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Quantitative proteomics reveals that distant recurrence-
associated protein R-Ras and Transgelin predict post-surgical 
survival in patients with Stage III colorectal cancer
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Supplementary Figure S1: Quantitative MS identified 146 DEPs associated with distant recurrence. A. 2,383 proteins 
were identified in both IIIB and IIIC groups. Additionally, 839 IIIB-specific proteins and 435 IIIC-specific proteins were also identified. B. 
Out of the total 3,657 proteins, 146 proteins were differentially expressed between good outcome and distant recurrence. About half of them 
had a score more than 10. (DR, distant recurrence).
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Supplementary Figure S2: MS/MS spectra of R-Ras and Transgelin unique peptides. A. MS/MS spectra of R-Ras aa177-
188 (m/z = 831.45) in the MS experiments of IIIB and IIIC groups. B. MS/MS spectra of Transgelin aa109-121 (m/z = 995.52) in the MS 
experiments of IIIB and IIIC groups. The TMT reporter signals were also shown.
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Supplementary Figure S3: Representative photos (amplification: 100) of anti-R-Ras IHC with regions zoomed in 
(amplification: 400). Top panel: R-Ras dense staining is observed in epithelial cells of longitudinally cut mucosa crypts of para-
tumor tissue. Medium panel: positive R-Ras staining of poorly differentiated adenocarcinoma. Bottom panel: well differentiated 
adenocarcinoma with negative R-Ras staining.
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Supplementary Figure S4: Representative photos (amplification: 100) of anti-Transgelin IHC with regions zoomed 
in (amplification: 400). Top panel: Transgelin dense staining is observed around tangentially cut mucosa crypts of para-tumor tissue. 
Medium panel: moderately differentiated tumor tissue of positive Transgelin staining. Bottom panel: Transgelin-negative tumor tissue 
shows desmoplasia. Necrotic debris can be observed in glandular lumina.
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Supplementary Figure S5: R-Ras has no effect on CRC cells proliferation. (A) SW480 and (B) HCT116 were stably transfected 
with pLv-CP06 vector and pLv-CP06-Flag-RRAS (left panel); pLv-shRNA-KP Ctrl, pLv-shRNA-KP-sh1, and pLv-shRNA-KP-sh2 (right 
panel), respectively. Monolayer growth rates of cells were determined by CCK8 assay. Results are presented as means±SD (n=4).
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Supplementary Table S1:

See Supplementary File 1

Supplementary Table S2: Manual search in literature databases found that the relevance of 66 DEPs with CRC has 
been reported previously 

See Supplementary File 2
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Supplementary Table S3: R-Ras and Transgelin expression in tumor and para-tumor tissue of Stage III CRC

Protein Tissue type Number
Staining

p-value χ2 value
Positive Negative

R-Ras
Tumor 192 83 109

<0.001 59.21
Para-tumor 192 157 35

Transgelin
Tumor 192 84 108

<0.001 75.21
Para-tumor 192 166 26
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Supplementary Table S4: DEPs expression measurement information
IIIB

See Supplementary File 3


