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S.1 Mathematical analysis of firing rates and correlations in re-
current networks

In the Results, we provided an intuitive justification for why some network architectures can realize
an asynchronous state and why other architectures cannot. We now provide a more mathematically
rigorous derivation of these results. We first review the computation of firing rates in the network,
using previously developed methods [12, 6]. We then describe a cross-spectral measure of covari-
ability and associated notation that greatly simplifies calculations, then derive general formulae
for the full matrix of pairwise cross-spectra between the inputs and spike trains of all neurons.
Finally, we use these results to derive mean field cross-spectra and conditions on the existence of
an asynchronous state and an approximation to the spike train correlations at large system size.

S.1.1 Mean field theory of firing rates in balanced networks

We first review the mean field theory of firing rates in balanced networks and compare the theoretical
predictions to the results from our simulations. We represent spike trains as sums of Dirac delta
functions,

Saj (t) =
∑
n

δ(t− taj,n)

where taj,n is the n-th spike time of neuron j in population a ∈ {e, i, F}. For convenience, we also
normalize units to set Cm = 1 for all calculations. In this case, the synaptic input to neuron j in
population a = e, i (see Eqs. (4) and (6) in Methods) can be re-written as

Iaj (t) = F aj (t) +Raj (t)

= F aj (t) +
1√
N

∑
b=e,i

Nb∑
k=1

Jabjk (ηb ∗ Sbk)(t)
(S.1)

where F aj (t) is the feedforward input to neuron j in population a, Raj (t) is the recurrent input, ∗
denotes convolution and

ηb(t) =
1

τb
e−t/τbΘ(t), b = e, i
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is the postsynaptic current waveform with Θ(t) representing the Heaviside step function. The
variable Jabjk denotes the synaptic weight from neuron k in population b = e, i to a neuron j in
population a = e, i.

Taking averages over time and over indices (j and k) in Eq. (S.1) gives the mean-field mapping
of firing rates to synaptic currents,

Ia = F a +Ra

= F a +
√
N(w0

aere + w0
airi).

(S.2)

In this expression, Ia is the average synaptic current across the membrane of excitatory (a = e) or
inhibitory (a = i) neurons in the recurrent network. Similarly, F a is the average input from the
feedforward population, Ra is the average input current from the local recurrent population and ra
is the average firing rate of neurons in population a = e, i. The terms

w0
ab = p0

abjabqb ∝ O(1)

represents a normalized mean-field connectivity strength where p0
ab is the average number of con-

nections from presynaptic neurons in population b = e, i to postsynaptic neurons in population
a = e, i, jab is the average synaptic strength of each connection and qb = Nb/N is the proportion
of neurons in the network that are in population b. When a presynaptic neuron can only make
one synaptic projection to a single postsynaptic neuron, p0

ab is the probability of connection. In
the networks we consider, multiple connections are possible (though rare), so p0

ab is technically the
expected number of connections. The

√
N scaling in Eq. (S.2) comes from the fact that there each

neuron receives O(N) inputs (since connection probability is O(1)) and the synaptic weight of each
input scales like O(1/

√
N) [12].

For the networks considered in Figure 1, the mean feedforward inputs are explicitly scaled as
O(
√
N) since (see Experimental Procedures)

F aj (t) =
√
Nma + σss(t)

where s(t) is unbiased so that
F a =

√
Nma.

For the spatially extended networks, feedforward inputs come from a separate population of neurons
with

F aj (t) =

NF∑
k=1

JaFjk√
N

(ηF ∗ SFk )(t)

so that
F a =

√
Nw0

aF rF

where rF = 5 Hz is the firing rates of neurons in the feedforward population and w0
aF is defined

in the same way as w0
ab above. Therefore, for all networks we consider, the mean inputs can be

written as [
Ie

I i

]
=
√
N

[
w0

eere + w0
eiri + fe

w0
iere + w0

iiri + fi

]
=
√
N(W0~r + ~f)

(S.3)
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where fa = ma is the scaled mean feedforward input current for the networks considered in Figure
1, fa =

√
Nw0

aF rF for the spatially extended networks, ~r = [re ri]
T and ~f = [fe fi]

T . Note that
w0
ab, fa ∝ O(1). Hence, to avoid excessively large input current magnitudes (Ia → ±∞ as N →∞),

the excitatory and inhibitory currents in Eq. (S.3) must balance so that

W0~r + ~f ∝ O(1/
√
N). (S.4)

Firing rates in the limit of large N are given by taking N → ∞ in Eq. (S.4) and solving for the
rates to obtain [12, 6]

lim
N→∞

re =
few

0
ii − fiw

0
ei

w0
eiw

0
ie − w0

eew
0
ii

lim
N→∞

ri =
few

0
ei − fiw

0
ee

w0
eiw

0
ie − w0

eew
0
ii

.

(S.5)

For these expressions to give positive firing rates and a stable balanced state, parameters must
satisfy [12, 6]

fe

fi
>
w0

ei

w0
ii

>
w0

ee

w0
ie

. (S.6)

For the networks in Figure 1, Eq. (S.5) predicts firing rates re = 6.2 Hz and ri = 4.0 Hz.
The simulations in Figure 1a-d produced average firing rates re = 7.6 Hz and ri = 3.8 Hz. The
simulations in Figure 1e-h produced average firing rates re = 7.4 Hz and ri = 3.8 Hz.

For the networks in Figures 3 and 4, Eq. (S.5) predicts firing rates of re = 3.6 Hz and ri = 5.7 Hz.
For the simulations in Figure 3, average firing rates were re = 3.9 Hz and ri = 6.2 Hz. For the
simulations in Figure 4, average rates were re = 4.0 Hz and ri = 6.1 Hz.

For the simulations in Figure 6, Eq. (S.5) predicts firing rates of re = 3.6 Hz, ri = 5.7 Hz for L4
neurons and re = 5.0 Hz, ri = 7.9 Hz for L2/3 neurons (using the L4 excitatory neuron rates as the
feedforward input rates to L2/3). The average rates of L4 neurons in simulations were re = 3.8 Hz
and ri = 6.2 Hz and the average rates for L2/3 neurons were re = 5.7 Hz and ri = 9.2 Hz.

Eq. (S.4) implies that, in balanced networks, feedforward input currents (fe and fi) are approx-
imately balanced by recurrent sources of synaptic input (w0

eere +w0
eiri and w0

iere +w0
iiri + fi). This

provides an intuition for the fact that feedforward and recurrent input currents are negatively cor-
related (CRF < 0, see Results): Fluctuations in the feedforward input currents must be cancelled
by opposite-polarity fluctuations in the recurrent input currents. Therefore, recurrent and feedfor-
ward inputs are negatively correlated. This intuition falls short of a precise theory for correlated
variability in balanced networks, however, since Eq. (S.4) represents mean synaptic currents, not
fluctuations. We next provide a more rigorous mathematical analysis of correlated variability in
balanced networks.

S.1.2 Cross-spectral measures of covariability

We first define the measures of correlation used in our calculations and review some of their prop-
erties. For mathematical convenience, we measure covariance between random processes, U(t)
and V (t), in terms of their cross-spectral density or “cross-spectrum.” Specifically, we define the
cross-spectral operator, 〈·, ·〉, by

〈U, V 〉(f) = lim
T→∞

1

T
UT (f)V ∗T (f)

3



where ∗ denotes the complex conjugate,

UT (f) =

∫ T

0

[
U(t)− U

]
e−2πiftdt

is the finite-time Fourier transform of U(t) and U is the steady-state mean of U(t). VT (f) is defined
similarly.

The cross-spectrum is a function of frequency, f , but for notational convenience, we omit this
explicit dependence in many expressions below. The cross-spectrum can also be defined as the
Fourier transform of the cross-covariance function (sometimes also called the cross-correlation) [13,
9],

〈U, V 〉(f) =

∫ ∞
−∞

CCG(τ)e−2πifτdτ

where CCG(τ) = cov(V (t), U(t + τ)). Thus, cross-covariance functions are given by taking an
inverse Fourier transform of the cross-spectrum. For spike trains, S1(t) and S2(t), spike count
covariances over finite windows are given by integrating the cross-spectrum against a frequency
kernel [7],

spike count covariance over window of size T = T

∫ ∞
−∞
〈S1, S2〉(f)KT (f)df (S.7)

where

KT (f) =
sin2(Tfπ)

Tf2π2
. (S.8)

Since limT→∞KT (f) = δ(f), it follows that whenever T is much larger than the timescale of
correlations between the spike trains, we have the approximation

spike count covariance over large window of size T ≈ T 〈S1, S2〉(0). (S.9)

Thus, the cross-spectral operator captures all common measures of spike train covariability. More
details and derivations of these relationships can be found in [9, 13].

For vector processes, U(t) = [U1(t), · · · , UM (t)] and V (t) = [V1(t), · · · , VN (t)], we define the
M ×N cross-spectral matrix operator,

〈U, V 〉 =
[
〈Uj , Vk〉

]M,N

j,k=1

which is the analogue to a covariance matrix in frequency space [2]. This is a bilinear, Hermitian
operator in the sense that 〈U +X,V 〉 = 〈U, V 〉+ 〈X,V 〉 and

〈AU,BV 〉 = A〈U, V 〉BT

for real matrices A and B. Moreover, suppose A(t) and B(t) are matrix functions and (A ∗ U)(t)
denotes matrix convolution, i.e., a matrix product where multiplication is replaced by convolu-
tion [11]. Then

〈A ∗ U,B ∗ V 〉 = Ã〈U, V 〉B̃∗
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where

Ã(f) =

∫ ∞
−∞

A(t)e−2πiftdt

is the Fourier transform of the matrix function A(t) and B̃∗(f) denotes the conjugate transpose of
the Fourier transform of B(t). Finally note that 〈U, V 〉 = 〈V,U〉∗ where ∗ denotes the conjugate
transpose. These definitions and properties greatly simplify the calculations below.

S.1.3 Mapping pairwise spike train correlations to synaptic input correlations

We now derive a pair of equations that will be used to analyze correlations in all of the network
models considered in the main text. To simplify calculations, we define the vector processes

S(t) = [Se
1(t) , . . . , Se

Ne
(t) , Si

1(t) , . . . , Si
Ni

(t)]T

which contains all of the spike trains in the network and where T denotes the transpose. The
vector process, I(t), representing all synaptic input currents, F (t), representing all feedforward
input currents and R(t), representing all recurrent inputs, are defined similarly. For notational
convenience, we will often omit the explicit dependence on t.

