1 Supplementary Methods

2 Isolation and characterization of SMSCs

3 Isolation of SMSCs

Synovial membrane tissue was aseptically harvested from the knee joint of trauma 4 patients, aged from 30 to 35 years old, during arthroscopically-assisted surgery. 5 6 Synovium was minced, digested with 0.2% collagenase type I (Gibco brand, Thermo 7 Fisher Scientific, Waltham, MA, USA) in high-glucose Dulbecco's modified Eagle's medium (high-glucose DMEM; Thermo Fisher Scientific) supplemented with 10% 8 foetal bovine serum (FBS; Gibco) and incubated at 37°C overnight. After centrifuging 9 10 at $300 \times g$ for 5 min, cells were collected, washed twice with phosphate-buffered saline (PBS) supplemented with penicillin-streptomycin (PS; 100 units/mL penicillin, 11 12 100 µg/mL streptomycin, Gibco), resuspended in complete culture medium-high-glucose DMEM supplemented with 10% FBS and PS-then plated 13 into T25 culture flasks and incubated at 37°C with 5% humidified CO2. After 14 incubating for 4 days to allow cell attachment, the complete culture medium was 15 16 refreshed every three days. After 14 days, cells were digested using trypsin-EDTA (0.25%; Gibco) and counted. Some of the primary cultured cells were preserved at 17 18 -80°C using CELLSAVING (New Cell & Molecular Biotech, Suzhou, China). The 19 remainder were cultured and passaged for follow-up study.

20

21 Multiple differentiation potential

22 At passage five, the cells were induced to differentiate by switching to osteogenic,

adipogenic or chondrogenic differentiation medium. Osteogenic differentiation was
induced by replacing the complete culture medium with osteogenic medium (Cyagen,
Suzhou, China) and culturing for 2 weeks. For adipogenic differentiation, the
StemPro® Adipogenesis Differentiation Kit (Gibco) was used for 2 weeks. For
chondrogenic induction, SMSCs were encapsulated in alginate gel beads and cultured
using a StemPro® Chondrogenesis Differentiation Kit (Gibco) for 4 weeks. The
procedure of inducing differentiation was as described in the instruction handbook.

30

31 Surface markers of SMSCs

32 Flow cytometry was used to analyse the surface antigens of SMSCs. At passage five, 33 cells were harvested using trypsin-EDTA and incubated with 3% bovine serum 34 albumin (BSA; Gibco) in PBS for 1 h to block non-specific antigen binding. After 35 blocking, the cells were then incubated with the following antibodies (all from Becton, Dickinson and Company; BD): allophycocyanin (APC)-conjugated anti-CD34, 36 37 phycoerythrin (PE)-conjugated anti-CD44, fluorescein isothiocyanate 38 (FITC)-conjugated anti-CD45, PE-conjugated anti-CD73, APC-conjugated anti-CD90, FITC-conjugated anti-CD105, PE-conjugated anti-CD133 and PE-conjugated 39 anti-CD151. The stained cells were analysed using a Guava® easyCyte[™] flow 40 41 cytometer (Merck-Millipore, Darmstadt, Germany).

42

43 Isolation and identification of exosomes

44 Isolation of exosomes

45	When SMSCs reached 50-60% confluence they were washed with PBS and cultured
46	in MesenGro® hMSC medium (StemRD, Burlingame, CA, USA) for an additional 48
47	h at 37°C in an atmosphere of 5% humidified CO ₂ . The conditioned medium (CM)
48	was collected and centrifuged at $300 \times g$ for 15 min at 4°C and then at 2,500 $\times g$ for
49	15 min to remove dead cells and cellular debris. After centrifugation, the supernatant
50	was filtered using a 0.22 μ m filter (Merck–Millipore) to remove the remaining cells
51	and cellular debris. Then the filtered solution was transferred to a 15 mL Amicon
52	Ultra-15 Centrifugal Filter Unit (Merck–Millipore) and centrifuged at 4,000 \times g until
53	the volume in the upper compartment was concentrated to approximately 200 μ L. The
54	ultrafiltered liquid was washed with PBS and centrifugation was repeated three times.
55	The washed ultrafiltration liquid containing exosomes was laid on top of a 30%
56	sucrose/D ₂ O cushion in a sterile Ultra-Clear TM tube (Beckman Coulter, Brea, CA,
57	USA) and ultracentrifuged at 100,000 \times g for one hour at 4°C. The pellets were
58	resuspended in 15 mL PBS and centrifuged at $4,000 \times g$ to concentrate the volume to
59	approximately 200 μ L. Measurement of the exosome particle number was performed
60	using a CD63 ExoELISA TM kit (System Biosciences, Palo Alto, CA, USA) following
61	the manufacturers' instructions.

