

Figure S1 Tedrick et al. 2004

С

Sample	Protein (mg/ml)	Band Intensity	Volume Analyzed	Relative Purity
<u>ST</u> art cytosol	14.9	4.48	0.5 μl	0.60
Fraction 24	0.19	3.47	5 μl	3.65
Fraction 27	0.26	6.20	5 μl	4.77
Fraction 30	0.71	11.08	5 μl	3.12
Fraction 32	1.08	2.12	5 μl	0.39

Supplemental Figure Legends

Figure S1. Titration of cytosol stimulation in vacuole fusion reactions. (A) Wild-type cytosol was titrated into fusion reactions using vacuole pairs isolated from strains KTY1 and 2 (*WT endogenous ERG6*) or KTY5 and 6 (*vrp1* Δ endogenous ERG6), and with P_{GAL1}-ERG6 induction from strains KTY3 and 4 (*WT GAL1-induced ERG6*) or KTY7 and 8 (*vrp1* Δ GAL1-induced ERG6). (B) *vrp1* Δ cytosol was titrated into fusion reactions using vacuole pairs as in part (A). Note that significantly higher concentrations of both wild-type and *vrp1* Δ GAL1-induced ERG6.

Figure S2. Partial purification of Vrp1p. 25 mg of wild-type cytosol from strain BY4742 was applied to a 1 ml MonoQ column in 5 ml of Q-bind buffer (25 mM Tris-Cl pH 8.5, 5 mM MgCl₂, 10 mM KCl, 1 mM DTT). The column was washed with 2 ml Q-bind, eluted with a 20 ml 10 – 500 mM KCl linear salt gradient, and step eluted with 10 ml 1 M KCl. The column was run at 0.5 ml/min, 4°C and 0.5 ml fractions were collected. (A) Elution profile showing protein as OD_{280} (*mAU*, blue), fractions (vertical dashed lines) and conductivity representing salt concentration (*mS/cm*, calculated, dashed line; observed, solid line). (B) Immunoblot showing the position of Vrp1p elution (top panel) and silver stained gel (bottom panel) of selected fractions . ST, 10% starting cytosol equivalent. (C) Purification table of fractions with Vrp1p using immunoblot band intensity divided by amount of protein analyzed to determine relative purity. Vrp1p

elutes from 180 – 240 mM KCl at pH 8.5. Fraction 27 showed the highest relative purity (8-fold overall) and was therefore used for further studies.

Figure S3. Determination of membrane extraction efficiency. 100 μ g of total vacuolar protein isolated from the indicated strains was precipitated by centrifugation and resuspended in ice cold 50 mM Tris-Cl pH 8.5 (*Tris*) or 100 mM Na₂CO₃ pH 11.5 (*CO3*). After 30 min incubation on ice samples were centrifuged at 100,000 g, 4°C for 30 min to pellet membranes and associated proteins. Soluble and pellet fractions were carefully separated and protein determination was carried out. Equal portion of supernatant (*s*) and pellet (*p*) fractions and a sample representing 20% of the starting material (*ST*) was separated by SDS-PAGE and immunobloted for V-ATPase subunit (*Vph1p*, integral membrane), Vam6p (peripheral membrane) and carboxypeptidase Y (*CpY*, lumenal).