Using this notation,

R =
1√
N
JH ∗ S

is the vector of recurrent inputs and Eq. (S.1) can be written in vector form as

I = F +
1√
N
JH ∗ S (S.10)

where

J =

[
Jee Jei

Jie Jii

]
is an N × N matrix of synaptic weights written in block form and composed of the Na × Nb

sub-matrices

Jab =
[
Jabj,k

]Na,Nb

j,k=1

for j = 1, . . . , Na and k = 1, . . . , Nb. Similarly,

H(t) =

[
He(t) 0

0 Hi(t)

]
is composed of sub-matrices

Ha(t) = ηa(t)INa×Na

where INa×Na is the Na × Na identity matrix. The matrix convolution symbol, ∗, in Eq. (S.10)
indicates that elements of the matrix H(t) are convolved with elements of the vector S(t) instead
of multiplied [11].
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Using Eq. (S.10), the cross-spectral matrix between total synaptic input and feedforward synap-
tic input can easily be calculated using the properties of the cross-spectral operator outlined above.
Specifically,

〈I, F 〉 =

〈
F +

1√
N
JH ∗ S, F

〉
= 〈F, F 〉+

1√
N
JH̃〈S, F 〉

(S.11)

where H̃(f) is the Fourier transform of the matrix H(t). Correlations between total input currents
can be calculated similarly,

〈I, I〉 = 〈F +R,F +R〉

=

〈
F +

1√
N
JH ∗ S, F +

1√
N
JH ∗ S

〉
= 〈F, F 〉+

1√
N
JH̃〈S, F 〉+

1√
N
〈F, S〉H̃∗JT +

1

N
JH̃〈S, S〉H̃∗JT

(S.12)

where H̃∗ denotes the conjugate-transpose of H̃ and JT the transpose of J . Eqs. (S.11) and (S.12)
are used below to derive a mean-field theory of correlations for various network topologies.

The entire matrix of spike train cross-spectra can be approximated by combining Eqs. (S.11)
and (S.12) with the assumption of linear relations between 〈I, F 〉 and 〈S, F 〉, and between 〈I, I〉
and 〈S, S〉 [11]. Below, we show that a mean-field theory for correlations in the limit of large N can
be obtained from Eqs. (S.11) and (S.12) without appealing to this linear response approximation.
Instead, we only need to assume that neuronal transfer is O(1) in the sense that the statistics of
the total synaptic currents, Iaj (t), scale similarly with N to the statistics of the spike trains, Saj (t).
Mathematically speaking, we assume that

0 < lim
N→∞

avgj,k〈Saj , F bk〉
avgj,k〈Iaj , F bk〉

<∞ and 0 < lim
N→∞

avgj,k〈Saj , Sbk〉
avgj,k〈Iaj , Ibk〉

<∞ (S.13)

for all combinations of a, b = e, i. Here, avgj,k is the average over any subset of the indices
j = 1, . . . Na and k = 1, . . . Nb which contains a O(1) subset of all such indices. We additionally
assume that the activity of individual neurons has O(1) statistics, which is a characteristic feature
of balanced networks [12]. Specifically, we assume that

lim
N→∞

avgk〈Xa
k , Y

a
k 〉 <∞ (S.14)

for X,Y = S, I, F and a = e, i.

S.1.4 Correlations in the homogeneous network (Figure 1a-d)

We first consider correlations in a network where the statistics of connection probability and feedfor-
ward input only depend on neuron type (excitatory or inhibitory) and are otherwise uniform across
the network, as in Figure 1a-d. These calculations represent a generalization of the results in [5]
to networks with any neuron model for which synaptic integration is linear (whereas only binary
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neurons models were considered in [5]). In addition, our calculations are more easily generalized to
structured networks (as we show below) and are arguably more concise.

Define pab to be the expected number of synaptic inputs received by a neuron in postsynaptic
population a = e, i from a neuron in presynaptic population b = e, i and let jab/

√
N be the strength

of each such connection. Under these assumptions, the average connection strengths are

E
[
Jabjk/
√
N
]

= pabjab/
√
N.

Also assume that there are Nb = qbN neurons in population b = e, i where qe + qi = 1 and each of
qb, pab and jab is O(1) as N →∞.

Since neurons are statistically identical within each population, we define the population-
averaged cross-spectral matrices,

〈I,F〉 =

[
〈Ie, Fe〉 〈Ie, Fi〉
〈Ii, Fe〉 〈Ii, Fi〉

]
where

〈Ia, Fb〉 = avgj,k(〈Iaj , F bk〉)

is the average pairwise cross-spectrum between total input current to neurons in population a = e, i
and the feedforward input to neurons in population b = e, i. Implicitly, the j = k term is left out
of the average when a = b. All other 2× 2 mean-field cross-spectral matrices 〈F,F〉, 〈S,F〉, 〈S,S〉,
〈I, I〉, etc. are defined analogously. Note that all of these expressions depend on frequency, f , but
the dependence is omitted to simplify notation.

The asynchronous state is defined by the scaling laws

〈I, I〉, 〈S,S〉 ∝ O(1/N) and 〈I,F〉, 〈S,F〉 ∝ O(1/
√
N)

whenever feedforward inputs are moderately correlated,

〈F,F〉 ∝ O(1).

For the specific model considered in Figure 1a-d, we have

〈F,F〉 =

[
1 1
1 1

]
σ2
sÃs

where
Ãs(f) = 〈s, s〉(f) = τs

√
2πe−2f2π2τ2

s

is the power spectral density of s(t), obtained from the Fourier transform of the auto-covariance,
As(τ) (see Methods). To prove the self-consistency of the asynchronous state, we must show that
these scaling laws are consistent with the relationship between synaptic inputs and spike trains
given by Eq. (S.1) or, equivalently, Eq. (S.10).
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We begin by computing the mean-field cross-spectra between total inputs and feedforward
inputs to excitatory neurons, substituting Eq. (S.11) to obtain

〈Ie, Fe〉 = avgj,k〈Ie
j , F

e
k 〉

= avgj,k〈F e
j +Re

j , F
e
k 〉

= avgj,k

〈F e
j , F

e
k 〉+

1√
N

∑
b=e,i

η̃b

Nb∑
l=1

Jeb
jl 〈Sbl , F e

k 〉


= 〈Fe, Fe〉+ avgj,k

1√
N

∑
b=e,i

η̃b

Nb∑
l=1

Jeb
jl 〈Sbl , F e

k 〉

For large Ne and Ni, the inner sums can be replaced by their averages:

avgj,k

Ne∑
l=1

Jee
jl 〈Se

l , F
e
k 〉 → (Ne − 1)avgj,k,l 6=k

[
Jee
jl 〈Se

l , F
e
k 〉
]

+ avgk [Jee
kk〈Se

k, F
e
k 〉]

= Nqepeejee〈Se, Fe〉+O(1)

and

avgj,k

Ni∑
l=1

Jei
jl〈Si

l , F
e
k 〉 → Niavgj,k,lJ

ei
jl〈Si

l , F
e
k 〉

= Nqipeijei〈Si, Fe〉

as N →∞.

Putting this together gives

〈Ie, Fe〉 =〈Fe, Fe〉+
√
N (η̃eqepeejee〈Se, Fe〉+ η̃iqipeijei〈Si, Fe〉)

+O(1/
√
N).

The same computation can be applied to all other pairings of 〈Ia, Fb〉 for a, b = e, i to finally obtain

〈I,F〉 =〈F,F〉+
√
NW 〈S,F〉

+O(1/
√
N).

(S.15)

where

W =

[
wee wei

wie wii

]
(S.16)

and
wab(f) = η̃b(f)qbpabjab ∝ O(1).

Note that wab(0) = w0
ab and W (0) = W0 from the mean-field firing rate calculations surrounding

Eq. (S.2). Under our assumption that neuronal transfer is O(1) (see Eq. S.13), we have that

〈I,F〉 ∝ 〈S,F〉.
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as N grows large. Thus, Eq. (S.15) implies that

〈S,F〉 ∝ 〈F,F〉+
√
NW 〈S,F〉. (S.17)

This at first appears inconsistent since 〈F,F〉 ∝ O(1) and 〈S,F〉 appears on both sides of Eq. (S.17)
scaled differently with N . This apparent inconsistency is resolved in the asynchronous state [5],
wherein

〈S,F〉 ∝ O(1/
√
N)

and the two terms on the right hand side of Eq. (S.17) cancel in such a way that

〈I,F〉 = 〈F,F〉+
√
NW 〈S,F〉 ∝ O(1/

√
N).

This cancellation requires that

lim
N→∞

√
NW 〈S,F〉 = −〈F,F〉 (S.18)

and therefore that
lim
N→∞

√
N〈S,F〉 = −W−1〈F,F〉

which gives the asymptotic scaling of correlations between feedforward inputs and spike trains in
the asynchronous state, generalizing the derivation in [5].

Note that the matrix of average cross-spectra between excitatory and inhibitory neurons’ re-
current and feedforward inputs is given by

〈R,F〉 =
√
NW 〈S,F〉 = −〈F,F〉+O(1/

√
N).

In the models we consider, correlations between neurons’ feedforward inputs are non-negative,
〈F,F〉 ≥ 0. This provides a mathematical explanation for our observation in the Results that
feeedforward and recurrent inputs are negatively correlated.

We can use similar methods to compute the average pairwise cross-spectra between spike trains
in the recurrent network. Taking averages over the excitatory and the inhibitory populations in
Eq. (S.12) gives

〈I, I〉 =〈F,F〉+
√
N (W 〈S,F〉+ 〈F,S〉W ∗) +NW 〈S,S〉W ∗ +WAW ∗

+O(1/
√
N)

(S.19)

where W ∗ is the conjugate transpose of W . As before, the O(1/
√
N) term captures the diagonal

elements omitted from the averages that define 〈S,F〉. Finally, the term A is defined by

A(f) =

[
Ae(f)/qe 0

0 Ai(f)/qi

]
where

Aa(f) = avgk〈Sak , Sak〉

represents the average power spectral density of spike trains in population a = e, i. When spike
trains in the network are approximately Poisson processes, the power spectral density is approxi-
mately equal to the firing rate Aa(f) ≈ ra.

9



Combining this with Eq. (S.18) and the fact that 〈F,F〉 = 〈F,F〉∗ allows us to make the
substitutions √

NW 〈S,F〉 =
√
N〈F,S〉W ∗ = −〈F,F〉+O(1/

√
N)

Putting this together gives

〈I, I〉 ∝ −〈F,F〉+NW 〈S,S〉W ∗ +WAW ∗

for large N . We again invoke our assumption that neuronal transfer is O(1) so that 〈I, I〉 ∝ 〈S,S〉
for large N and therefore

〈S,S〉 ∝ −〈F,F〉+NW 〈S,S〉W ∗ +WAW ∗. (S.20)

This again presents an apparent inconsistency that is resolved in the asynchronous state where

〈S,S〉 ∝ O(1/N)

and the terms on the right hand side of Eq. (S.20) cancel so that

lim
N→∞

NW 〈S,S〉W ∗ = 〈F,F〉 −WAW ∗. (S.21)

and
lim
N→∞

N〈S,S〉 = W−1〈F,F〉W−∗ −A, (S.22)

which gives the asymptotic scaling of correlations between spike trains in the asynchronous state,
generalizing and simplifying the derivation in [5]. Here, W−∗ is the matrix inverse of W ∗. The
existence of this asynchronous state requires W to be invertible or, if W is not invertible, the matrix
〈F,F〉 must be in the range of the matrix operator U 7→WUW ∗ so that Eq. (S.21) has a solution.
For the parameters used in Figure 1a-d, W is invertible.

