Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance

Supplementary Materials

Supplementary Figure S1: (A) Scheme of the approach for establishing the fragment tumor model. Panc02- SIY cells were grown *in vitro* prior to subcutaneous injection of the cells in suspension to OT-1 TCR transgenic mice. 4–6 weeks post inoculation, established Panc02-SIY tumors were excised, divided into 1–2 mm fragments, and implanted subcutaneously into naive C57Bl/6 mice. Tumor growth was observed for 10–14 days prior to treatments. (**B**) Scheme of the strategy to detect T cell priming in DLNs by the administration of exogenous CFSE-labeled 2C T cells. Fragment tumor were established as described in (A) and received indicated treatment and/or 5×10^6 CFSE-labeled naive 2C T cells on Day 0 (12 days post fragment transplantation). On day 5, DLNs were removed for flow cytometric analysis of CFSE intensity.

Supplementary Figure S2: Panc02-SIY tumor cells demonstrate low PD-L1 expression. Panc02-SIY and the parental cell line Panc02 were used for flow cytometric analysis of PD-L1 expression. Panc02-SIY fragment-tumor-bearing mice were left untreated. On day 21 post transplantation, tumors were removed from the mice and cut into small pieces. Resulting portions were culture in DMEM medium with 10% FBS for 3–4 days followed by flow cytometric analysis of PD-L1 expression on CD45⁻ cells.

Supplementary Figure S3: Antigen-specific vaccination plus local radiation increased percentage of antigen-specific CD8⁺ T cells. Panc02-SIY fragment tumor-bearing mice were left untreated (control) or received vaccination of 2×10^6 MC57-SIY cells (Vacc.), 20 Gy local ionizing radiation (IR) or vaccination plus IR, respectively. Fragment tumors were harvested and processed for flow cytometric analysis of cell surface markers and SIY-Pentamer staining. Representative dot plots of SIY-specific T cells among all CD8⁺ T cells are presented.

Supplementary Figure S4: Percentage of Tregs and MDSCs in the tumors post treatments. Panc02-SIY fragment-tumorbearing mice were left untreated or received one of following treatments: vaccination with 2×10^6 MC57-SIY cells, local IR (20 Gy) or a combination of both. Eight days post treatment, tumors were removed and processed for flow cytometric analysis of immunosuppressive cells, including (A) Foxp3⁺ cells among total CD4⁺ cells (B) CD11b⁺GR-1⁺ MDSCs. Error bars are mean \pm S.E.M. Presented data are the summary of an experiment with at least three samples in each group. The experiments were repeated at least twice.

Supplementary Figure S5: Local radiation enhances CD8⁺ T cell infiltration in the fragment tumors. Panc02-SIY fragment tumor-bearing mice were left untreated or received one of following treatments: vaccination of 2×10^6 MC57-SIY cells (Vacc.), local IR (20 Gy) or a combination. Eight days post treatment, tumors were removed and processed for flow cytometric analysis. Representative dot plots of CD8⁺ T cells among all CD45⁺ cells are presented.

Supplementary Figure S6: Fas expression in Panc02-SIY fragment tumor. Panc02-SIY fragment tumor-bearing mice were left untreated or received one of following treatments: vaccination of 2×10^6 MC57-SIY cells (Vacc.), local IR (20 Gy) or a combination. Eight days post treatment, tumors were removed from the mice and lysed using the Trizol reagent followed by RNA extraction and quantitative PCR analysis of Fas expression. n.s.: Not statistically significant. (Unpaired student's *t*-test).