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ABSTRACT We used Monte Carlo methods to treat the
statistical problem of electrostatic interactions among many
titrating amino acids and applied these methods to lysozyme
and the photosynthetic reaction center of Rhodobacter sphae-
roides, including all titrating sites. We computed the average
protonation of residues as a function ofpH from an equilibrium
distribution of states generated by random sampling. Electro-
static energies were calculated from a finite difference solution
to the linearized Poisson-Boltzmann equation using the coor-
dinates from solved protein structures. For most calculations
we used the Metropolis algorithm to sample protonation states;
for strongly coupled sites, we substantially reduced sampling
errors by using a modifIed algorithm that allows multiple site
transitions. The Monte Carlo method agreed with calculations
for a small test system, lysozyme, for which the complete
partition function was calculated. We also calculated the pH
dependence of the free energy change associated with electron
transfer from the primary to the secondary quinone in the
photosynthetic reaction center. The shape of the resulting curve
agreed fairly well with experiment, but the proton uptake from
which the free energy was calculated agreed only to within a
factor of two with the observed values. We believe that this
discrepancy resulted from errors in the individual electrostatic
energy calculations rather than from errors in the Monte Carlo
sampling.

Electrostatic interactions in proteins are important for pro-
tein structure and function. The largest contribution to the
electrostatic potential within a protein arises from protonat-
able amino acids that can carry a net charge. The problem of
determining the average charges on protonatable residues
can be separated into two parts. (i) The energies of proton-
ation of the individual amino acids and the interaction ener-
gies between pairs of charged residues must be calculated.
Much progress along these lines has been made (1-4). (ii) The
average protonation ofeach residue must be determined from
the electrostatic energies. Since the protonation of a site
depends on the protonation of all other sites (in a typical
protein there may be hundreds of titrating sites), an exact
statistical calculation becomes too time consuming for more
than -25 titrating residues. In this paper we present a Monte
Carlo method to solve the statistical problem of finding the
protonation of many interacting protonatable residues.

Previous methods used to solve this problem can handle
only a small number of sites or are inaccurate. Exact values
of average protonations calculated from a partition function
work well when the number of sites is below -25, and the
reduced-site approximation can treat twice as many sites for
some systems (5). The Tanford-Roxby approximation (6)
ignores fluctuations in the protonation of residues and has

been shown to be inaccurate for strongly interacting titrating
residues (5).
We used a Monte Carlo technique for determining the

protonation ofmany interacting sites as a function ofpH. Our
method, which employs a finite difference algorithm to
calculate electrostatic energies, can treat hundreds of inter-
acting titrating residues. A Monte Carlo sampling of proton-
ation states was employed by Antosiewiez and Porschke (7)
to determine dipole moments in a-chymotrypsin.
We present a formalism for multiple-site titration, followed

by a description of the Monte Carlo approach to the problem,
and of a sampling technique that reduces sampling errors. We
tested the accuracy of the method against an exact solution
for a small test system (lysozyme, in which only 21 of the 32
sites were allowed to titrate). We applied the technique to two
systems: (i) the titration of all 32 sites in lysozyme and (ii) the
pH dependence of the free energy of electron transfer be-
tween the primary and secondary quinones (QA and QB) in the
photosynthetic reaction center of Rhodobacter (Rb.) sphae-
roides, taking into account all 172 titratable residues. Fair
agreement between the calculated and observed values was
obtained. Further approaches to improve the agreement
between calculations and experiments are discussed.

Multiple Site Titration

The titration curve of a residue in a protein is obtained from
the pH dependence of its average protonation, (x,), where xi
is the number of protons bound to the ith titratable site (xi =
0 or 1). We represent the protonation state of a protein with
N titrating sites by a vector with N components, x = (x1, x2,
. . . , XN). The free energy associated with protonation is

N 1 N
Gp(x) = E Xi(e1i - H+) + - E Wijqiqj,i=i 2 ij=1

igs'

[1]

where Ei is the intrinsic free energy required to protonate site
i when all other titrating sites are maintained neutral, /.H+ is
the hydrogen ion chemical potential in the solution, qj is the
charge on site i, qi = q° + xi, where q° is the charge of site
i in the unprotonated state, and Wij is the electrostatic
interaction energy between sites i and i when both are
charged.
The intrinsic free energy Es of protonating a site is a

function of the protein environment, including solvation,
background charges in the protein (fixed charges and per-
manent dipoles), polarization at the protein-solvent inter-
face, and the screening effects of salt. It is related to the
intrinsic pK by

- = kBT[ln 10](pH - pK°), [21
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where pKI is the pK of a residue when all other protonatable
residues are in their neutral state, kB is Boltzmann's constant,
and T is the temperature.
The average protonation of a site is given by

E xie-G(x)IkBT
(x,) = x

z

a.)

