𝑬 ((𝑠𝑖1𝑦1 + ⋯ + 𝑠𝑖𝑚𝑦𝑚)(𝑠𝑗1𝑦1 + ⋯ + 𝑠𝑗𝑚𝑦𝑚))

= 𝑠𝑖1𝑠𝑗1𝑉𝑎𝑟(𝑦1) + ⋯ + 𝑠𝑖𝑚𝑠𝑗𝑚𝑉𝑎𝑟(𝑦𝑚)

+ ∑ 𝑠𝑖𝑘𝑠𝑖𝑙 𝐶𝑜𝑣(𝑦𝑘 , 𝑦𝑙)

𝑚

𝑘,𝑙=1,𝑘≠𝑙

 (15)  
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𝑅(𝒙𝑖 , 𝒙𝑗) =
𝐶𝑜𝑣(𝑥𝑖 , 𝑥𝑗)

√𝑉𝑎𝑟(𝑥𝑖)𝑉𝑎𝑟(𝑥𝑗)

=

𝑠𝑖1𝑠𝑗1
𝜅11

1 − 𝜆1
2 + ⋯ + 𝑠𝑖𝑚𝑠𝑗𝑚

𝜅𝑚𝑚

1 − 𝜆𝑚
2 + ∑ 𝑠𝑖𝑘𝑠𝑖𝑙

𝜅𝑘𝑙
1 − 𝜆𝑘𝜆𝑗𝑙

𝑚
𝑘,𝑙=1,𝑘≠𝑙

√𝑠𝑖1
2 𝜅11

1 − 𝜆1
2 + ⋯ + 𝑠𝑖𝑚

2 𝜅𝑚𝑚

1 − 𝜆𝑚
2 + ∑ 𝑠𝑖𝑘𝑠𝑖𝑙

𝜅𝑘𝑙
1 − 𝜆𝑘𝜆𝑗𝑙

𝑚
𝑘,𝑙=1,𝑘≠𝑙

∗

1

√𝑠𝑗1
2 𝜅11

1 − 𝜆1
2 + ⋯ + 𝑠𝑗𝑚

2 𝜅𝑚𝑚

1 − 𝜆𝑚
2 + ∑ 𝑠𝑗𝑘𝑠𝑗𝑙

𝜅𝑘𝑙
1 − 𝜆𝑘𝜆𝑗𝑙

𝑚
𝑘,𝑙=1,𝑘≠𝑙

 (16)  

 

 

for 𝜆1 → 1, the term 
𝜅11

1−𝜆1
2 becomes the dominating term, and all other terms 

𝑠𝑖𝑚𝑠𝑗𝑚
𝜅𝑚𝑚

1−𝜆𝑚
2 , ∑ 𝑠𝑖𝑘𝑠𝑖𝑙

𝜅𝑘𝑙

1−𝜆𝑘𝜆𝑗𝑙

𝑚
𝑘,𝑙=1,𝑘≠𝑙  can be neglected. For the gene pair (𝑥𝑖, 𝑥𝑗), if 𝑠𝑖1, 𝑠𝑗1 are not 

zeros, the Pearson correlation coefficient for gene-gene correlation is: 

 

 𝑅(𝑥𝑖, 𝑥𝑗) →

𝑠𝑖1𝑠𝑗1
𝜅11

1 − 𝜆1
2

√𝑠𝑖1
2 𝜅11

1 − 𝜆1
2 √𝑠𝑗1

2 𝜅11

1 − 𝜆1
2

→ 1  𝑜𝑟 − 1 (17)  

 

 

Note that if either 𝑠𝑖1 or 𝑠𝑗1 is zero, i.e. a gene does not change along 𝜆1 (the "reaction coordinate"), 

then (𝒙𝒊, 𝒙𝑗) = 0. 

 

(b) Cell-cell correlation 〈𝑹(𝑺𝒌, 𝑺𝒍)〉 
Using the same gene expression data matrix (n rows – n cells, m columns – m genes) representing 

the gene expressions of a cell ensemble in a given condition at a given time 𝑡, 
 
 

𝑿(𝑡) = [
𝑥1

1 ⋯ 𝑥𝑚
1

⋮ ⋱ ⋮
𝑥1

𝑛 … 𝑥𝑚
𝑛

] 

 

We now calculate the “transpose” quantity for our index 𝐼𝐶, the row-wise Pearson correlation of 

gene expression value vectors of individual cells 𝑺𝑘 ,  𝑺𝑙 … 𝑜𝑟 𝒙𝑘 , 𝒙𝑙.. in terms of matrix 𝑿(𝑡): 

 𝑅(𝒙𝑘 , 𝒙𝑙) =
𝐶𝑜𝑣(𝒙𝑘 , 𝒙𝑙)

√𝑉𝑎𝑟(𝒙𝑘)𝑉𝑎𝑟(𝒙𝑙)
 (18)  