This approach to deriving of the existence of the asynchronous state can be applied to any
network model for which synaptic integration is linear, synaptic connection strengths scale like
O(1/

√
N), synaptic connection probability is O(1), and the inequalities in (S.13) are satisfied.

Thus, these calculations represent a generalization of the results in [5], which were specific to
binary neuron models. Below, we show that this approach facilitates the derivation of correlations
in discretely heterogeneous and spatially extended networks.

S.1.5 General treatment of correlations in discretely heterogeneous networks

Above, we considered a network with two populations, one excitatory and one inhibitory. Con-
nectivity statistics and feedforward inputs were homogeneous within each population. We now
generalize this approach to networks with an arbitrary number of populations. We then apply this
generalized analysis to show that the network in Figure 1e-h cannot realize an asynchronous state.

Consider a network of N neurons subdivided into M sub-populations where the mth subpopu-
lation contains Nm = qmN neurons for m = 1, . . . ,M . Generalizing Eq. (S.1), the input to neuron
j = 1, . . . , Nm in population m = 1, . . . ,M is given by

Imj (t) = Fmj (t) +
M∑
n=1

Nn∑
k=1

Jmnjk√
N

(ηn ∗ Snk )(t) (S.23)
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where Snk (t) is the kth neuron in population n = 1, . . . ,M . Define pmn to be the expected number
of synaptic inputs received by a neuron in postsynaptic population m = 1, . . . ,M from a neuron in
presynaptic population n = 1, . . . ,M and let Jmnjk = jmn be the strength of each such connection.
This assures that the expected value of Jmnjk is pmnjmn. Also assume that each of qm, pmn and jmn
is O(1) as N →∞. Now let

〈Fm, Fn〉 = avgj,k〈Fmj , Fnk 〉 ∝ O(1)

be the average cross-spectrum between feedforward inputs to neurons in population m = 1, . . . ,M
and n = 1, . . . ,M . We again implicitly omit terms for which m = n and j = k from the aver-
age. Define 〈Im, In〉, 〈Im, Fn〉, etc. analogously. Finally, define the M ×M mean-field correlation
matrices,

〈F,F〉 =
[
〈Fm, Fn〉

]
m,n

and similarly for 〈I, I〉, 〈I,F〉, etc.

All of this notational machinery is useful because it allows us to take averages over each sub-
population in Eqs. (S.11) and (S.12) to obtain

〈I,F〉 =〈F,F〉+
√
NW 〈S,F〉

+O(1/
√
N)

(S.24)

and
〈I, I〉 =〈F,F〉+

√
N (W 〈S,F〉+ 〈F,S〉W ∗) +NW 〈S,S〉W ∗ +WAW ∗

+O(1/
√
N)

which are identical to Eqs. (S.15) and (S.19) except that that the correlation matrices are M ×M
instead of 2× 2. The M ×M mean-field connectivity matrix is defined by

W =
[
wmn

]
m,n

where
wmn = η̃nqnpmnjmn ∝ O(1)

is the mean-field connectivity from populations n to m. The term A(f) is a diagonal M×M matrix
with diagonal elements [A(f)]n,n = An(f)/qn where An(f) = avgk〈Snk , Snk 〉(f) is the average power
spectral density of neurons in population n.

Thus, the analysis and derivation of Eqs. (S.15 – S.22) in Section S.1.4 is identical for hetero-
geneous networks, except with M ×M matrices instead of 2× 2. Specifically, the existence of the
asynchronous state again requires that Eqs. (S.18) and (S.21) are solvable. These equations are
necessarily solvable whenever W is invertible and the solution is given by Eq. (S.22) in such cases.
We next apply this generalized analysis to the network considered in Figure 1e-h.

S.1.6 Correlations in the discretely heterogeneous network from Figure 1e-h

For the example considered in Figure 1e-h, there are two excitatory and two inhibitory populations,
so the analysis from Section S.1.5 is applicable with M = 4. We can enumerate these populations as
e1, i1, e2 and i2 where e1 and e2 are excitatory, i1 and i2 are inhibitory. All neurons in populations e1
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and i1 receive the same time-varying feedforward input, s1(t). Similarly, all neurons in populations
e2 and i2 receive the time-varying input s2(t) which is uncorrelated with s1(t). Therefore, the
cross-spectral matrix between feedforward inputs is given by

〈F,F〉 =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

σ2
sÃs

where Ãs(f) is the cross-spectral density of s1(t) and also of s2(t).

Connectivity in the network only depends on neuron type (excitatory or inhibitory) so that

W =
1

2


wee wei wee wei

wie wii wie wii

wee wei wee wei

wie wii wie wii


where each wab is the same connection strength from the homogeneous network in Figure 1a-d,
defined above. Note that this matrix is comprised of four blocks, each identical to the W matrix
for the 2× 2 homogeneous network in Figure 1a-d. The multiplication by 1/2 is necessary because
there are half as many neurons in each population, e.g. qe1 = qe/2.

The symmetry of the network also implies that the average power spectral density is the same
in population e1 as e2 and similarly for i1 and i2. Therefore,

A(f) =
1

2


Ae(f)/qe 0 0 0

0 Ai(f)/qi 0 0
0 0 Ae(f)/qe 0
0 0 0 Ai(f)/qi


where Aa(f) is the average cross-spectral density of excitatory (a = e) or inhibitory (a = i) spike
trains and qa = 2qa1 = 2qa2 = 1/2 is the proportion of neurons that are excitatory (a = e) or
inhibitory (a = i).

Note that W is a singular matrix, 〈F,F〉 is not in the range of U 7→ WU and therefore also
not in the range of U 7→ WUW ∗. For example, note that for any 4 × 4 matrix V (including any
V = UW ∗), the first row of the product WV is the same as its third row, which is not true of 〈F,F〉.
Therefore, the asynchronous state cannot be obtained in the heterogeneous two-population network
considered in Figure 1a-d since Eqs. (S.18) and (S.21) do not admit solutions. In other words, it is
not mathematically possible for all elements of the 4× 4 matrix of spike train correlations,

〈S,S〉 =


〈Se1 , Se1〉 〈Se1 , Si1〉 〈Se1 , Se2〉 〈Se1 , Si2〉
〈Si1 , Se1〉 〈Si1 , Si1〉 〈Si1 , Se2〉 〈Si1 , Si2〉
〈Se2 , Se1〉 〈Se2 , Si1〉 〈Se2 , Se2〉 〈Se2 , Si2〉
〈Si2 , Se1〉 〈Si2 , Si1〉 〈Si2 , Se2〉 〈Si2 , Si2〉


to be O(1/N) because the assumption that all elements are O(1/N) leads to a mathematical
contradiction. Thus, the lack of a solution to Eqs. (S.18) and (S.21) explains why spike trains are
correlated in Figure 1e-h.
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To understand why the average correlation between all pairs in Figure 1e-h is approximately
zero, we can apply the mean-field correlation theory to pairwise correlations averaged across popu-
lations 1 and 2. Specifically, let 〈Fe, Fe〉 be the average correlation between all excitatory neurons,
regardless of population membership and similarly for 〈Fi, Fe〉, etc. Now re-define

〈F,F〉 =

[
〈Fe, Fe〉 〈Fe, Fi〉
〈Fi, Fe〉 〈Fi, Fi〉

]
(S.25)

to be the matrix correlations averaged over populations 1 and 2. Since half of the neuron pairs
receive perfectly correlated input and half receive perfectly uncorrelated input, we have

〈F,F〉 =
1

2

[
1 1
1 1

]
σ2
sÃs. (S.26)

The average mean-field connectivity between excitatory and inhibitory pairs is identical to the
connectivity for the homogeneous network from Section S.1.4, so W is the same 2 × 2 matrix
given in Eq. (S.16). Defining the 2 × 2 population-averaged correlation matrices, 〈I,F〉, 〈I, I〉,
etc. analogously to 〈F,F〉 in Eq. (S.25), we can apply the same mean-field correlation analysis
that was applied to the homogeneous network in Section S.1.4. The only difference is that 〈F,F〉
is divided by two, c.f. Eq. (S.26). Since W is invertible, this analysis yields a self-consistent
asynchronous solution.

We conclude that correlations averaged across all pairs from both populations (1 and 2) are
weak, but correlations averaged while respecting population membership are not. For example,
the average correlation between all excitatory neurons in the network is O(1/N), but the average
correlation between excitatory neurons in population 1 is O(1). However, note that since all
populations have the same number of neurons, the average covariance between all excitatory pairs
is formed by the average of the covariances between same- and opposite-population paris,

4〈Se, Se〉 = 〈Se1 , Se1〉+ 〈Se2 , Se2〉︸ ︷︷ ︸
same pop. pairs

+ 〈Se1 , Se2〉+ 〈Se2 , Se1〉︸ ︷︷ ︸
opposite pop. pairs

. (S.27)

Also note that the network is symmetric with respect to population membership in the sense
that both populations are statistically identical to one another. Thus, 〈Se1 , Se1〉 = 〈Se2 , Se2〉 and
〈Se1 , Se2〉 = 〈Se2 , Se1〉. The only way to have 〈Se, Se〉 ∝ O(1/N) and 〈Sem , Sen〉 ∝ O(1) while
respecting this symmetry is to have

〈Se1 , Se1〉 ∝ −〈Se1 , Se2〉+O(1/N)

so that the contributions from same- and opposite-population pairs cancel in Eq. (S.27) up to order
1/N . Indeed, this structure is observed in Figure 1f.

S.1.7 Correlations in continuously indexed networks with distance-dependent
connectivity

To compute the spatial shape of correlations and the conditions on the asynchronous state, we first
need to compute the shape of correlations between neurons’ feedforward inputs. Since spike trains
in the feedforward layer are uncorrelated, correlations between the feedforward input to neurons
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arise solely through overlapping presynaptic pools. Recall from Methods that the feedforward input
to neuron j = 1, . . . , Na in population a = e, i is defined by

F aj (t) =

NF∑
k=1

JaFjk√
N

(ηF ∗ SFk )(t)

where SFk (t) is the spike train of neuron k in the feedforward layer, ∗ denotes convolution, ηF (t) is
a postsynaptic current waveform (for which we set ηF = ηe in all simulations) and JaFjk is a synaptic
weight.