AL
[3]

where Z = x,, E-G(x)/kBT is the partition function (8), and the
sum is over the 2N different protonation states (canonical
ensemble). This average calculated at various values of pH
yields a titration curve, and the pK ofeach site i in the protein
is defined as the pH for which (xi) = 1/2.

Monte Carlo Method

The number of terms in the partition function and hence the
thermal average (xi) grows exponentially with the number of
sites; for more than =-25 sites the calculation of the sum (Eq.
3) is too time consuming for even the fastest present-day
computers. Nevertheless, the average behavior of such a
system can be obtained by a Monte Carlo (i.e., random)
sampling of the 2N protonation states.
An especially efficient Monte Carlo method, called impor-

tance sampling (9), samples protonation states with proba-
bility given by the normalized Boltzmann factor, P. =
exp[-G(x)/kBT]/Z. The statistically most important states
(i.e., the low-energy states) are sampled with the correct
statistical distribution, while the unlikely states are avoided.
Thus, the number of sampled states is small, compared with
the total number of accessible states. The average proton-
ation ofa residue (xi) is approximated by averaging xi over the
sampled states.
Standard Treatment. In most of our calculations we used

the Metropolis algorithm to sample protonation states (10).
Starting from a randomly chosen initial protonation state,
successive states are generated by a stochastic process:
Choose a site, i, randomly, all sites being equally likely.
Compute the change in energy, AG, if the protonation of site
i is changed:

AG = Axi (Ei JH+ + S. wiiqj) [41

where Axi = +-1 is the change in protonation of site i. If AG
0, change the protonation of site i; if AG > 0, change the

protonation with probability e-G/kBT.
Strongly Coupled Sites. The Metropolis algorithm may be

inefficient for sampling strongly interacting sites because the
protonation of only one site is allowed to change between
successively sampled states. This restriction may lead to
energy barriers between states of low energy, causing the
Monte Carlo trajectory to be trapped in a local minimum,
thereby reducing sampling efficiency.

Consider, for example, a protein containing two strongly
interacting cationic sites (charged in their protonated states)
with equal intrinsic pK values. If the pH value is below the
intrinsic pK values of the sites, then the states (1,1) and (0,0)
are energetically unfavorable [the (1,1) state because of
Coulomb repulsion and the (0,0) state because pH < pK0]
compared to the singly protonated states (1,0) and (0,1).
Because the two low-energy states are isoenergetic, the
sampling algorithm should choose them with equal fre-
quency. However, a long computation is required to obtain
correct statistics, because transitions between the two
equally probable low-energy states occur rarely. This is a
feature of the Metropolis algorithm, which allows only one of
the sites to change per sampling step. Therefore, two tran-
sitions are needed to change from (0,1) to (1,0) (see solid line
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FIG. 1. Energy diagram showing the four protonation states of
two strongly interacting sites. The two low-energy states with one
proton [(0,1) and (1,0)] are degenerate and, therefore, should be
sampled with equal frequency. Transitions allowed by conventional
Metropolis sampling are shown by a solid line. By using this sampling
technique, the only way to make the transition from (0,1) to (1,0) is
through one of the energetically unfavorable intermediate states (0,0)
or (1,1). The energy barrier associated with this process inhibits
accurate sampling of the isoenergetic states (0,1) and (1,0). The
modified sampling technique allows transitions between any two
states (the additional transitions are shown by dashed lines) thereby
improving accuracy in the sampling of the low-energy states.

in Fig. 1), requiring an unlikely visit to a high-energy inter-
mediate state (0,0) or (1,1).

