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Introduction

The supplementary material contains three main sections, each of them supplies detailed in-
formation on a subject of the main text: the two variants of RN A-DECODER called RNA-DE-
CODER-TWO-STEP and RNA-DECODER-EXTENDED, performance results, and evolutionary
information and prediction performance.

RNA-DECODER-TWO-STEP and RNA-DECODER-EXTENDED

We have devised two alternative RNA-ss fold prediction programs called RN A-DECODER-
Two-STEP and RNA-DECODER-EXTENDED which are based on RNA-DECODER. Both
methods were developed in response to the occurrence of structural changes between the in-
dividual sequences of the alignment. They employ RN A-DECODER to exploit the comparative
information of the alignment, but return single sequence predictions. A detailed description
of both methods is given below.

RNA-DECODER-EXTENDED

The idea behind RNA-DECODER-EXTENDED is to adjust the prediction made by RNA-
DECODER to encompass the individual differences of each sequence.

RNA-DECODER-EXTENDED first makes a prediction for the alignment using the CYK
as algorithm as described for RNA-decoder. An individual prediction is then made for each
sequence of the alignment by discarding all predicted non-consensus base pairs and by ex-
tending the remaining stems with neighboring consensus base pairs until a non-consensus
base-pair is found (adopted from Knudsen and Hein [1]). The six consensus base pairs are
G-C, C-G, A-U, U-A, U-G and G-U.

RNA-DECODER-TWO-STEP

The idea behind RNA-DECODER-TWO-STEP is to exploit the comparative information to
delineate the conserved core sites of an (evolving) RNA structure. Knowing these simplifies
the remaining folding problem for each individual sequence.



RNA-DECODER-TWO-STEP first makes a partial prediction y:f;rt for the alignment by
running the CYK algorithm and retaining only base-pairing columns whose posterior prob-
ability is at least 0.8. In the second step, the CYK algorithm is used on each individual
sequence z; while keeping the annotation of all those positions fixed that are covered by the
partial prediction. The resulting label sequence predicted for x; is then:

yiS* = argmax P(yf'-TZ, y65 y]‘)s‘l:?“t’ M)'
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Performance results

This section reports various detailed performance results.

Performance of RNA-DECODER by structure

The results for the five-fold cross-evaluation on the HCV 1a and the HCV 1a & 1b set can be
found in the left column of Table 1. Correctly predicting the fourth and fifth of the structural
elements seems to be easier than the rest. This may be due to two reasons: first, structures
4 and 5 are the shortest structures with the lowest fraction of non-consensus base pairs (see
Table 1 of main text) and, second, training the model on a training set which comprises the
longer and more diverse structural elements 1-3 should increase its predictive power. The
high fraction of non-consensus base pairs within structure 2 (HCV la set) and structures 2
and 3 (HCV 1la & 1b set) is probably also responsible for the large difference between the
single-nucleotide and the pair performance.

Performance of RNA-DECODER-TwWO-STEP and RNA-DECODER by structure

We repeated the cross-evaluation experiments on datasets HCV la and HCV 1a & 1b us-
ing RNA-DECODER-EXTENDED and RNA-DECODER-TWO-STEP. As can be seen from the
middle column of Table 1, using RN A-DECODER-EXTENDED increases the single-nucleotide
and pair sensitivity, however, usually at the expense of a lowered specificity (this lowering of
the specificity is stronger for the HCV 1a set than for the more diverged HCV 1la & 1b set).
The results of RNA-DECODER-TWO-STEP are shown in the right column of Table 1.
When comparing its performance to that of RNA-DECODER and RNA-DECODER-EXTEN-
DED, one can see that it generally improves the specificity with respect to RNA-DECODER.
However, the sensitivity is not generally improved, but overall lowered with respect to RN A-
DECODER (compare e.g. the three different predictions for structure 3 of the HCV 1a set).

Performance of RNA-DECODER and ProLD as function of prediction confi-
dence

RNA-DECODER assigns posterior probabilities to its label predictions at each site. We here
evaluate how well the posterior probability of a site measures the confidence we can have in
the predicted label. Table 2 reports the performance among all sites which are assigned a
certain minimum posterior probability (see left column “min. pp.”) as well as the fraction of
the alignment covered (see columns “% data”). We perform this evaluation for both the la
and the la & 1b sets.



RNA-DECODER

HCV 1a set
RNA-DECODER-EXTENDED | RNA-DECODER-TWO-STEP
str. Sng  Sps SNy  SPp | SNg  SPs SNy SPp Sng  Sps 8Ny SPp

1 096 089 096 089 | 1.0 0.8 1.0 0.86 1.0 096 1.0 0.96
2 0.76 0.86 044 05 |072 078 04 0.44 0.74 0.88 0.44 0.52
3 0.78 0.97 0.75 094 | 083 097 0.80 0.94 05 10 0.5 1.0
4 1.0 10 10 1.0 | 1.0 093 1.0 0.93 1.0 088 1.0 0.88
) 10 10 10 10|10 1.0 1.0 1.0 1.0 1.0 1.0 1.0
all 0.88 093 079 084|089 089 0.8 0.80 083 094 0.75 0.85

HCV 1la & 1b set
RNA-DECODER-EXTENDED | RNA-DECODER-TWO-STEP
str. Sng  Sps SN, Spp | Sng  Sps SN, Spp Sng  Sps 8Ny SPp
1 0.86 0.83 0.84 0.81 | 0.98 0.82 0.96 0.8 1.0 0.86 1.0 0.86
2 062 08 036 05 | 0.7 088 04 0.5 0.18 0.9 0.16 0.8
3 043 0.65 0.25 0.39 | 043 0.65 0.25 0.39 0.5 1.0 0.5 1.0
4
5