Our first goal is to write the cross-spectral density between feedforward inputs as a function of
the distance between the postsynaptic neurons in the recurrent layer. A similar strategy will later
be applied to compute correlations between spike trains in the recurrent network. First consider
the cross-spectral density between excitatory neuron j and excitatory neuron k,

〈F aj , F bk〉 =

〈
NF∑
l=1

JaFjl√
N
ηF ∗ SFl ,

NF∑
m=1

JbFkm√
N
ηF ∗ SFm

〉

=
|η̃F |2

N

NF∑
l,m=1

JaFjl J
bF
km〈SFl , SFm〉.

Since spike trains in the feedforward population are uncorrelated, the terms in this sum are only
non-zero when l = m (since otherwise 〈SFl , SFm〉 = 0). Also, since each SFm(t) is a Poisson process
with rate rF , the power-spectral density is 〈SFm, SFm〉 = rF . Putting these two facts together, we
have

〈F aj , F bk〉 = qF |η̃F |2rF
1

NF

NF∑
m=1

JaFjmJ
bF
km (S.28)

where qF = NF /N .

To obtain a spatially continuous description of correlations, now consider decomposing the
square domain, Γ, into a uniform grid of M small squares, each with side-length

√
δ where δ = 1/M

is the area of each grid square. Now, let x and y be the two-dimensional coordinates of the center of
two different grid squares and define the average cross-spectral density between feedforward input
to excitatory neurons in those squares,

{Fe, Fe}(x,y, f) := avgj∈e(x),k∈e(y)〈F e
j , F

e
k 〉(f)

= qF |η̃F (f)|2rF
1

NF

NF∑
m=1

avgj∈e(x),k∈e(y)J
eF
jmJ

eF
km

(S.29)

where j ∈ e(x) indicates that the excitatory neuron with index j lies in the grid square centered at
x ∈ Γ, and similarly for k ∈ e(y). The second line follows from Eq. (S.28) and from permuting the
average with the sum. The postsynaptic current waveform is given by ηF (t) = e−t/τF /τF for t > 0
which has Fourier transform,

η̃F (f) =
1

1 + 2πifτF
.

Recall that for all simulations we set τF = τe.
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Now note that the average in Eq. (S.29) is taken over N2
e /M

2 � 1 pairs of indices, j and k. In
the limit of large N , the average synaptic weights can be replaced by their expected values to get

{Fe, Fe}(x,y, f) = qF |η̃F (f)|2rF
1

NF

∑
z

j2
eF peF (x− z)peF (y − z) (S.30)

where the sum is over all neurons in the feedforward network with coordinates indicated by z ∈ Γ.
Recall from Methods that the expected number of connections from a neuron at coordinates z in
the feedforward layer to an excitatory neuron at coordinates x in the recurrent network is given by

peF (x− z) =
Kout

eF

Ne
G(x− z;α2

F )

is the probability of connection from a neuron in the feedforward input layer at coordinates z =
(z1, z2) ∈ Γ to an excitatory neuron in the recurrent layer at coordinates x = (x1, x2) ∈ Γ where

G(u;σ2) = g(u1;σ2)g(u2;σ2)

is a two-dimensional wrapped Gaussian function composed of one-dimensional wrapped Gaussians,

g(u;σ2) =
1√
2πσ

∞∑
k=−∞

e−(u+k)2/(2σ2).

Now note that the sum in Eq. (S.30) contains NF equally-spaced elements, z, so coupled with the
1/NF coefficient, it represents a Riemmann sum on Γ. For large NF , the sum can be written as an
integral to obtain

{Fe, Fe}(x,y, f) = qF |η̃F (f)|2rF j2
eF

∫∫
Γ
peF (x− z)peF (y − z)dz

= qF |η̃F (f)|2rF j2
eF

∫∫
Γ
peF (v)peF (y − x− v)dv

where the second line follows from the change of coordinates v = x − z. This demonstrates that
the {Fa, Fb}(x,y, f) depends only on u = y− x. With a slight abuse of notation, we can re-define
{·, ·} to be distance-dependent by making the substitution {Fa, Fb}(x − y, f) ← {Fa, Fb}(x,y, f).
With this re-definition, we can re-write the integral as

{Fe, Fe}(u, f) = qF |η̃F (f)|2rF j2
eF

∫∫
Γ
peF (v)peF (u− v)dv (S.31)

where {Fe, Fe}(u, f) now denotes the average cross-spectral density between the feedforward input
to pairs of excitatory neurons at coordinates x ∈ Γ and y ∈ Γ for which x − y = u. Since peF (v)
is a two-dimensional wrapped Gaussian as indicated above, the integral in Eq. (S.31) is a two-
dimensional circular convolution [6]. The circular convolution of a wrapped Gaussian with another
wrapped Gaussian simply sums the variances so that

{Fe, Fe}(u, f) = qF |η̃F (f)|2rF j2
eF

(
Kout

eF

Ne

)2

G(u; 2α2
F ).
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Thus, the cross-spectral density (and therefore covariance and correlation) between the feedforward
inputs to two excitatory neurons only depends on their distance, u, measured periodically on Γ,
and decays like a Gaussian with width parameter, 2α2

F , justifying these claims made in the main
text. We can apply the same computation to excitatory-inhibitory and inhibitory-inhibitory pairs
to finally obtain

{F,F}(u, f) :=

[
{Fe, Fe}(u, f) {Fe, Fi}(u, f)
{Fi, Fe}(u, f) {Fi, Fi}(u, f)

]
=

[
|weF (f)|2 weF (f)w∗iF (f)

wiF (f)w∗eF (f) |wiF (f)|2
]
rFG(u; 2α2

F )

(S.32)

where {Fa, Fb}(u, f) is the average cross-spectral density between the feedforward input to neurons
in population a and neurons in population b separated by the vector u, and where the mean-field
feedforward connection strength is

waF (f) =
√
qF paF jaF η̃F (f)

with

paF =
Kout
aF

Na

representing the network-averaged outgoing connection probability. Note that this implies
{F,F}(u, f) ∝ O(1) since all parameters in Eq. (S.32) are O(1).

Recall that the wrapped Gaussian, G(u; 2α2
F ), represents a two-dimensional Gaussian with

distance measured periodically on Γ. Therefore, Eq. (S.32) implies that correlations between feed-
forward inputs decay with distance like a Gaussian with a width parameter 2α2

F where α2
F is

the width parameter for the decay of feedforward connection probability. This result justifies the
claim made in the results that correlations between feedforward inputs are twice as broad as the
feedforward synaptic projections.

Now that we have computed the spatial profile of the cross-spectral densities between feedfor-
ward inputs to neurons, we use similar techniques to analyze the spatial structure of correlations
between spike trains in the recurrent network. First consider the same discretization of the network
into M grid squares that we used above. For such a discretization, Eq. (S.23) and the remaining
analysis in Section S.1.5 are applicable where each population represents neurons in one grid square.
In this context, the same calculations used to compute {F,F} above can be used to write Eq. (S.24)
as a Riemmann sum that converges to the integral equation

{I,F} ={F,F}+ {R,F}

={F,F}+
√
NW{S,F}+O(1/

√
N)

(S.33)

where

{I,F} =

[
{Ie, Fe} {Ie, Fi}
{Ii, Fe} {Ii, Fi}

]
is a matrix of spatially-dependent cross-spectra with components,

{Ia, Fb}(u, f) = {Ia, Fb}(x− y, f) = avgj∈a(x),k∈b(y)〈Iaj , F bk〉(f)
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with the average taken over neurons, j, in population a near coordinates x ∈ Γ and distinct neurons,
k, in population b near coordinates y ∈ Γ for which u = x−y (as in the definition of {Fe, Fe} above).
All other combinations, {S,F}, {R,F}, etc. are defined similarly. The term W in Eq. (S.33) is a
matrix of integral operators defined by

W =

[
Wee Wei

Wie Wii

]
with each component an integral operator defined by

Wabh(v, f) =

∫∫
Γ
wab(u, f)h(v − u, f)du (S.34)

where
wab(u, f) = qbjabη̃b(f)pab(u).

is the mean-field connectivity from neurons in population b = e, i at coordinates x to neurons in
population a = e, i at coordinates y. The Fourier transform of the postsynaptic current waveform
is given by

η̃b(f) =
1

1 + 2πifτb

for b = e, i. Also recall that connection probability is defined by

pab(u) = pabG(u;α2
b)

where

pab =
Kout
ab

Na

is the network-average number of connections probability from a neuron in population b = e, i to a
neuron in population a = e, i.

Under our assumption that neuronal transfer is O(1), we have that {I,F} ∝ {S,F} so that
cancellation is required in Eq. (S.33). Specifically, in the asynchronous state,

{R,F} =
√
NW{S,F} = −{F,F}+O(1/

√
N)

for large N . This explains why correlations between recurrent and feedforward inputs are approx-
imately a negative reflection of feedforward-feedforward input correlations in Figure 3b.

These calculations are analogous to the calculations for networks with discrete populations
considered above, except matrix equations like Eqs. (S.18) and (S.24) are replaced by integral
equations like Eq. (S.33). We next show that these integral equations can be transformed into a
sequence of matrix equations by transitioning to the spatial Fourier domain.

Since pab(u) = pab(x−y) is defined using periodic boundary conditions, i.e. it is defined in terms
of a wrapped Gaussian, the integral in Eq. (S.34) represents a circular convolution. This implies
that the spatial Fourier series of the convolution is the product of the Fourier series. Specifically,∫∫

Γ
[Wabh](v, f)e−2πin·vdv = w̃ab(n, f)h̃(n, f)
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where

w̃ab(n, f) =

∫∫
Γ
wab(u, f)e−2πin·udu

= qbjabη̃b(f)

∫∫
Γ
pab(u)e−2πin·udu

= qbjabη̃b(f)p̃ab(n)

(S.35)

is the two-dimensional discrete Fourier transform of wab(u, f) and similarly for h̃(n, f). Note that
w̃ab(0, 0) = w0

ab from the mean-field firing rate calculations surrounding Eq. (S.2) where 0 = (0, 0) is
the zero-vector. In these expressions, n = (n1, n2) represents a vector of discrete spatial frequency
modes composed of a pair of integers and n · u = n1u1 + n2u2 is the dot product. The inverse
transform is given by the two-dimensional Fourier series,

wab(u, f) =
∞∑

n1,n2=−∞
w̃ab(n, f)e2πin·u

and similarly for h̃(n, f). Therefore, for each spatial mode, n, and each temporal frequency, f , the
integral equation in Eq. (S.33) can be re-written as a system of matrix equations,

〈I,F〉(n, f) =〈F,F〉(n, f) +
√
NW (n, f)〈S,F〉(n, f)

+O(1/
√
N)

(S.36)

where W (n, f) is a 2× 2 matrix of complex numbers for defined by

W (n, f) =

[
w̃ee(n, f) w̃ei(n, f)
w̃ie(n, f) w̃ii(n, f)

]
and where we have abused notation to define the spatial cross-spectral operators in the Fourier
domain by

〈I,F〉(n, f) =

∫∫
Γ
{I,F}(u, f)e−2πin·udu

and similarly for 〈S,F〉(n, f), 〈F,F〉(n, f), etc. Note that W (0, 0) = W0 from the mean-field firing
rate calculations surrounding Eq. (S.2).