If the sampling algorithm is trapped in a minimum as
described above, the coupled sites that cause the problem are
poorly sampled. The resulting average protonations will have
larger errors and will be biased toward the minimum in which
the trajectory spent most of its time. This bias causes a
correlation among the fluctuations in the titration curves of
the strongly coupled sites. The correlation and the larger
absolute errors make the poorly sampled sites easy to rec-
ognize.
We solved this problem by introducing transitions involv-

ing simultaneous changes of state of these correlated sites;
i.e., we included direct proton exchange between-the strongly
coupled sites in the Monte Carlo scheme. In the illustrative
two-site case introduced above, a simultaneous change of the
protonation of both sites is allowed in addition to the single-
site transitions (see dashed line in Fig. 1). This method, which
introduces additional transitions in the sampling algorithm,
provides an efficient way to sample low-energy states of
strongly coupled sites. The probability of transition between
any two states in the multisite transition was determined, as
in the single-site transition, by the ratio of their Boltzmann
factors (i.e., detailed balance was preserved) to ensure that
this modified sampling generated the correct equilibrium
distribution of protonation states (11).
The effectiveness of this method in reducing the sampling

error for two strongly interacting sites is illustrated in Fig. 2.
The errors in the protonation values were much larger with
the conventional Metropolis algorithm (Fig. 2a) than when
the sampling was done by the modified algorithm in which a
simultaneous change of the protonation of the two residues
was allowed (Fig. 2b).

Estimation of Errors. Monte Carlo methods are statistical,
and their results are subject to sampling error, which must be
estimated. The Metropolis algorithm and its modifications
guarantee strong correlation between consecutive states;
consequently, data are taken only after each complete Monte
Carlo step (i.e., after N attempts to change the protonation
state, where N is the number of protonatable sites). Never-
theless, correlations between steps persist, and it is neces-
sary to calculate the number of independent "measure-
ments" in the sample. The correlation function (9) for the
protonation x (we have dropped the subscript i to simplify
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FIG. 2. Protonation vs. pH of the strongly interacting pair of
arginines (R45 and R68) in lysozyme. (a) Sampling by the conven-
tional Metropolis algorithm; correlation between the protonation of
the two sites causes large errors (error bars represent ±1 -). (b)
Sampling by a modified algorithm that allows for a simultaneous
change in the protonation of the two residues in a single transition
(see dashed line in Fig. 1); errors are greatly reduced.

notation) determines the correlation time rcr. between ap-
proximately independent measurements and is given by

1 T-T-1
C(r) = xx, - (x)2, [5]

T-r t=0

where t is time in units of Monte Carlo steps, T is total num-
ber of steps (or the maximum time), and T is time variable of
the correlation function. The correlation time is the value of

T for which C(r) is negligible [we required IC(r)l < C(0)/10].
The number of independent measurements is T/Tcorr.
The variance of one measurement is C(O); use of the

average of T/Ir01, independent measurements results in the
standard deviation

C(O) 1/2

aT/Tcor

Testing the Monte Carlo Method. To test the accuracy of
the Monte Carlo method, we examined a small system,
lysozyme, for which exact results can be obtained. If the
number of interacting sites is fewer than 25, the 2N terms in
the partition function can be explicitly calculated, and the
average protonation of a site is given exactly by Eq. 3. This
exact result can be compared with that obtained by the Monte
Carlo method.
The intrinsic pK values and site-site interactions used were

the same as those used by Bashford and Karplus (4). They
assumed that all the arginine residues are protonated through-
out the pH range of interest (O < pH < 12); this reduces the
number of titrating sites from 32 to 21.
The Monte Carlo results compared well with those from

the complete partition function. For 10,000 Monte Carlo
steps (i.e., each titratable site sampled on the average of
10,000 times during the Monte Carlo trajectory), the exact
value of the protonation for each site fell within one standard
deviation ofthe Monte Carlo value at most values ofpH (Fig.
3). The above agreement gives us confidence that the Monte
Carlo method accurately represents the protonation states.

Applications

Before the Monte Carlo method is applied, it is necessary to
calculate the self energies and site-site interactions that
govern the relative probabilities of sampling the different
protonation states.
We calculated the electrostatic energies by using a finite

difference solution to the linearized Poisson-Boltzmann
equation (8) for two systems: one in which the residue is in
the protein and the other in which the residue is in solution
(4). For each of these systems the electrostatic potential was
calculated for the protonated and unprotonated states of the
residue. From these values the intrinsic pK values and the
site-site interactions were calculated.

