Supplementary Materials 1: Method and W calculations

EEG Methods
Here we outline some general features of the EEG methods used in all our studies.
Participants had normal or corrected to normal vision, and were rewarded with either
course credit or a small reimbursement for travel expenses. The studies had local ethics
committee approval and were conducted in accordance with the declaration of Helsinki
(revised 2008).

In all experiments participants sat 140 cm from a 60 Hz CRT monitor. EEG data was
recorded from 64 scalp electrodes at 512 Hz using the BioSemi Active-Two system, in an
electrically shielded and darkened room. Common Mode Sense (CMS) and Driven Right Leg
(DRL) electrodes served as reference and ground. All experiments were programmed using
Python and the open source PsychoPy libraries (Peirce, 2007). Patterns were generated
afresh on each trial, so no participant ever saw the same pattern twice.

Participants were always asked to fixate centrally throughout the baseline and
stimulus intervals. They then entered a response using their left or right index fingers, after
the stimulus disappeared. No motor response was entered during the presentation period.

EEG Data was analysed using the EEGLAB toolbox for Matlab (Delorme and Makeig,
2004). Raw EEG data re-referenced to a scalp average, low-pass filtered at 25Hz, and
downsampled to 128Hz. The data was epoched into -1 to 1.5 second epochs, with a -200 ms
to 0 baseline. Blinks, eye movement and other gross artefacts were removed with
independent components analysis (ICA). After ICA, epochs were rejected if amplitude

exceeded +/- 100 uV. Grand Average ERPs were computed for all electrodes and conditions.



Most analysis focused on ERPs in posterior PO7/PO8 electrodes. The SPN was defined as

difference between regular and random waves from 300-1000 milliseconds.

Statistical assumptions

In this article we report many ANOVAs, examining RT, error rate, SPN and GFP data. We
applied the Greenhouse Geisser correction factor whenever the assumption of Sphericity
was violated, and report adjusted degrees of freedom.

ANOVA also assumes that the samples are normally distributed. This assumption was
often violated in our 22 participant samples. The Shapiro-Wilk test found that 14/20 (70%)
of our RT samples deviated from normality. For Error rate, 16/20 samples deviated from
normality (80%). For GFP, this was 10/23 (43%). The ERPs were typically normally
distributed, with only 4/33 (12%) deviations (we have found that the SPN is typically
normality distributed before, e.g. Makin et al., 2013).

One option would be to employ outlier removal or data transformation procedures
before running parametric analysis. However, this involves many arbitrary and post hoc
decisions, and does not always produce normally distributed data anyway. Instead, we
double-checked all ANOVAs and t tests with equivalent non parametric tests (which do not
require normally distributed samples). Of the 115 significant main effects and interactions
reported in this paper, 101 could be replicated with non-parametric tests (p < 0.05). This
replication rate of 87.8% rises to 94.8% if we set the significance threshold at 0.1, because
there were several borderline significant non-parametric replications (0.1 is arguably
justifiable, given that we usually made one-tailed a-priori predictions). This analysis confirms

that our results were not driven by a few outlying data points.



Unsurprisingly, the normalized data used in statistical topography analysis was
nearly all normally distributed (1187/1296 variables, 91.5%), so we did not back this up with
non-parametric tests.

Finally, we note that our figures show individual participant data points as well as
means. This makes it easy to visualize our sample distribution properties. We also illustrate
metrics from individual subjects. This generally confirms the samples were quite

homogenous: most participants behaved like the average participant.

Stimuli and W-load calculation

W loads were computed according to the rules in van der Helm and Leeuwenberg
(1996), and also described elsewhere (van der Helm, 2010). This section explains the W-load
concept, as well as the stimuli used in these experiments. W = E/N, where E is evidence for
regularity, and N is total information: So, the amount of regularity (somehow calculated) is
coded as a proportion of the total information in the patterns (somehow calculated).

It is instructive to first consider the W-loads for multiple reflectional symmetries. If
there is just 1 axis of reflection, E is the number of pairs, and N is the number of elements,
so E/N = 0.5. We can also see that half the pattern is new information, but the other half is
redundant information. For 2-Fold reflection, we can find pairs across one axis; so half the
pattern is again redundant. In the remaining half, there is another local axis of symmetry; so
half of the second half is also redundant. In total only 0.25 of the pattern is informative, and
0.75 is redundant. The W-load is 0.75 for two-fold reflection. For 4-Fold symmetry, there is a
further nested local reflection in the remaining quarter, only 0.125 of the pattern is
informative, and the remaining 0.875 is redundant. W-load is 0.875 for 4-fold reflection. So

far, W seems to be directly linked to redundancy. However, for 3-Fold symmetry, W =0.667,



even though 0.833 of the information is redundant. This is because the local regularities
overlap, and only one of these can be exploited and coded by the formalization of the
holographic model.