Note that for each spatial and temporal frequency, n and f , Eq. (S.36) has the same form as
Eq. (S.15). In summary, we used Eq. (S.11) and the continuous structure of the spatial network
to derive Eq. (S.36) which is analogous to Eq. (S.15) for the homogeneous network, except that it
depends on the spatial Fourier mode. In the same way, we can use Eq. (S.12) to derive

〈I, I〉 =〈F,F〉+
√
N (W 〈S,F〉+ 〈F,S〉W ∗) +NW 〈S,S〉W ∗ +WAW ∗

+O(1/
√
N)

(S.37)

which is identical to Eq. (S.19) except that W and all other terms depend on the spatial Fourier
mode, n. The matrix, A(n, f), represents contributions from the power spectral densities, which
are uniform across space and therefore only contribute to the n = (0, 0) Fourier mode to yield

A(n, f) =

[
Ae(f)/qe 0

0 Ai(f)/qi

]
δn
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where δn = 1 when n = (0, 0) and δn = 0 when n 6= (0, 0).

From here, the analysis of correlation proceeds identically to that in Section S.1.4 to finally
obtain 〈S,S〉 ∝ O(1/N) with

lim
N→∞

N〈S,S〉(n, f) = W−1(n, f)〈F,F〉(n, f)W−∗(n, f) +A(n, f) (S.38)

analogous to Eq. (S.21). While we only considered simulations with Gaussian-shaped connectivity
profiles in the Results, Eq. (S.38) can be applied to any network for which the Fourier transforms of
connection probabilities in Eq. (S.35) can be computed. However, the existence of the asynchronous
state requires the convergence of the Fourier series,

{S,S}(u, f) =

∞∑
n1,n2=−∞

〈S,S〉(n, f)e2πin·u (S.39)

where 〈S,S〉 is the solution from Eq. (S.38) and recall that {S,S}(u, f) is the mean-field cross-
spectral matrix between the spike trains of neurons at coordinates x and y for which u = x − y.
We next consider the specific case of Gaussian-shaped connection probabilities and show that an
asynchronous solution (i.e., the convergence of the series in Eq. (S.39)) requires that recurrent
projections are narrower than feedforward: αe, αi < αF .

To complete the computation, we need to compute 〈F,F〉(n, f) and W (n, f) explicitly, then
take the inverse transform in Eq. (S.38). Applying a Fourier transform to Eq. (S.32) gives

〈F,F〉(n, f) =

∫∫
Γ
{F,F}(u, f)e−2πin·udu

=

[
|weF (f)|2 weF (f)w∗iF (f)

wiF (f)w∗eF (f) |wiF (f)|2
]
rF e

−4π2α2
F |n|

2

where |n|2 = n2
1 + n2

2. Similarly, taking the spatial Fourier series of wab(u, f) gives

w̃ab(n, f) = wab(f)e−2π2α2
b |n|

2

where
wab(f) = qbpabjabη̃b(f)

is the network-averaged mean-field connectivity for a, b = e, i. Note that wab(0) = w0
ab from the

mean-field firing rate calculations surrounding Eq. (S.2). Putting this together gives,

W (n, f) =

[
wee(f)e−2π2α2

e |n|2 wei(f)e−2π2α2
i |n|

2

wie(f)e−2π2α2
e |n|2 wii(f)e−2π2α2

i |n|
2

]
.

Substituting these expressions into Eq. (S.38) gives

lim
N→∞

N〈S,S〉(n, f) =

[
Cee(f)e−2π2(2α2

F−2α2
e)|n|2 Cei(f)e−2π2(2α2

F−α
2
i −α

2
i )|n|2

C ie(f)e−2π2(2α2
F−α

2
e−α2

i )|n|2 C ii(f)e−2π2(2α2
F−2α2

i )|n|2

]
+A(n, f)

(S.40)
where

Cab(f) = W−1(0, f)〈F,F〉(0, f)W−∗(0, f)
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and 0 = (0, 0).

The Fourier series in Eq. (S.39) only converges if the entries in the matrix in Eq. (S.40) decay to
zero at large Fourier modes. This, in turn, requires that 2α2

F −α2
a−α2

b > 0 for all four combinations
of a, b = e, i. Thus, if αe > αF or αi > αF , the terms in Eq. (S.40) do not have a well-defined
inverse transform. This indicates that the system of integral equations in Eq. (S.33) (and the
analogous integral equations generalizing Eq. (S.19) to space) do not have solutions [10, 6]. Thus,
the equations that define the asynchronous state are not solvable, and therefore the asynchronous
state is not self-consistent, when recurrent projections (excitatory or inhibitory) are broader in
space than feedforward projections. Compare to results obtained for mean firing rates in [6].

When recurrent projections are narrower in space than feedforward projections (i.e., when
αe, αi < αF ), we can compute the Fourier series explicitly to obtain

lim
N→∞

N{S,S}(u, f) =

[
Cee(f)G(u; 2α2

F − 2α2
e) Cei(f)G(u; 2α2

F − α2
i − α2

i )

C ie(f)G(u; 2α2
F − α2

e − α2
i ) C ii(f)G(u; 2α2

F − 2α2
i )

]
+

[
Ae(f)/qe 0

0 Ai(f)/qi

]
where recall that G(u;σ2) is a two-dimensional wrapped Gaussian with width parameter σ (see
above). For the simulations in Figures 3 and 4, we take αe = αi = αrec and rename αffwd = αF .
This simplifies the expression above to yield

lim
N→∞

N{S,S}(u, f) =

[
Cee(f) Cei(f)

C ie(f) C ii(f)

]
G(u; 2α2

ffwd − 2α2
rec)

+

[
Ae(f)/qe 0

0 Ai(f)/qi

]
.

(S.41)

Thus, when αrec < αffwd (as in Figure 3), spike train cross-spectra are O(1/N) and decay with
distance like a Gaussian with width parameter

σSS = 2α2
ffwd − 2α2

rec.

To compute spike-count covariances as a function of distance, consider a pair of neurons at
coordinates x and y. Our theoretical results show that their spike count correlation is proportional
to G(u, σ2

SS) where u = x− y. Now note that the wrapped Gaussian function can be written as,

G(u;σ2
SS) =

1

2πσ2
SS

e−d
2/(2σ2

SS) +O
(
e−1/(2σ2

SS)
)

(S.42)

where the last term represents artifacts from multiple “wraps” of the wrapped Gaussian and

d =
√

min(u1, 1− u1)2 + min(u2, 1− u2)2

is distance, measured periodically on Γ. Since e−1/(2σ2
SS) ≈ 1 × 10−87 for the parameters used

in Figure 3, the last term in Eq. (S.42) can be ignored. Combining this with Eq. (S.7) gives an
equation for spike count covariances as a function of distance,[

Cee
SS(d) Cei

SS(d)
C ie
SS(d) C ii

SS(d)

]
=
T

N

∫ ∞
−∞

e−d
2/(2σ2

SS)

2πσ2
SS

[
Cee(f) Cei(f)

C ie(f) C ii(f)

]
KT (f)df

+
T

N

[
reFFe/qe 0

0 riFFi/qi

]
+ o(1/N)

(S.43)
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where CabSS(d) is the average spike count covariance between spike trains from populations a, b = e, i
and T is the window size over which spikes are counted, ra is the average firing rate of neurons in
population a and FFa is the average Fano factor computed using the same counting window, T .
The term o(1/N) represents terms that converge to zero faster than 1/N , i.e., N × o(1/N)→ 0 as
N →∞. We used the fact that the spike count variance is proportional to the Fano factor,

FFa =
spike count variance

spike count mean
=

1

ra

∫ ∞
−∞

Aa(f)KT (f)df.

Eq. (S.43) can be integrated numerically to obtain spike count covariances over any counting window
size, but is greatly simplified by considering spike counts over large time windows.

If the counting window, T , is much larger than the correlation timescale of the spike trains, i.e.
if cross-covariance function between the spike trains converges nearly to zero by lag τ = T then,
from Eq. (S.9), the spike count covariances are approximated by taking f = 0 in Eq. (S.41). This
gives, [

Cee
SS(d) Cei

SS(d)
C ie
SS(d) C ii

SS(d)

]
≈ T

N

[
W−1

0 C0
FFW

−T
0

] e−d2/(2σ2
SS)

2πσ2
SS

+
T

N

[
reFFe/qe 0

0 riFFi/qi

]
where

W0 =

[
qepeejee qipeijei

qepiejie qipiijii

]
is the mean-field connectivity matrix from Eq. (S.3), W−T0 is the inverse of its transpose and

C0
FF = 〈F,F〉(0, 0) =

[
j2
eF p

2
eF jeF peF jiF piF

jiF piF jeF peF j2
iF p

2
iF

]
qF rF

quantifies the network-averaged zero-frequency cross-spectra between neurons’ feedforward inputs.