0 2 4 6 8 10 12

pH

FIG. 3. Titration of the 21 protonatable amino acids (arginine residues not allowed to titrate) in lysozyme (triclinic structure). Smooth curves
are the exact calculation of protonation from the partition function (Eq. 3), which agree with the calculation of Bashford and Karplus (4) to within
0;01 proton, and circles are the values calculated from a Monte Carlo simulation of 10,000 steps at intervals of 0.5 pH unit. The exact calculation
falls within one standard deviation of the Monte Carlo result for all residues at most pH values. Ctm, C terminus; Ntm, N terminus.
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The atomic coordinates used in the calculations were
obtained from the crystal structures of the triclinic form of
hen egg white lysozyme from the Brookhaven data bank (12)
and of the photosynthetic reaction center ofRb. sphaeroides
(13, 14). Partial charges and atomic radii were assigned to
atoms according to the CHARMM parameter set (15). For
lysozyme, hydrogen positions were those used in ref. 4; and
for the reaction center, hydrogens were added using INSIGHT
(a product of Biosym Technologies, San Diego, CA). For
titrating sites in the uncharged state, all side-chain atoms had
zero charge. The charged state was represented by a point
charge on one atom (the carboxyl carbon for aspartic acid,
glutamic acid, and the C terminus; the C.1 atom for histidine;
the sulfur atom for cysteine; the hydroxyl oxygen for tyro-
sine; the guanadino carbon for arginine; and the amino
nitrogen for lysine and the N terminus). We assigned a
dielectric constant of 4 to the protein interior (16) and of 80
to the solvent. Counterions (10 mM NaCl for lysozyme and
50 mM KCI for the reaction center) were allowed to within 2
A of the surface (Stem layer). Details of the finite difference
technique can be found in ref. 4.
Lysozyme. We calculated the titration of all the protonat-

able residues in lysozyme, including arginines. Inclusion of
all the titrating sites in lysozyme provides a simple extension
of existing computational results and also tests the previous
assumption that the arginines do not contribute throughout
the range of titration.
Allowing the arginines to titrate had little effect on other

residues titrating in the pH range from 0 to 12 (the maximum
change in the pK for the nonarginine residues was 0.2 pK
unit), notwithstanding the titration of some arginines below
pH 12 (Fig. 4). One interesting feature ofthe calculation is the
behavior of the two arginine residues at positions 45 and 68,
whose guanadino carbons are 3.3 A apart. When the positive
charge is localized on the guanadino carbons, the interaction
results in a depressed pK value for Arg-45 (see Fig. 2). When
the positive charge is distributed more realistically (using the
CHARMM partial charges for positively charged arginine
rather than a point charge), the coupling is reduced and the
order of their titration is reversed.
The measured pK values of the nonarginine residues seem

to account for all the protons dissociated in the titration of
lysozyme (17, 18); titration of individual arginine residues has
not, however, been examined experimentally. It is, there-
fore, not clear at present whether the one low pK value
calculated for the Arg-45,Arg-68 pair is real or the result of
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FIG. 4. Titration of the arginine residues in lysozyme. All 32 of
the protonatable residues were allowed to titrate (only arginines are
shown); the pK values for the nonarginine residues changed by less
than 0.2 pK unit. The charge distributions for the protonated states
of the arginine residues in this calculation were obtained from the
CHARMM partial charge set (15). Use of this more detailed charge
distribution (rather than of a point charge) not only reduced the
coupling between arginine residues 45 and 68 but also reversed the
order in which they titrated (compare with Fig. 2).

simplifying assumptions made in the calculation (see Discus-
sion).

Reaction Center. The photosynthetic reaction center ofRb.
sphaeroides, with 172 titratable amino acids, provides a
challenging system for electrostatic calculations. In general,
the protonation of a residue is a function of the protonation
of all other titrating sites, and we found that considering only
pieces of the reaction center gave inconsistent results (the
protonation of a residue was a strong function of which
residues were allowed to titrate). Since an exact calculation
ofthe 2172 terms in the partition function for this system is not
feasible, the Monte Carlo technique is well suited for deter-
mining the charge distribution within the reaction center as a
function of pH.
We examined the proton uptake and free energy change

associated with electron transfer between the primary and
secondary quinone (QAQB -- QAQB) in the reaction center.
The integral of the proton uptake as a function ofpH is equal
to the change in the free energy (to within a constant of
integration) (19). Both the proton uptake and the free energy
change have been measured experimentally (19, 20).