0.86 0.92 0.79 085|093 0.87 0.86 0.8 1.0 088 1.0 0.88
10 10 10 10|10 1.0 1.0 1.0 1.0 1.0 1.0 1.0
all 0.73 0.8 061 071|079 084 0.66 0.70 0.69 091 0.68 0.90

Polio set
RNA-DECODER-EXTENDED | RNA-DECODER-TWO-STEP
str. Sng  Sps SN, Spp | Sng  Sps SN, Spp Sng  Sps 8Ny SPp

CRE | 057 1.0 057 1.0 [ 057 1.0 0.57 1.0 1.0 091 1.0 0.91

Table 1: Prediction performance of RNA-DECODER, RNA-DECODER-EXTENDED, and
RNA-DECODER-TWO-STEP on the annotated structures of the HCV 1la and the combined
HCV 1la & 1b. We report the performance in terms of sensitivity and specificity for pairs of
base pairing nucleotides (sn, and sp,) as well as for single nucleotides (sn, and sp,). Please
refer to the main text for a definition of these performance measures.



HCV 1a set HCV 1la & 1b set

T sng  Sps  Sny  SPp % smg  Sps  Sn sp %

pp- data P P | data
0.0 |0.88 093 0.79 0.84 | 1.0 [0.73 0.85 0.61 0.71| 1.0
0.5 0.90 094 0.84 0.87 ] 0.89 | 0.76 0.88 0.74 0.84 | 0.82
0.6 |0.90 095 0.83 0.88 | 0.83 | 0.76 0.89 0.74 0.86 | 0.77
0.7 0.92 098 0.8 0.92 | 0.68 | 0.77 0.93 0.76 0.92 | 0.68
0.8 |0.89 1.0 0.89 1.0 | 0.46 |0.84 0.93 0.83 0.92 | 0.60

0.9 092 1.0 092 10 | 034092 092 091 0.91 | 0.53

Table 2: Prediction performance and data coverage (% data) of RN A-DECODER as function
of the minimum posterior probability (min. pp.) for the HCV 1la as well as the combined
HCV 1la & 1b data sets. Note that requiring a minimum posterior probability of 0.0 leads
to the inclusion of the entire alignment. Please refer to the main text for a definition of the
performance measures sn,, spp, sn, and sp;.

Requiring a high minimum posterior probability leads to a good performance with very
high specificity on both the 1a and the 1a & 1b sets. 68% of both data sets are covered by
posterior probabilities of at least 0.7, and have specificities which are in the nineties. Requiring
a high minimum posterior probability is seen to especially improve the performance on the
la & 1b set. This is probably due to variations in the structure between some sequences in
this set, which therefore affect both performance and posterior probability of a subset of the
sites.

Evolutionary information and prediction performance

This section analyzes the effect of alignment size on prediction performance. The measure of
prediction performance chosen is the posterior probability of correctly predicting a site to be
stem-pairing or not. This is a continuous measure that allows for fine-grained analysis.

Performance as function of total tree length

We performed the following experiment in order to investigate the relationship between the
performance and the amount of evolutionary information available. First, a large number
of alignment subsets were sampled from each of the HCV 1a and HCV 1la & 1b data sets
for structure 4. Each sample contains the reference sequence and a uniformly distributed
number of additional sequences, chosen at random. The posterior probability of the correct
label (either pairing or not) was then calculated along the alignment. The performance was
summarized by calculating the average of these posterior probabilities (called APPCL), as well
at the standard deviation. The amount of evolutionary information available in each sample
was measured by the total tree length (TTL) of the spanning phylogenetic tree. Finally,
the samples were binned according to TTL, and the average APPCL and average standard
deviation within each bin were plotted (see Figure 1).

Note that the left figure (HCV 1la data set) effectively corresponds to the short-TTL part
of the right figure (combined HCV 1a & 1b set), as samples with a TTL of less than 0.6 include
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Figure 1: RNA-ss prediction performance as function of the amount of evolutionary infor-
mation in the input alignment for structure 4. The performance is measured in terms of the
average posterior probability of the correct label along the alignment (APPCL, see left y-axis)
as well as its standard deviation (see right y-axis). A perfect prediction would have an APPCL
of 1.0 and a standard deviation of 0.0. The evolutionary information is measured by the TTL.
The left figure is based on 1000 sampled subsets of the HCV 1a set whose TTL of 0.59 was
sub-divided into 25 bins, while the right is based on 10,000 sampled subsets of the HCV 1a
& 1b set whose TTL of 9.84 was sub-divided into 50 bins. The points are not necessarily
equi-distant since the average within a bin need not coincide with the middle bin value.

only HCV 1a sequences. The samples having a TTL of more than 2.5 include sequences from
the HCV 1b data set. The gap of data for TTLs between 0.6 and 2.5 is due to the long branch
separating the HCV 1a from the HCV 1b clades.

The APPCL for the HCV 1la data set increases with TTL (left figure), while the variation
among the predictions decreases. The rate of increase in performance is high initially and
then decreases.

The APPCL initially decreases when the first HCV 1b sequences are included (right figure).
This is probably due to the introduction of sequences with structures which have evolved
relative to the HCV 1a sequences. The following increase can be attributed to an increasing
confidence in the predictions of the non-evolving positions (see also Figure 5 of main text).
The final slow decrease is probably due to a growing confidence in the wrong pair predictions
for the bulge positions and a corresponding decline for the last stem-pairing positions (see
also Figure 5 of main text). The increase in standard deviation with TTL summarizes the
growing discrepancy in the posterior probability of the correct label along the sequence.
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