However, this only gives the covariance not the correlation between spike counts. Moreover, it
requires the computation of the Fano factors, which we have not derived. Under the assumption
that spiking is Poisson-like in the network, FFa ≈ 1. Combining this with the fact that the spike
count variance of spike trains in population a = e, i is equal to FFaraT , we obtain an approximation
to the spike count correlation coefficients,[

ρee
SS(d) ρei

SS(d)
ρie
SS(d) ρii

SS(d)

]
≈ 1

N

[
R−1W−1

0 C0
FFW

−T
0 R−1

] e−d2/(2σ2
SS)

2πσ2
SS

+

[
1/(Nqe) 0

0 1/(Nqi)

] (S.44)

where

R =

[ √
re 0
0

√
ri

]
and firing rates, ra, in the limit of large N are given by Eq. (S.5). The 1/(qaN) terms in Eq. (S.44)
represent contributions from intrinsically generated variability to correlations [5], which are orders of
magnitude smaller than contributions from feedforward input covariability, C0

FF . We can therefore
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safely omit these terms from our computations, since all of our examples had strongly correlated
feedforward input. Performing the matrix arithmetic gives an approximation to the correlation
between excitatory neurons as a function of distances,

ρee
SS(d) =

(jeijiF peipiF − jeF jiipeF pii)
2 qF rF

N (jeijiepeipie − jeejiipeepii)
2 q2

ere2πσ2
SS

e−d
2/(2σ2

SS) (S.45)

To generate the dashed red curve in Figure 3e, we used Eq. (S.45), except that we had to account for
the coarse binning of neurons by distance. When computing the average correlation as a function
of distance from simulations (the solid curve in Figure 3e), we coarsely binned neuron pairs by
distance. For example, the first data point represents the average spike count correlation between
sampled pairs with distances between 0 and 0.15. This coarse binning was necessary to reduce the
statistical error in estimating extremely weak correlations from simulations. However, because of
the two-dimensional domain, distant pairs are over-represented within each bin. For example, the
first bin contains fewer pairs with a distance between 0 and 0.075 than it contains pairs with a
distance between 0.075 and 0.15. This is further complicated by the fact that distance is measured
periodically. To compute the dashed curve in Figure 3e, we computed the pairwise distance between
all sampled neurons from the simulation, substituted all of these distances into Eq. (S.44), then
computed the average value over each distance bin. This naturally corrects the sampling problem.

S.1.8 Approximate correlations at finite network size when recurrent projec-
tions are broader than feedforward

Above, we concluded that spike count correlations are O(1/N) at all distances only when feedfor-
ward projections are spatially broader than recurrent projections (αe, αi < αF ), and we also derived
the asymptotic correlations in that case. We have not yet derived the correlations when recurrent
projections are broader than feedforward (αe, αi > αF ). Here, we provide a linear approximation at
finite N that explains the non-monotonic dependence of correlation on distance when αe, αi > αF .

The central idea behind this approximation comes from previous studies of correlations trans-
fer [11, 1]. Our computations above do not depend on the precise transfer from input correlation
to spiking correlation, and instead relied only on the assumption that this transfer is O(1) in the
sense of Eqs. (S.13). We now show that accounting for correlation transfer allows us to derive an
approximation to the correlation structure at finite N that is applicable even when αe, αi > αF .

Consider two neurons in the network, receiving input currents, Iaj (t) and Ibk(t). When input

correlations are weak, (〈Iaj , Ibk〉 � 〈Iaj , Iaj 〉), the cross-spectrum between two neurons’ spike trains
is approximately linearly related to the cross-spectrum between their input currents [1],

〈Saj , Sbk〉 ≈ Laj 〈Iaj , Ibk〉Lb∗k (S.46)

where Laj (f) is the susceptibility function of neuron j in population a = e, i [11, 1]. Likewise, the
cross-spectra between feedforward inputs and spike trains are approximated by

〈Saj , F bk〉 ≈ Laj 〈Iaj , F bk〉. (S.47)

Combining these approximations with Eqs. (S.11) and (S.12) gives a linear approximation to the
entire N ×N matrix of cross-spectra in the network [11, 4],

〈S, S〉 =

(
L−1 − 1√

N
JH̃

)−1

〈F, F 〉
(
L−1 − 1√

N
JH̃

)−∗
. (S.48)
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where −∗ denotes the inverse of the conjugate transpose, L(f) is a diagonal N ×N matrix of each
neuron’s susceptibility function and all other terms are N ×N matrices defined above. Eq. (S.48),
which is accurate to first order in the magnitude of correlations, has been derived for weakly
coupled networks of integrate-and-fire neurons with white noise inputs [11] and for networks of
linearly interacting point processes [4], except those studies do not include the

√
N scaling that is

characteristic of balanced networks.

In sparsely connected networks with a dominant source of Gaussian white noise input, the
susceptibility functions can be computed using a Fokker-Planck formalism [11]. Unfortunately, this
approach is not directly applicable to the networks considered in our study because neurons are
densely and strongly connected and inputs are temporally correlated, so Fokker-Planck techniques
cannot be used to compute the susceptibility functions.

However, recall from Eq. (S.9) that spike count covariances computed over large counting win-
dows are given by the zero-frequency cross-spectra. Hence, if we are only interested in computing
spike count covariances over large time windows, we only need to compute the susceptibility func-
tions at zero frequency, Laj (0). This is made possible by noting that a neuron’s susceptibility
function at f = 0 is simply the gain of the neuron, i.e. the derivative of the neuron’s f-I curve
evaluated at its steady-state firing rate in the network [1]. Thus, if we knew the gain of every neuron
in a network, we could use Eq. (S.48) to compute the entire matrix of cross-spectra. However, we
do not know the gains and, even if we did, this large N × N matrix computation would provide
little intuition.

Instead, we extend the spatial mean-field approach developed above to transform the N × N
equation (S.48) into the 2× 2 mean-field equation,

〈S,S〉 =
(
G−1 −

√
NW

)−1
〈F,F〉

(
G−1 −

√
NW

)−∗
. (S.49)

where

G =

[
ge 0
0 gi

]
and ge and gi are the average gains of the excitatory and inhibitory neurons in the network. The
2 × 2 matrices, 〈S,S〉, W and 〈F,F〉, are the same as defined in the previous section except they
are implicitly evaluated at f = 0. In particular,

W (n) =

[
w̃ee(n) w̃ei(n)
w̃ie(n) w̃ii(n)

]
where

w̃ab(n) = qbjabp̃ab(n).

Similarly,

〈F,F〉(n) =

[
|weF (n)|2 weF (n)w∗iF (f)

wiF (n)w∗eF (n) |wiF (n)|2
]
rF

where rF is the firing rate of neurons in the feedforward layer and

waF =
√
qF jaF p̃aF (n)
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Supplementary Figure 1: Fitting f-I curves of neurons from simulations. a) Firing rate as a
function of time-averaged total synaptic input from the simulation in Figure 4. Blue dots are from 400
randomly selected excitatory neurons, the black curve is the best fit thresholded quadratic and the red dot is
placed at the population-average firing rates, at which the gain can be computed as the derivative of the black
curve. b) Same as (a), but for inhibitory neurons.

In these expressions, qb and jab are as defined previously and

p̃ab(n) =

∫∫
pab(u)e−2πin·udu (S.50)

where pab(u) is the probability of connection from a neuron in population b = e, i, F to a neuron
in population a = e, i at coordinates x and y with u = x− y.

Note that, if W is invertible and the small contribution from A is ignored, then Eq. (S.49) implies
Eq. (S.38) in the large N limit. In other words, Eq. (S.49) provides a finite-N generalization to
Eq. (S.38). Moreover, since 〈F,F〉(n) is a convergent Fourier series and G−1 does not depend on
n, then the Fourier series in Eq. (S.39) necessarily converges at finite N when Eq. (S.49) is used
to compute the Fourier coefficients, 〈S,S〉(n). Therefore, Eq. (S.49) gives a well-defined solution
at finite N even when recurrent projections are broader than feedforward (αe, αi > αF ). Indeed,
Eq. (S.49) gives a well-defined solution for any chosen connection probability profiles, not just
Gaussian-shaped connectivity. One only needs to compute the Fourier transform of connection
probability profiles from Eq. (S.50).

The only remaining question is how to compute the average gains, ge and gi. To accomplish
this, we sampled the synaptic input currents and firing rates of 400 excitatory and 400 inhibitory
neurons (Supplementary Figure 1a,b; blue dots). We then fit the relationship between these mean
inputs (I) and mean firing rates (r) to a thresholded quadratic f-I curve,

r =

{
a1(I − θ) + a2(I − θ)2 I > θ

0 I ≤ θ
,

obtaining the best fit values of a1, a2 and θ using the curve fitting toolbox in Matlab (Supplementary
Figure 1a,b; black curve). Once the f-I curve is fit, the gain is approximated by the derivative
g = dr/dI = a1 + 2a2I evaluated at the mean firing rate (Supplementary Figure 1a,b; red dot).

Once the gains are approximated, Eq. (S.49) can be used to compute 〈S,S〉(n) at any given
n = (n1, n2). The zero-frequency (f = 0) cross-spectral matrices as a function of neuron distance
can then be computed numerically by numerically summing the Fourier series in Eq. (S.38). Spike
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count correlations over large time windows are then given by applying Eq. (S.9) following the same
approach used in Supplementary Section S.1.7.

This approach was used to compute the dashed red curve in Figure 4e. We also tested this
approximation on several examples with various widths and shapes of the feedforward and recurrent
connection probability profiles and found it to be highly accurate (Supplementary Figure 2).

We first considered an example that is identical to the one in Figure 4, except recurrent and
feedforward connection probabilities were made narrower by a factor of two (σrec = 0.125, σffwd =
0.05). This produced a similar non-monotonicity with a larger peak correlation (Supplementary
Figure 2a; compare to Figure 4e).

We next considered an example where recurrent connections were only slightly broader than
feedforward (αrec = 0.055, αffwd = 0.05; Supplementary Figure 2b, bottom). The non-monotonicity
persisted in this case, but was less dramatic and correlations were weaker overall (Supplementary
Figure 2b, top). Similar effects were observed when feedforward and recurrent projections had iden-
tical widths (αrec = αffwd = 0.05; Supplementary Figure 2c). When feedforward projections were
slightly broader than recurrent (αrec = 0.05, αffwd = 0.055), there was a weak non-monotonicity
and the theoretical calculations were less accurate (Supplementary Figure 2d). Hence, at finite N ,
correlations can still depend non-monotonically on distance when αffwd > αrec.

We next considered an example where, as in Figures 6-7 of the main text, the recurrent exci-
tatory connections are broader than feedforward connections, but recurrent inhibition is narrower
than feedforward (σe = 0.15, σi = 0.05, σF = 0.075). Since the asynchronous state requires
that excitatory and inhibitory recurrent projections are narrower than feedforward (see above), the
moderate magnitude and non-monotonic shape of correlations persisted (Supplementary Figure 2e).