62

63 Dynamic light scattering (DLS) analysis of exosomes

64 The size distribution of the exosomes was measured using Nanosizer[™] technology
65 (Malvern Instruments, Malvern, UK), and was analysed using Zetasizer software
66 (Malvern).

68 Transmission electron microscopy (TEM) analysis of exosomes

The morphology of the exosomes was observed by transmission electron microscopy (TEM). The exosomes were loaded onto copper grids coated with Formvar (Structure Probe, Inc., PA, USA). The grids were contrasted using 2% uranyl acetate, dried and then observed using a Philips Morgagni 268D microscope (Philips, Amsterdam, Netherlands).

74

75 Isolation of RNA and protein from exosomes

76 RNA and protein were extracted from exosomes using a Total Exosome RNA &
77 Protein Isolation Kit (Invitrogen, Carlsbad, CA, USA) following the instructions
78 supplied. The obtained RNA and protein were subsequently used in qPCR and
79 western blotting to detect the components of the exosomes.

80

81 *Exosome uptake by chondrocytes*

SMSCs were labelled with the fluorescent lipophilic tracer Vybrant DiO (green) dye (Molecular Probes, Carlsbad, CA, USA) following the manufacturers' instructions. Briefly, the SMSCs were digested using trypsin-EDTA before being resuspended in 1 mL MesenGro® hMSC medium. After adding 5 μ L of DiO solution into the suspension, the mix was incubated at 37°C in 5% humidified CO₂ for 15 min. After the mix was centrifuged at 300 × g for 10 min and washed three times using PBS, cells were cultured in complete medium until they reached 50–60% confluence.

67

89	Exosomes were isolated using the protocol described above and incubated with
90	chondrocytes for 6 h. After washing three times in PBS to remove free exosomes, the
91	chondrocytes were fixed with 4% paraformaldehyde for 15 min and stained with
92	DAPI for 5 min. Finally, the images were photographed using a Leica DMI6000B
93	fluorescence microscope (Leica Microsystems, Wetzlar, Germany).
94	

- 95 Real-time quantitative polymerase chain reaction (qPCR)
- 96 The sequences of miRNA are shown below:
- 97 reverse transcription primer for RNU6B:
- 98 5'-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAAAAATAT-3'
- 99 forward primer for RNU6B:
- 100 5'-CAAGGATGACACGCAAAT-3'
- 101 reverse primer for RNU6B:
- 102 5'-TGGTGTCGTGGAGTCG-3'
- 103 reverse transcription primer for miR-140-5p
- 104 5'-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCATA-3'
- 105 forward primer for miR-140-5p
- 106 5'-AGTGGTTTTACCCTATGG-3'
- 107 reverse primer for miR-140-5p
- 108 5'-AACTGGTGTCGTGGAG-3'
- 109
- 110 The primer sequences of mRNA are shown below:

