# SUPPLEMENTAL FIGURES



**Figure S1. Comparison of sequencing reads per gene in pre- and post-treatment samples.** The comparison of reads per gene in pre- and post-treatment for all genes is shown for carbon-limited samples (**A**) and for nitrogen-limited samples (**B**). Each data point represents a single gene. Orange lines represent a 3-fold change between pre- and post-treatment samples. For genes with zero reads, the value was replaced with 0.5 to allow display on a logarithmic scale.



**Figure S2.** *wecE* mutant cells are SDS sensitive in exponential phase. Actively growing cells with a deletion of *wecE* were treated with SDS. Viability was assessed after 7 hours of treatment. \* p<0.05 compared to untreated sample



**Figure S3. RpoS levels are not affected by** *acrA*, *sanA*, *yhdP*, or *dacA* deletion. Protein levels of RpoS were determined by immunoblot analysis for the indicated strains in carbon-limited conditions as has been previously described with minor modifications (1): cells were lysed in sample loading buffer without protein precipitation and GroEL (Sigma G-6532, 1:10 000 dilution) was included as a loading control.



**Figure S4. Genes identified in RpoS-dependent mechanism of SDS resistance have a small effect on SDS resistance in exponential phase. A.** Actively growing cells with deletions of either *acrA*, *yhdP*, *dacA*, or *sanA* were treated with SDS and viability was assayed 7 h post-treatment. \* p<0.05 against untreated sample. **B.** LB overnight cultures were serially diluted and plated on M63 glucose media with or without 2% SDS for an efficiency of plating assay.



**Figure S5.** *sanA* acts in a different manner than its homologs, including *elyC*. Carbon-limited cells with the indicated genotype were treated with 2% SDS and incubated for 24 h before viability was assayed. The fold decrease of the SDS treated sample compared to the untreated sample is shown. No significant changes were observed between the parent (MG1655 for *ydcF*, *ygjQ*, and *elyC*, *sanA* for *sanA wecA* and *sanA wecE*) and mutant strains.



**Figure S6.** *ydhP* and *ydgH* are not epistatic. Carbon-limited cells from the indicated strains were treated with 2% SDS for 24 h and then viability was assayed. The fold decrease of the SDS treated sample compared to the untreated sample is shown. \* p<0.05 against indicated samples

# SUPPLEMENTAL TABLES

# Table S1. Strains used in this study

| Strain Name | Genotype                                                                                 |
|-------------|------------------------------------------------------------------------------------------|
| MG1655      | K-12 F <sup>-</sup> $\lambda$ <sup>-</sup> <i>rph-1</i> (Coli Genetic Stock Center 6300) |
| AM102       | MG1655 Δ <i>acrA</i>                                                                     |
| AM103       | MG1655 Δ <i>acrB</i>                                                                     |
| AM144.5     | MG1655 <i>sprE</i> :Tn10                                                                 |
| AM145       | MG1655 Δ <i>acrA sprE</i> :Tn10                                                          |
| AM104       | MG1655 Δ <i>rpoS</i>                                                                     |
| AM146       | MG1655 ΔrpoS sprE:Tn10                                                                   |
| AM136       | MG1655 $\Delta acrA \Delta rpoS$                                                         |
| AM137       | MG1655 $\Delta acr B \Delta r po S$                                                      |
| AM163       | MG1655 <i>ydgH</i> ::Kan                                                                 |
| AM172       | MG1655 bssR::Kan                                                                         |
| AM173       | MG1655                                                                                   |
| AM174       | MG1655 <i>wec</i> A::Kan                                                                 |
| AM175       | MG1655 ompA::Kan                                                                         |
| AM176       | MG1655 dacA::Kan                                                                         |
| AM144       | MG1655 sanA::Kan                                                                         |
| AM177       | MG1655 <i>yftK</i> ::Kan                                                                 |
| AM179       | MG1655 <i>wecE</i> ::Kan                                                                 |
| AM180       | MG1655                                                                                   |
| AM178       | MG1655 yhdP::Kan                                                                         |
| AM187       | MG1655 Δ <i>rpoS yhdP</i> ::Kan                                                          |
| AM190       | MG1655 Δ <i>rpoS dac</i> A::Kan                                                          |
| AM149       | MG1655 Δ <i>rpoS sanA</i> ::Kan                                                          |
| AM184       | MG1655 ∆ <i>rpoS ydgH</i> ::Kan                                                          |
| AM193       | MG1655 Δ <i>rpoS rfaH</i> ::Kan                                                          |
| AM186       | MG1655 ∆ <i>acrA yhdP</i> ::Kan                                                          |
| AM189       | MG1655 Δ <i>acrA dacA</i> ::Kan                                                          |
| AM148       | MG1655 Δ <i>acrA sanA</i> ::Kan                                                          |
| AM183       | MG1655 ∆ <i>acrA ydgH</i> ::Kan                                                          |
| AM192       | MG1655 ∆ <i>acrA rfaH</i> ::Kan                                                          |
| AM182       | MG1655 Δ <i>yhdP</i>                                                                     |
| AM197       | MG1655 ∆dacA                                                                             |
| AM196       | MG1655 Δ <i>yhdP sanA</i> ::Kan                                                          |
| AM200       | MG1655 ΔyhdP ΔdacA                                                                       |
| AM199       | MG1655 ∆ <i>dacA sanA</i> ::Kan                                                          |
| AM201       | MG1655 Δ <i>yhdP ΔdacA sanA</i> ::Kan                                                    |
| AM198       | MG1655 Δ <i>yhdP ydgH</i> ::Kan                                                          |
| AM215       | MG1655 <i>ydcF</i> ::Kan                                                                 |
| AM216       | MG1655 <i>ygjQ</i> ::Kan                                                                 |
| AM217       | MG1655 <i>elyC</i> ::Kan                                                                 |
| AM158       | MG1655 Δ <i>sanA</i>                                                                     |
| AM221       | MG1655 Δ <i>sanA wecA</i> ::Kan                                                          |
| AM222       | MG1655 Δ <i>sanA wecE</i> ::Kan                                                          |