We then considered an example where feedforward connection probabilities decay to half their
peak value instead of decaying to zero,

paF (x− y) ∝ 0.5G(x− y;αffwd) + 0.5

for a = e, i, but they decay to this value faster than recurrent projections decay to zero (αrec = 0.1
and αffwd = 0.05; Supplementary Figure 2f, bottom). Feedforward connection probabilities could
be viewed as “broader” than recurrent in this example since they do not decay to zero at large
distances, but recurrent connection probabilities do. However, the moderate correlation magnitude
and non-monotonic dependence of correlation on distance persists (Supplementary Figure 2f, top),
suggesting that this connectivity is not consistent with the asynchronous state as N → ∞. This
can be understood by computing the Fourier series of feedforward connection probabilities,

p̃aF (n) ∝ 0.5e−4π2α2
ffwd|n|

2
+ 0.5δn

where δn = 1 when n = (0, 0) and δn = 0 otherwise. Therefore, the overall dependence of p̃aF (n)
on n 6= (0, 0) is unchanged. As a consequence, we still have

〈F,F〉(n) ∝ e−4π2α2
ffwd|n|

2

and
W (n) ∝ e−2π2α2

rec|n|2 .

so that the N → ∞ asynchronous solution from Eq. (S.38) does not have a well-defined inverse
transform when αrec > αffwd.
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Supplementary Figure 2: Correlation as a function of distance for various connection probability
profiles. a) Bottom: Connection probability from feedforward layer (black) and connection probability within
the recurrent layer (purple) as a function of neuron distance. Each curve is normalized by its peak. Top:
Mean spike count correlation between excitatory neurons as a function of neuron distance from simulations
(black; ±SEM; from randomly sampling 5000 excitatory neurons) and from the theoretical calculation using
Eq. (S.49) (red). b-h) Same as (a) except in (e) where recurrent excitatory (blue) and inhibitory (red)
connection probabilities have different profiles.
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We next considered an example where recurrent connection probabilities decay to a non-zero
value,

pab(x− y) ∝ 0.5G(x− y;αrec) + 0.5

for a, b = e, i, feedforward connection probabilities decay to zero,

paF (x− y) ∝ G(x− y;αffwd)

and where αrec < αffwd (αrec = 0.05 and αffwd = 0.15; Supplementary Figure 2g, bottom). Perhaps
unsurprisingly, the moderate magnitude of correlations and the non-monotonic dependence on
distance persists in this case (Supplementary Figure 2g, top).

We next considered an example where recurrent connection probabilities decay to a non-zero
value and feedforward connection probability decays to zero (as above), except with αrec < αffwd

(αrec = 0.05 and αffwd = 0.15; Supplementary Figure 2h, bottom). Even though recurrent connec-
tion probabilities are “broader” in the sense that they do not decay to zero, spike count correlations
are extremely weak (Supplementary Figure 2h, top). This can again be understood by noting that
only the zero-Fourier mode is affected by having recurrent connection probabilities decay to a non-
zero values. Therefore Eq. (S.38) has a well-defined inverse transform when αrec < αffwd, so the
asynchronous solution is realized.

To better understand these results, we now derive a more precise condition that must be satisfied
for correlations to be O(1/N) over every distance. We showed above that the cancellation required
for O(1/N) correlations at every distance depends on the convergence of the Fourier series in
Eq. (S.39) with coefficients defined by Eq. (S.38). This, in turn, requires that 〈S,S〉 from Eq. (S.38)
decays to zero as |n| → ∞, and therefore only depends on the behavior of 〈F,F〉 and W (n) at high
Fourier modes (|n| large). Note that W (n) ∝ p̃ab(n) for a, b = e, i and 〈F,F〉 ∝ [p̃aF (n)]2 so, from
Eq. (S.38), O(1/N) correlations at every distance requires that

lim
|n|→∞

∣∣∣∣ p̃aF (n)

p̃ab(n)

∣∣∣∣→ 0 (S.51)

for a, b = e, i. In other words, the spatial Fourier series of feedforward connection profiles must
decay to zero faster than the Fourier series of recurrent connection profiles. Compare to previous
findings for the existence of a balanced firing rate solution [6].

For Gaussian-shaped connectivity, Eq. (S.51) implies that αrec < αffwd. More generally, a
quickly decaying Fourier series implies that power is concentrated at low spatial frequencies, giving
a broad, slowly varying profile in the spatial domain. Conversely, a slowly decaying Fourier series
implies high frequency modes representing sharp changes in connectivity over short ranges. There-
fore, recurrent connectivity profiles must display “sharper” or “narrower” features than feedforward
if correlations are to be O(1/N) at all distances. It is easily checked that Eq. (S.51) is violated in
panels a-g of Supplementary Figure 2 but satisfied in panel h.

When Eq. (S.51) is violated, Eq. (S.38) no longer gives a well-defined asymptotic correlation
profile since its inverse transform, i.e. the sum of the Fourier series in Eq. (S.39), does not exist.
Instead, the finite N correction in Eq. (S.49) must be used in place of Eq. (S.38). To understand
why this gives rise to negative correlations and a non-monotonic dependence of correlation on
distance, first note that the zero spatial Fourier mode (n = (0, 0)) represents the average over the
entire network,

〈S,S〉(0, 0) =

∫∫
Γ
{S,S}(u)du
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As long as the balance conditions in Eq. (S.6) are satisfied, W (0, 0) is invertible and therefore

〈S,S〉(0, 0) ∝ O(1/N)

by Eq. (S.49). Therefore, the average cross-spectral density over all neuron pairs is nearly zero for
all of the networks we considered (see, e.g., Figures 3e and 4e dashed gray). This can also be seen
by applying the homogeneous mean-field theory of correlations from Section S.1.4 to a spatially
extended network, i.e. by ignoring the spatial dependence and averaging over pairs at all distanced
in the calculations.

Therefore, when Eq. (S.51) is not satisfied but W (0, 0) is invertible, correlations cannot be
O(1/N) at every distance, but they are O(1/N) when averaged over all neuron pairs. Hence,
positive and negative correlations at various distances must cancel to obtain the O(1/N) average.
This explains the combination of positive and negative correlations in Figure 4 and Supplementary
Figure 2a-g. For all examples we considered, this cancellation was realized by a non-monotonic de-
pendence of correlation on distance. This shape determined by the precise dependence of 〈S,S〉(n)
on n as determined by Eq. (S.49).

Note that, despite the fact that the average pairwise correlation is O(1/N), the average value
of the correlation curves in Figure 4e and Supplementary Figure 2 is not close to zero. This is
because, in the square-shaped network, there are more neuron pairs at larger distances than there
are nearby neuron pairs. When the average is taken over all neuron pairs, the negative correlations
at moderate distances contribute more to the average than the positive correlations at smaller
distances. Therefore, the positive average correlation between nearby neuron pairs must be larger
than the negative average correlation between more distant (but more numerous) pairs.

We have shown why correlations are not O(1/N) at every distance when αrec > αffwd and also
why there is a combination of positive and negative correlations in this case. To understand the
source of the non-monotonic dependence of correlation on distance, we must inspect the dependence
of 〈S,S〉(n) on n. Consider, for simplicity, Gaussian-shaped connection probabilities in which
recurrent excitatory and inhibitory connections have the same width, αrec = αe, αi and where the
feedforward connection profile is narrower, αffwd = αFF < αrec as in Figure 4. In this case, we can
write

〈F,F〉(n) = 〈F,F〉(0, 0)e−4α2
ffwdπ

2|n|2 ,

W (n) = W (0, 0)e−2α2
recπ

2|n|2 .

Note also that G does not depend on n, so effectively G(n) = G(0, 0). The shape of the correlation
profiles seen in Figure 4e and Supplementary Figure 2 is inherited by the dependence of 〈S,S〉(n)
on n. As a rough approximation to the dependence of 〈S,S〉(n) on n, we therefore ignore the
contribution of 〈F,F〉(0, 0) and W (0, 0) and G(0, 0) by setting them equal to 1 in Eq. (S.49), which
gives the rough approximation

〈S,S〉 ∼ h(n) := ε

(
e−2α2

ffwdπ
2|n|2

√
ε+ e−2α2

recπ
2|n|2

)2

(S.52)

where ε ∝ 1/N and recall that this only captures the shape of 〈S,S〉(n) as |n| changes, not the
precise value. When αrec < αffwd, this becomes

h(n) = εe−4(α2
ffwd−α

2
rec)π2|n|2 + o(ε) (S.53)
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Supplementary Figure 3: Dependence of cross-spectra on Fourier mode. a) The cross-spectrum,
〈Se, Se〉(n), between excitatory neurons as a function of the magnitude of the spatial Fourier mode, |n|,
computed using Eq. (S.49) with parameters from the example in Figure 4. The curve is normalized by its
peak. b) The approximation, h(n), to the cross-spectrum computed using Eq. (S.53) and plotted as a function
of spatial Fourier mode, |n|, with parameters from the simulation in Figure 4.

and inverting the Fourier transform gives

{S,S}(u) ∼ εG(u; 2α2
ffwd − 2α2

rec) + o(ε)

in agreement with the solution from Eq. (S.41) for the asynchronous state.

When αrec > αffwd, h(n) does not have a well-defined inverse Fourier transform at ε = 0,
so the o(ε) term in Eq. (S.53) needs to be accounted for. At low spatial frequencies (|n| small),
e−2α2

ffwdπ
2|n|2 and e−2α2

recπ
2|n|2 are moderate in magnitude, so the

√
ε in Eq. (S.52) can be ignored

and Eq. (S.53) is accurate, so h(n) is small in magnitude (on account of the ε = 1/N coefficient).
When |n| is large enough that e−2α2

recπ
2|n|2 �

√
ε, but not large enough that e−2α2

ffwdπ
2|n|2 �

√
ε,

we can ignore the e−2α2
recπ

2|n|2 in the denominator of Eq. (S.52) to get

h(n) ≈ e−4α2
ffwdπ

2|n|2 .

Thus, h(n) initially increases with |n|. For sufficiently large |n|,

e−2α2
ffwdπ

2|n|2 �
√
ε,

so
h(n) ≈ 0.

Thus, 〈S,S〉(n) initially increases from a O(1/N) value toward a O(1) value, then decreases toward
zero as |n| grows. This is demonstrated in Supplementary Figure 3. Hence, 〈S,S〉(n) has a
peak value at some |n| > 0. Now note that, as long as connectivity is symmetric, pab(u1, u2) =
pab(−u1, u2) and pab(u1, u2) = pab(u1,−u2), then the same holds for {S,S}(u), so Fourier series in
Eq. (S.39) can be re-written as

{S,S}(u) =
∞∑

n1,n2=−∞
〈S,S〉(n) cos(2πn1u1) cos(2πn2u2). (S.54)

If the peak value of 〈S,S〉(n) occurs at some |n| > 1 (as in the example from Figure 4, demonstrated
in Supplementary Figure 3), then the series in Eq. (S.39) has a non-monotonic dependence on u1

and u2 since a higher Fourier mode dominates.
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Supplementary Figure 4: Spike count correlations, firing rates, and input currents at increas-
ing network size. a) Average excitatory (bottom) and inhibitory (top) firing rates from simulations with
increasing numbers of neurons (solid curves) and from from the theoretical predictions in Eqs. (S.5) (dotted
gray lines). Blue (red) curves are for simulations identical to the one in Figure 3 (Figure 4), except that
the number of neurons was varied, with connection probability held fixed, and simulation time was increased
from 22 s to 42 s. b) Average excitatory (top), inhibitory (bottom) and total (middle) synaptic input cur-
rent to 200 randomly sampled excitatory neurons from the simulations in (a). Synaptic input currents were
normalized by capacitance and are therefore reported in units V/s. c) Mean spike count correlation between
neuron pairs whose distance is between 0 and 0.1 (purple); between pairs with distance between 0.2 and 0.3
(green); and between pairs chosen randomly at all distances (black). Computed for simulations from the blue
curves in (a). Correlations computed from a sample of 5000 randomly selected excitatory neurons. d) Same
as (c), but on a log-log scale. Dashed lines are best fit lines of slope -1. e,f) Same as (c,d), but for the
simulations from the red curves in (a,b).