- 111 WNT1-FOR: 5'-GTCCTCCTAAGTCCCTTCCT-3'
- 112 WNT1-REV: 5'-CCTTTTGCCCTGTAACCTC-3'
- 113 WNT2-FOR: 5'-TGGGGGATACAAGATTGGTGAA-3'
- 114 WNT2-REV: 5'-ATGGGCATTAGCAGACGG-3'
- 115 WNT2B-FOR: 5'-GATGGGACAAAGATGAATGG-3'
- 116 WNT2B-REV: 5'-GGCTCTCAATAATAGAATGT-3'
- 117 WNT3-FOR: 5'-GGATTCAGCGAAGTCTCAT-3'
- 118 WNT3-REV: 5'-AGTTGGGTCTGGGTCATTTAC-3'
- 119 WNT3A-FOR: 5'-GCCATCCTCTGCCTCAAAT-3'
- 120 WNT3A-REV: 5'-CGTCTAACTCCGTTGGACAG-3'
- 121 WNT4-FOR: 5'-CCACGCAACGCACAGTTCAAG-3'
- 122 WNT4-REV: 5'-AAGTCGGGGGCTAGGCTCCAAGT-3'
- 123 WNT5A-FOR: 5'-CTTGAGCACGACGAAGCAAC-3'
- 124 WNT5A-REV: 5'-CAACCCAACACGCATTTCAG-3'
- 125 WNT5B-FOR: 5'-TCTTCATCCTCCACGGTT-3'
- 126 WNT5B-REV: 5'-CAGTTTAGGGCTTTCCTGAC-3'
- 127 WNT6-FOR: 5'-AGAGTGCCAGTTCCAGTTCC-3'
- 128 WNT6-REV: 5'-GTCTCCCGAATGTCCTGTTG-3'
- 129 WNT7A-FOR: 5'-GCCATCATCGTCATAGGAGAA-3'
- 130 WNT7A-REV: 5'-GCCATTGCGGAACTGAAAC-3'
- 131 WNT7B-FOR: 5'-AGGATTCTCGGCACTAACA-3'
- 132 WNT7B-REV: 5'-GGAAAGGAAACAGAGGGT-3'

- 133 WNT8A-FOR: 5'-AGAACAGCCACAACACATCC-3'
- 134 WNT8A-REV: 5'-CAGTTTTCCTCTCTCCACCT-3'
- 135 WNT9A-FOR: 5'-AGTACAGCAGCAAGTTCGT-3'
- 136 WNT9A-REV: 5'-GAGGTTGTTGTGGAAGTC-3'
- 137 WNT10A-FOR: 5'-CCACGAATGCCAACACCAA-3'
- 138 WNT10A-REV: 5'-CGGAAACCTCTGCTGAAGATG-3'
- 139 WNT11-FOR: 5'-GACTCGGAACTCGTCTATCTG-3'
- 140 WNT11-REV: 5'-AGCCCACCTTCTCATTCTT-3'
- 141 WNT16-FOR: 5'-GGAAACACCACGGGCAAAG-3'
- 142 WNT16-REV: 5'-AGCGGCAGTCTACTGACATCAA-3'
- 143 ANKRD1-FOR: 5'-AGCCCAGATCGAATTCCGTG-3'
- 144 ANKRD1-REV: 5'-TGAGCAACTTATCTCGGGCG-3'
- 145 CTGF-FOR: 5'-TGTGCACCGCCAAAGATGG-3'
- 146 CTGF-REV: 5'-ACGTGCACTGGTACTTGCAG-3'
- 147 Cyr61-FOR: 5'-AAGGAGCTGGGATTCGATGC-3'
- 148 Cyr61-REV: 5'-CATTCCAAAAACAGGGAGCCG-3'
- 149 ACAN-FOR: 5'-GCCAGCACCAATGTAAG-3'
- 150 ACAN-REV: 5'-TTCAGTAACACCCTCCACGA-3'
- 151 Col II-FOR: 5'-TGAAGGTGCTCAAGGTCCTC-3'
- 152 Col II-REV: 5'-ATTCCATCTGTTCCAGGGTT-3'
- 153 SOX9-FOR: 5'-GCTCTGGAGACTTCTGAACG-3'
- 154 SOX9-REV: 5'-GGGTGGTCCTTCTTGTGCT-3'

- 155 YAP-FOR: 5'-AACCGTTTCCCAGACTACCT-3'
- 156 YAP-REV: 5'-GCTCCTCTCTCTATGTTC-3'
- 157 RalA-FOR: 5'-AGGGGTCCTAACCACTAACA-3'
- 158 RalA-REV: 5'-GGCTTCATAGCACCTCAGTA-3'
- 159