For repetition, W is E/N again, but E is the number of repeating blocks — 1, while N is
again the number of elements. This is different from reflection, where E is the number of
dot-pairs. Understanding this difference gets to the heart of the holographic approach to
regularity. Holographic regularities can be divided into parts, and each of the resulting parts
has the same kind of regularity as each other and as the original. For example, a reflectional
symmetry with 100 dots can be chopped into 5 substructures with 20 dots each. The
resulting substructures are all reflections, with the same regularity as each other, and with
the same regularity as the original 100-dot pattern. The same is true if we divided the 100-
dot pattern into substructures of other sizes as well. We thus say reflection possesses the
‘holographic property’ (meaning that all substructures have the same regularity, which is
also the regularity of the original). We can put this another way: A reflectional symmetry
can be grown and extended by one dot pair at a time, to an infinite size, and the holographic
property remains after the expansion. Because reflection can be extended one pair at a
time, it is said to have a point structure. Repetition also has the holographic property, but
only if we extend it by one repeating block at a time. For instance, a 10 repeat pattern can
be chopped into two blocks of 5 repeats, and both sub-structures are repetitions. We can
extend the pattern by another 10 repeats, divide it up into substructures, and all these have
the same repetition structure. But we cannot add half a block and retain the holographic
property. Repetition thus has a block structure according to the holographic model, because
the minimum unit for growth is an entire block, while for reflection the minimum unit for

growth is a single pair.



In the experiments reported below, we calculate the W-load of the stimuli based on
the ideas of the holographic model. In doing so, we made various assumptions. These
caveats are important. Nevertheless, we think that the stated W-loads are a fair
representation of the ideas behind the holographic model, and any alternative calculations
of W would not substantially alter the picture. Importantly, the rank ordering of W-loads is
always preserved, even if there are minor ambiguities.

The patterns used by Makin et al. (2012) were made of solid shapes, not separate
dots (Figure 1A). There were two axes of symmetry, so we give these a W-load of 0.75.
However, the black elements overlapped and formed perceptual groups, so we cannot
really say how many elements or pairs there were. This is not too problematic, because
however one conceptualizes N in these patterns, it always has the same proportional
relationship to E.

For the patterns used by Makin et al. (2013), there were always 22 dots, with 11 on
each side of the midline (Figure 1B). The reflections had 1 vertical axis, E was 11, N was 22,
so consequently the W-load was 0.5. For repetition, there were 2 repeated blocks, E = 2-1 =
1, N = 22, so W = 1/22 = 0.045. Rotation is treated in the same way as repetition by the
holographic model, and W was 0.045 for rotation as well. However, the size and colour of
the dots was also matched, and the dots could overlap slightly. This meant different
perceptual groupings and interpretations were possible. We cannot say for sure that
participants perceived 22 elements rather than a smaller number of larger groupings. The
real W-load for repetition and rotation may be underestimated here, because we are
overestimating N, the number of elements.

The behavioural work from Csathd, van der Vloed and Van der Helm (2003) is

relevant here. They found that salient perceptual substructures within each half strengthen



repetition but weaken reflection. We ignored the perceptual effects of multi-element
substructures when calculating W. This is not so much of a problem for Makin et al. (2012)
because all the patterns were reflections. For Makin et al. (2013), all patterns were quite
homogenous with regard to the number of such perceptual groupings, and the ordinal
goodness ranking of reflection > repetition = rotation was certainly preserved.

There is also a question about elements that fall exactly on the axis of symmetry.
These are ambiguous. They are clearly contributing to symmetry itself, but they are not
pairs. The holographic model does not have a formula for coding the contribution of
centrally positioned elements. Nevertheless, central elements were present in Makin et al.,
(2012), Palumbo et al., (2015) and in Study 3. We assume that W can be determined purely
by the number of axis in these experiments, and do not make any adjustments to deal with
the central elements.

Finally, there is a problem of residual regularity in the random patterns. Here the
elements on either side of the axes were chosen independently. There was thus a small
amount of accidental regularity in the random stimuli. The degree of accidental pairing
varied between experiments, and it was higher in experiments with higher element density.
W was always close to zero but also always positive for random patterns, with the actual
value changing from one stimulus to another (unlike the fully regular patterns in which the
value was constant).

The imperfect 4-fold symmetry in Palumbo et al. (2015) deserves special
consideration in this regard. The stimuli had a number of symmetrically positioned dots, and
a number of randomly positioned dots. The proportion of symmetrically positioned dots
(pSymm) was set at 1, 0.8, 0.6, 0.4, 0.2 or 0. The W-load for the perfect 4-fold symmetry was

0.875. To calculate the W-load for imperfect symmetries, we simply multiplied 0.875 by



pSymm value, giving W-loads of 0.875, 0.7, 0.525, 0.35 and 0.175. With average density of
40%, independent random positioning on either side of an axis produces an average
accidental dot-pairing rate of 0.4% = 0.16. However, there were 4 folds, so the average
accidental pairing rate for the random patterns was 0.4% + 0.4% + 0.4**0.4° = 0.26. As pSymm
increased, the accidental pairing rate reduced to 0.21, 0.16, 0.10, 0.05 and 0 (where all
pairing was deliberate). These figures give the impression that the advertised pSymm values
are a gross underestimate, and more so for the low pSymm patterns. However, the
deliberate symmetry was 4-fold, the accident pairs were usually across just 1 axis, and very
rarely more than two. Therefore, most of the regularity in this experiment was deliberate
regularity, not accidental pairing. We think that it is reasonable to ignore accidental pairing
when calculating W for these patterns.

Alternatively, it could be argued that advertised W-loads were overestimates,
because random dots in one segment hinder coding of nested reflections in multi-axis
patterns. Perhaps these two diverging complications cancel each other out. In any case, the
W-loads in the pSymm experiment should be treated as approximations, but importantly,

the approximations preserve the ordinal ranking of W-loads across the 5 conditions.
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