S.2 Correlations, firing rates and input currents from network
simulations at increasing network size

Our mathematical analysis of balanced networks (see above and Results) is asymptotically valid
in the limit of large network size (large number of neurons, N , and number of synaptic inputs,
K). To test the convergence of the simulations as N increases, we performed simulations with
increasing values of N , where connection probabilities are fixed so that K increases proportionally
(Supplementary Figure 4).

When recurrent projections are narrower in space than feedforward projections (αrec < αffwd, as
in Figure 3), the average correlation between nearby or more distant neuron pairs decays to zero as
N increases (Supplementary Figure 4a). The decay rate is approximately O(1/N) (Supplementary
Figure 4b). When recurrent projections are broader in space than feedforward projections (αrec >
αffwd, as in Figure 4), the average correlation between nearby neuron pairs converges toward a
positive number, the average correlation between neurons pairs at intermediate distances converges
to a negative number, and the average correlation between neurons at all distances converges toward
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zero (Supplementary Figure 4c). The decay of the average over all paris is approximately O(1/N)
(Supplementary Figure 4d).

Despite the differences in correlations, both networks produce similar firing rates within a
reasonable range that converge to a finite limit for large N (Supplementary Figure 4e; see Section
S.1.1 for a derivation of the theoretical rates). The asymptotic balance between excitation and
inhibition is demonstrating by plotting the mean excitatory, inhibitory and total synaptic input as
a function of N (Supplementary Figure 4f). Note that “excitatory” synaptic inputs include both
recurrent and feedforward excitation.
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Supplementary Figure 5: Further statistical analysis of correlations in macaque V1. a,b) Same
as Figures 5b and 7b respectively, but distances are binned more finely. Correlations decreased from the first
to the second bin, from the first to the third bin and from the second to the third bin (all three with p<10−5;
one-sided unpaired t-test). Correlations increased from the fifth to the seventh bin (p=0.008; one-sided un-
paired t-test; t-value=2.4; df=1,704). The increase of correlations over the last three bins is significant under
a Bonferroni correction for multiple comparisons over the last three bins (corrected p-value = 0.024). The
apparent increase in correlation from the third to fourth bin is not significant (p=0.18; one-sided unpaired
t-test; t-value=0.9; df=2,249). Distances 3.5-5mm are not shown since there were few such pairs and dis-
tances 5+mm are not shown because the precise distances for such pairs are not known, so they cannot be
resolved into 0.5 mm bins (see Experimental Procedures and Figure 7b). Including these data does not alter
significance (p-values remain <0.025). c) Histogram of all residual correlations. d,e,f) Solid black curves
are the same as Figures 5b, 5c and 7b respectively, except we only included data from the two recording ses-
sions in which linear electrodes were present. The increase from the third to the fifth bin was still significant
when only including data from these two recording sessions (p=10−4; one-sided, unpaired t-test; t-value=3.7;
df=1,064). The dashed gray curves are the same as Figures 5b, 5c and 7b respectively.
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S.3 Further statistical analysis of the dependence of residual cor-
relation on electrode distance in macaque V1

In Figures 5b and 7b, we considered spike count correlations and residual correlations as a function
of neuron distance, where distances were binned with a bin with of 1 mm. In Supplementary
Figure 5a,b, we show the same data with a finer bin size of 500 µm. Bin sizes cannot be made much
smaller because electrodes were spaced at 400 µm in the recordings. The non-monotonic dependence
of correlations on distance remains statistically significant under this finer spatial binning, even
though the increase between consecutive bins is not significant (see figure caption). Finer binning
of distance necessarily reduces significance as the change in means between nearby consecutive bins
becomes small. This issue points to a weakness in using binned data to test for an increase in
residual correlations with distance.

Where t-tests were used, data distribution was assumed to be normal but this was not formally
tested. The distribution of residual correlations is plotted in Supplementary Figure 5c.

To further test the significance of the increase of residual correlations above 2 mm, while avoiding
any potential issues arising from binning, we performed linear regression on all of the unbinned
residual correlations with distances greater than or equal to 2 mm. The best fit line had a positive
slope (p=0.0043; F-test; ), indicating that residual correlations increase with distance after 2 mm.
Performing the same regression analysis on the correlations with distances less than 2 mm yields
a negative slope (p < 10−10; F-test; F-value=8.2; df=2,966), supporting the prediction from our
theoretical model that residual correlations depend non-monotonically on distance.

In Figures 5b, 5c and 7b of the main text, we used data from eight recording sessions. In
only two of those sessions, linear electrodes were placed ∼5-10 mm away from the electrode array.
Hence, Figures 5b, 5c and 7b contain data averaged over recording sessions with and without the
linear electrodes present. To check the effects of this averaging, we repeated the data analysis while
only including the data from the two recording sessions for which the linear electrodes were present.
We found a similar overall trend in the spike count correlations, latent covariances and residual
correlations (Supplementary Figure 5d-f)

S.4 Correlations as a function of orientation tuning similarity

We focused on the dependence of correlation and connection probability on the physical distance
between neurons, but both correlations and connection probabilities are also known to depend on
the tuning properties of neurons [8, 3]. The correlations between L2/3 neurons in our data set
increased with their tuning similarity (Supplementary Figure 6a), as measured by the Pearson cor-
relation coefficient between their tuning curves, rsignal [8]. We next measured the average residual
correlation as a function of tuning similarity (Supplementary Figure 6b). While the mean residual
correlation depended non-monotonically on tuning similarity, this non-monotonicity was not sta-
tistically significant (p = 0.051 for the decrease from first bin to the third bin in Supplementary
Figure 6b).

Our theoretical results do not apply as directly to tuning similarity as they do to physical
distance because many of the recorded neurons are complex cells with multi-modal tuning curves.
However, a simplified model is obtained by assigning a preferred orientation between 0◦ and 180◦
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Supplementary Figure 6: Correlations as a function of tuning similarity. a) Mean spike count cor-
relation and b) residual correlation between putative L2/3 neurons in macaque primary cortex as a function
of tuning similarity. Same as Figures 5b and 7b respectively, but correlations are partitioned by tuning sim-
ilarity instead of distance. c,d) Same as (a,b), but from a computational model where αffwd = 20◦ and for
different values of αrec (see legend). e) Residual correlation as a function of the difference between preferred
orientations in the model. All plots show mean ± SEM. The non-monotonicity in (b) is not significant
(p = 0.051; one-sided unpaired t-test between first and third bins; t-value=1.6; df=872).

to each neuron, then letting connection probability depend on the difference between preferred
orientations. This model is identical to the spatial model considered above except the network is
on a one-dimensional state space, instead of the two-dimensional space, Γ. All of the calculations
and equations above are identical except that there is just one spatial Fourier mode, n, in place of
the vector n = (n1, n2).

The decay of inter- and intra-laminar connection probability with orientation tuning difference
has not been measured in macaque V1 to our knowledge. Therefore, in contrast to our spatial
model of V1 where αrec and αffwd were constrained by anatomical measurements, we manually
chose values of αrec and αffwd to capture the dependence of residual correlation on tuning similarity
that we observed in our data (Supplementary Figure 5c-e). Since the correlation data were used
to choose the parameters of the model, however, these simulations should not be interpreted as
making a prediction about the dependence of residual correlations on tuning similarity.

The connection between residual correlation structure and the connectivity parameters, αrec and
αffwd, is further complicated by the limited range of orientation tuning space. Specifically, since
orientations are between 0◦ and 180◦, the difference between neurons’ preferred orienations cannot
be larger than 90◦. If αrec is sufficiently large, any potential non-monotonicity will be pushed
beyond this range and residual correlations will depend monotonically on tuning similarity as a
result, even when αrec > αffwd (Supplementary Figure 5d,e). Hence, a non-monotonic dependence
of residual correlation on tuning similarity could only be predicted from our model if αrec and αffwd

were measured to find that αrec > αffwd with αrec not too large.

In summary, our findings concerning the dependence of residual correlation on tuning similarity
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in macaque V1 are inconclusive since the non-monotonicity in Supplementary Figure 6b is not
significant and since the relevant anatomical parameters are unknown. Further experiments are
needed to clarify the dependence of correlations on tuning similarity.

S.5 Description of algorithm to generate spatially extended net-
work architecture

For the spatially extended network simulations in Figures 3, 4, 6 and 7, connections were formed
randomly with connection probability that depends on distance, as described in Methods. Here,
we provide a more detailed description of the algorithm used to generate the connectivity.

To select one postsynaptic target in population a = e, i for a presynaptic neuron in population
b = e, i, F at coordinates (y1, y2), we first generated a pair of numbers, z1 and z2, independently from
an unbiased Gaussian distribution with standard deviation αb. These random numbers represent
the distance in each direction from the presynaptic neuron to the postsynaptic target. The first and
second coordinates of the postsynaptic target location were then set to x1 = mod(z1 + y1, 1) and
x2 = mod(z2 +y2, 1). This assures that the coordinates were between 0 and 1 and that the distance
from the presynaptic neuron, measured periodically on Γ, was z1 and z2 in each direction. This
implies that the probability density function of x1 and of x2 is a wrapped Gaussian distribution,

g(x;α2
b) =

1√
2παb

∞∑
k=−∞

e−(x+k)2/(2α2
b)

To find a postsynaptic neuron from population a near the target location, we set j1 = round(Nax1)
and j2 = round(Nax2) then set the index of the postsynaptic neuron in population a to j = Naj1+j2.
We repeated this procedure to generate a fixed number, Kout

ab , of postsynaptic targets in popula-
tion a for each presynaptic neuron in population b. Thus, Kout

ab is the number of outgoing synaptic
projections from each neuron in population b to all neurons in population a. We followed this
procedure for all pairings of pre- and post-synaptic populations, b = e, i, F and a = e, i. The values
of αa and Kout

ab used in each figure are given in Methods.

References

[1] B Doiron, A Litwin-Kumar, R Rosenbaum, G K Ocker, and K Josić. The mechanics of state-
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