Calculation of the net proton uptake by the reaction center
during electron transfer requires calculation of the pH de-
pendence of the average protonation of all 172 titratable
residues when either QA or QB is reduced. The calculated
proton uptake values A[H+](QAQB -- QAQB) and A[H+]-
(QAQB -* QAQB-) were compared directly with experimental
values, and the integral of A[H+I(QAQB -- QAQB) was
compared with the measured free energy AG(QAQBn
QAQB)*
For the reduced quinones the negative charge was placed

at the center of the quinone ring. More realistic charge
distributions were found to have little effect on the proton-
ation of the residues. The presence of detergent was not
included in the calculation.
The calculated free energy curve AG(Q QB QAQB) as a

function of pH is in fair agreement with the experimentally
determined curve (Fig. 5). However, the individual proton
uptake values A[H I(QAQB -' QAQB) and A[H J(QAQB
QAQB) agree with the experimental values only within a
factor of two.

Discussion

We applied a Monte Carlo method to calculate the proton-
ation of many interacting sites in a protein. The method was
tested and validated on a small test system (lysozyme) for
which the complete partition function was calculated. We
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FIG. 5. Free energy change associated with electron transfer
from QA to QB in the photosynthetic reaction center of Rb. sphae-
roides. Circles are experimental data (20). The theoretical curve was
obtained by integrating the differences in the calculated proton
uptakes A[H+I(QAQB -Q Qs ) and A[HI(QAQs-- QAQs)- The
constant of integration was chosen to give agreement with the
experimental value at pH 8.
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FIG. 6. Time required to determine the average protonation ofN
residues (at one value of pH) by an exact calculation and by Monte
Carlo sampling (10,000 Monte Carlo steps). Calculations were per-
formed on a Solbourne 5-502 (3.4 megaFlops). Beyond -25 sites the
time required to compute the exact solution becomes prohibitive,
whereas the Monte Carlo calculation remains practical for several
hundred sites.

found that about 10,000 Monte Carlo steps gave average
protonation values with an absolute error of -0.02 proton.
Even for proteins as large as the reaction center (172 sites),
the time required for sampling is reasonable, whereas the
time required to calculate the average protonation exactly
becomes prohibitive for more than -25 sites (Fig. 6). Thus,
the calculation of the protonation of the 172 interacting
residues in the reaction center could only be accomplished by
the Monte Carlo method.
We found qualitative agreement between the calculated

and observed protonation of the reaction center when QA and
QB were reduced. We attribute the quantitative discrepancies
between theory and experiment to inaccuracies in the calcu-
lation of the electrostatic energies (i.e., to the input to the
Monte Carlo sampling rather than to the Monte Carlo meth-
od).
Now that we have an adequate procedure to treat the

statistical problem of many titrating sites, the calculation of
electrostatic energies needs to be refined. Possible improve-
ments in these calculations involve the following points: (i)
inclusion of bound-detergent molecules and interior water
molecules [water positions were not reported for Rb. sphae-
roides but were observed in the structure of Rhodopseudo-
monas viridis (21)], (ii) allowing the protein to relax in
response to electric fields, (iii) more realistic charge distri-
butions for the titrating sites, (iv) a more sophisticated
treatment of counterions, especially those that bind to the
protein, and (v) a more realistic treatment of the dielectric
properties of the interior of the protein.

In addition, we have assumed that all protonatable residues
can exchange protons with and are in thermal equilibrium
with the external solution. If no mechanism for protonation

of a residue exists or if the time scale for proton exchange is
longer than the time scale ofthe experimental measurements,
the calculation needs to be modified.

In conclusion, we have shown that the Monte Carlo
method is well suited to solve the statistical part of the
protonation problem of many interacting residues. To obtain
better agreement between theory and experiment, the calcu-
lation of the electrostatic self energies and interaction ener-
gies needs to be improved.
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