#### Table S2. Tn-Seq reads per gene

|                                 | Reads per gene |        |
|---------------------------------|----------------|--------|
| Data Set                        | Average        | Median |
| Carbon-limited pre-treatment    | 3017           | 1740   |
| Carbon-limited post-treatment   | 3077           | 1813   |
| Nitrogen-limited pre-treatment  | 2673           | 1443   |
| Nitrogen-limited post-treatment | 2713           | 1439   |

## Table S3. Descriptive statistics for Tn-Seq data

|                    | Log2 Fold Post/Pre treatment |                  |  |  |
|--------------------|------------------------------|------------------|--|--|
| Statistic          | <b>Carbon-limited</b>        | Nitrogen-limited |  |  |
| Average            | -0.04                        | 0.06             |  |  |
| Median             | 0                            | 0                |  |  |
| Standard Deviation | 1.43                         | 1.35             |  |  |
| Max                | 8.87                         | 9.61             |  |  |
| Min                | -9.35                        | -9.01            |  |  |

## Table S4. Non-envelope related Tn-Seq hits causing SDS sensitivity only in carbon-limited cells

|                   | Carbon-limited Reads per Kbp <sup>b</sup> |                | Log2 Fold Post/Pre treatment <sup>c</sup> |                  |
|-------------------|-------------------------------------------|----------------|-------------------------------------------|------------------|
| Gene <sup>a</sup> | Pre-treatment                             | Post-treatment | Carbon-limited                            | Nitrogen-limited |
| dam               | 1338                                      | 174            | -2.2                                      | 0.9              |
| paaD              | 1739                                      | 231            | -2.2                                      | 0.3              |
| сстС              | 4352                                      | 735            | -1.9                                      | 0.2              |
| bioA              | 1552                                      | 274            | -1.8                                      | 0.2              |
| argH              | 1539                                      | 298            | -1.7                                      | 1.1              |
| aceA              | 6995                                      | 1386           | -1.6                                      | -0.1             |
| xerC              | 1216                                      | 241            | -1.6                                      | -0.2             |
| rluC              | 1385                                      | 282            | -1.6                                      | 0.8              |

<sup>*a*</sup> Genes with at least 700 sequence reads, decreasing at least 3-fold during treatment in carbon-limiting conditions, and changing less than 3-fold in nitrogen limiting conditions

<sup>b</sup> The number of sequence reads for each gene was normalized to the length of the gene

<sup>c</sup> The fold change in read number before and after SDS treatment in either carbon- or nitrogen-limiting conditions

#### SUPPLEMENTAL REFERENCES

1. Mandel, M. J., and T. J. Silhavy. 2005. Starvation for different nutrients in *Escherichia coli* results in differential modulation of RpoS levels and stability. Journal of Bacteriology 187:434-442.