Through the transformation 𝒙𝒌 − 𝒙𝒌∗
= 𝒛𝒌 ,  i.e. we move the hyperbolic fixed point attractor to 

the coordinate origin 𝑶.   𝒁𝒌 are small independent perturbations on 𝑚 genes in 𝑘𝑡ℎ cell: 𝑬(𝒛𝑘) =

0, (k = 1, ⋯ , n)  

 

𝒙𝑘 = (𝑧1
𝑘 , ⋯ , 𝑧𝑚

𝑘 )     + 𝒙𝑘∗

𝒙𝑙 = (𝑧1
𝑙 , ⋯ , 𝑧𝑚

𝑙 )     + 𝒙𝑙∗
 

 

(19)  

The variances of the row vector – 𝑚 gene expressions of 𝑘𝑡ℎ cell 𝒙𝑘 = (𝑥1
𝑘 , ⋯ , 𝑥𝑚

𝑘 ) and 𝑚 gene 

expressions of 𝑙𝑡ℎ 𝒙𝑙 = (𝑥1
𝑙 , ⋯ , 𝑥𝑚

𝑙 ) are: 
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𝑉𝑎𝑟(𝒙𝑘) = 𝑬 ((𝒛𝑘 )
2

) − (𝑬(𝒛𝑘))
𝟐

=
1

𝑚
((𝑧1

𝑘)2 + ⋯ + (𝑧𝑚
𝑘 )2) − (𝑬(𝒛𝑘))

𝟐

=
1

𝑚
((𝑧1

𝑘)2 + ⋯ + (𝑧𝑚
𝑘 )2)

 (20)  

 

 

𝑉𝑎𝑟(𝒙𝑙) = 𝑬 ((𝒛𝑙 )
2

) − (𝑬(𝒛𝑙))
𝟐

=
1

𝑚
((𝑧1

𝑙 )2 + ⋯ + (𝑧𝑚
𝑙 )2) − (𝑬(𝒛𝑙))

𝟐

=
1

𝑚
((𝑧1

𝑙 )2 + ⋯ + (𝑧𝑚
𝑙 )2)

 (21)  

 

 

If (𝑧𝑖
1, ⋯ , 𝑧𝑖

𝑘 , ⋯ , 𝑧𝑖
𝑙 , ⋯ , 𝑧𝑖

𝑛) contributes to the eigenevector 𝑦1  

 𝑉𝑎𝑟(𝑦1) =
𝜅11

1 − 𝜆1
2 (22)  

 

for 𝜆1 → 1 and 𝜅𝑖𝑖 holding constant, 
𝜅11

1−𝜆1
2 becomes ∞, (𝑧𝑖

𝑘)2 and (𝑧𝑖
𝑙)2 will significantly increase. 

Therefore 𝑉𝑎𝑟(𝒙𝑘) ∙ 𝑉𝑎𝑟(𝒙𝑙) will also significantly increase. 

The covariance of row vector 𝒙𝑘 and 𝒙𝑙 
 

 

 

𝐶𝑜𝑣(𝒙𝑘, 𝒙𝑙) = 𝑬(𝒛𝑘 𝒛𝑙 ) − 𝑬(𝒛𝒍)𝑬(𝒛𝑘)

= 𝑬(𝒛𝑘 𝒛𝑙 )

=
1

𝑚
(𝑧1

𝑘𝑧1
𝑙 + ⋯ + 𝑧𝑚

𝑘 𝑧𝑚
𝑙 )

 (23)  

 

Even (𝑧𝑖
1, ⋯ , 𝑧𝑖

𝑘 , ⋯ , 𝑧𝑖
𝑙 , ⋯ , 𝑧𝑖

𝑛) contributes to the eigenevector𝑦1, 𝑧𝑖
𝑘𝑧𝑖

𝑙 does not necessarily 

increase. If  (𝑧𝑖
1, ⋯ , 𝑧𝑖

𝑘 , ⋯ , 𝑧𝑖
𝑙 , ⋯ , 𝑧𝑖

𝑛) relate to other 𝜆𝑖(𝑖 = 2,3, ⋯ 𝑚) which satisfies 0 ≤ |𝜆𝑖| <
1, the covariance of row vector 𝒙𝑘 and 𝒙𝑙 will approach finite values. 

Therefore, the row-wise Pearson correlation coefficients of cells’ gene expression 𝑃𝐶𝐶(𝒙𝑘 , 𝒙𝑙) 

decrease towards the critical transition point as cell states diversify:* 

 

 

 
𝑅(𝒙𝑘 , 𝒙𝑙) =

𝐶𝑜𝑣(𝒙𝑘 , 𝒙𝑙)

√𝑉𝑎𝑟(𝒙𝑘)𝑉𝑎𝑟(𝒙𝑙)
→

 not necessarily increase

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
 

→ 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 

(24)  

 
 
 

---- 
 
 

 

 

 

* Using average of correlation coefficients between cell state vectors, as opposed to simply taking the multivariate 

variance of the cell expression vectors, to capture cell diversity and its change, will also reflect a change in a 

bifurcation parameter if the position of the attractor state also changes with the bifurcation parameter. Here the 

difference between the two methods was not relevant. 
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